单桩承载力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节单桩承载力
桩基础是由若干根基桩所组成,在设计桩基础时,应从分析单桩入手,确定单桩承载力,然后结合桩基础的结构和构造型式进行基桩受力分析计算,从而检验桩基础的承载力及其变形。
单桩承载力是指单桩在荷载作用下,地基土和桩本身的强度和稳定性均能得到保证,变形也在容许范围内,以保证结构物的正常使用所能承受的最大荷载。一般情况下,桩受到轴向力、横轴向力及弯矩作用,因此须分别研究和确定单桩的轴向承载力和横轴向承载力。
一、单桩轴向荷载传递机理和特点
桩的承载力是桩与土共同作用的结果,了解单桩在轴向荷载下桩上间的传力途径、单桩承载力的构成特点以及单桩受力破坏形态等基本概念,将对正确确定单桩承载力有指导意义。
(一)荷载传递过程与土对桩的支承力
桩在轴向压力荷载作用下,桩顶将发生轴向位移(沉降),它为桩身弹性压缩和桩底以下土层压缩之和。置于土中的桩与其侧面土是紧密接触的,当桩相对于土向下位移时就产生土对桩向上作用的桩侧摩阻力。桩顶荷载沿桩身向下传递的过程中,必须不断地克服这种摩阻力,桩身轴向力就随深度逐渐减小,传至桩底的轴向力也即桩底支承反力,它等于桩顶荷载减去全部桩侧摩阻力。桩顶荷载是桩通过桩侧摩阻力和桩底阻力传递给土体。
因此,可以认为土对桩的支承力是由桩侧摩阻力和桩底阻力两部分组成,桩的极限荷载(或称极限承载力)就等于桩侧极限摩阻力和桩底极限阻力之和。桩侧摩阻力和桩底阻力的发挥程度与桩土间的变形性态有关,并各自达到极限值时所需要的位移量是不相同的。试验表明:桩底阻力的充分发挥需要有较大的位移值,在粘性土中为桩底直径的25%,在砂性土中约为8%~10%;而桩侧摩阻力只要桩土间有不太大的相对位移就能得到充分的发挥,具体数量目前认识尚不能有一致的意见,但一般认为粘性土为4 ~ 6mm,砂性土为6~10mm。因此在确定桩的承载力时,应考虑这一特点。柱桩由于桩底位移很小,桩侧摩阻力不易得到充分发挥。对于一般柱桩,桩底阻力占桩支承力的绝太部分,桩侧摩阻力很小常忽略不计。但对较长的柱桩且覆盖层较厚时,由于桩身的弹性压缩较大,也足以使桩侧摩阻力得以发挥,对于这类柱桩国内已有规范建议可予以计算桩侧摩阻力。置于一般土层上的摩擦桩,桩底土层支承反力发挥到极限值,则需要比发生桩侧极限摩阻力大得多的位移值,这时总是桩侧摩阻力先充分发挥出来,然后桩底阻力才逐渐发挥,直至达到极限值。对于桩长很大的摩擦桩,也因桩身压缩变形大,桩底反力尚未达到极限值,桩顶位移已超过使用要求所容许的范围,且传递到桩底的荷载也很微小,此时确定桩的承载力时桩底极限阻力不宜取值过大。
(二)桩侧摩阻力的影响因素及其分布
桩侧摩阻力除与桩土间的相对位移有关,还与土的性质、桩的刚度、时间因素和土中应力状态以及桩的施工方法等因素有关。
桩侧摩阻力实质上是桩侧土的剪切问题。桩侧土极限摩阻力值与桩侧土的剪切强度有关,随着土的抗剪强度的增大而增加。而土的抗剪强度又取决于其类别、性质、状态和剪切面上的法向应力。不同类别、性质、状态和深度处的桩侧土将具有不同的桩侧摩阻力。
从位移角度分析,桩的刚度对桩侧摩阻力也有影响。桩的刚度较小时,桩顶截面的位移较大而桩底较小,桩顶处桩侧摩阻力常较大;当桩刚度较大时,桩身各截面位移较接近,由于桩下部侧面土的初始法向应力较大,土的抗剪强度也较大,以致桩下部桩侧摩阻力大于桩上部。
由于桩底地基土的压缩是逐渐完成的,因此性侧摩阻力所承担荷载将随时间由桩身上部向桩下部转移。在桩基施工过程中及完成后桩侧土的性质、状态在一定范围内会有变化,影响桩侧摩阻力,并且往往也有时间效应。
影响桩侧摩阻力的诸因素中,土的类别、性状是主要因素。在分析基桩承载力等问题时,各因素对桩侧摩阻力大小与分布的影响,应分别情况予以注意。例如,在塑性状态粘性土中打桩,在桩侧造成对土的扰动,再加上打桩的挤压影响会在打桩过程中使桩周围土内孔隙水压力上升,土的抗剪强度降低,桩侧摩阻力变小。待打桩完成经过一段时间后,超孔隙水压力逐渐消散,再加上粘土的触变性质,使桩周围一定范围内的抗剪强度不但能得到恢复,而且往往还可能超过其原来强度,桩侧摩阻力得到提高,在砂性土中打桩时,桩侧摩阻力的变化与砂土的初始密度有关,如密实砂性土有剪胀性会使摩阻力出现峰值后有所下降。
桩侧摩阻力的大小及其分布决定着桩身轴向力随深度的变化及数值,因此掌握、了解桩侧摩阻力的分布规律,对研究和分析桩的工作状态有重要作用。由一于影响桩侧摩阻力的因素即桩土间的相对位移、土中的侧向应力及土质分布及性状均随深度变化,因此要精确地用物理力学等方程描述桩侧摩阻力沿深度的分布规律较复杂。现以图3-38所示两例来说明其分布变化,其中a)图为上海某工程钢管打入桩实测资料,b)图为我国某工程钻孔灌注桩实测资料,图中各曲线上的数字为相应桩顶荷载。在粘性土中的打入桩的桩侧摩阻力沿深度分布的形状近乎抛物线,在桩顶处的摩阻力等于零,桩身中段处的摩阻力比桩的下段大;而钻孔灌注桩的施工方法与打入桩不同,其桩侧摩阻力将具有某些不同于打入桩的特点,从图中可见,从地面起的桩侧摩阻力呈线性增加,其深度仅为桩径的5~10倍,而沿桩长的摩阻力分布则比较均匀。为简化起见,现常近似假设打入桩桩侧摩阻力在地面处为零,沿桩入土深度成线性分布,而对钻孔灌注桩则近似假设桩侧摩阻力沿桩身均匀分布。
(三)柱底阻力的影响因素及其深度效应
桩底阻力与土的性质、持力层上覆荷载(覆盖土层厚度)、桩径、桩底作用力、时间及桩底端进持力层深度等因素有关,其主要影响因素仍为桩底地基土的性质。桩底地基土的受压刚度,抗剪强度大则桩底阻力也大,桩底极限阻力取决于持力层土的抗剪强度和上覆荷载及桩径大小的影响。由于桩底地基土层受压固结作用是逐渐完成的,桩底阻力将随土层固结度提高会随着时间而增长。
模型和现场的试验研究表明,桩的承载力(主要是桩底阻力)随着桩的入土深度,特别是入持力层的深度而变化,这种特性称为深度效应。
桩底端进入持力砂土层或硬粘土层时,桩的极限阻力随着进入持力层的深度线性增加。达到一定深度后,桩底阻力的极限值保持稳值。这一深度称为临界深度h c,它与持力层的上覆荷载和持力层土的密度有关。上覆荷载越小、持力层土密度越大,则h c越大。当持力层