RC正弦波振荡电路图文分析原理
RC正弦波振荡电路

RC正弦波振荡电路1. 技术指标1.1 初始条件直流可调稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具设计、组装、调试RC正弦波振荡电路电路,使其能产生幅度稳定的低频振荡。
1.2 技术要求设计、组装、调试RC正弦波振荡电路电路,使其能产生幅度稳定的低频振荡2. 设计方案及其比较2.1 方案一RC文氏电桥振荡器:电路结构:放大电路,选频网络,正反馈网络和稳幅环节四个部分。
电路如图A所示:图A RC文氏电桥振荡器原理图1电路中噪声的电磁干扰就是信号来源,不过此频率信号非常微弱。
这就要求振荡器在起振时做增幅振荡,既起振条件是|AF|>1。
放大电路保证电路能够有从起振到动态平衡的过程,使电路获得一定幅值的输出量,本设计采用通用集成运放电路。
选频网络兼正反馈网络RC串并联网络使电路产生单一的频率振荡,本设计要求产生500Hz的正弦波,采用RC串并联选频网络,中心频率f0=500 Hz,ω=1/RC,则f0=1/2πRC,故选取C=0.2uF,故R=1.6K另外还增加了R1和RF负反馈网络,合理的选择R1和RF可以保证环路增益大于一。
电压放大倍数A=1+(RF/R1), 因为产生振荡的最小电压放大倍数为3,所以RF>=2R1,通过仿真,我选择R1=5K,RF=20K的滑动电阻。
一开始波形失真很严重,当调到35%,就是大约7K时,出现失真很小的正弦波,测得周期为2.16ms,频率F=1000/2.16=463KH,误差较小,基本符合要求。
仿真波形如下图B所示图B RC文氏电桥振荡器仿真波形图2作用是使输出信号的幅值稳定,本实验采用双向并联二极管作为稳幅电路。
利用电流增大时二极管动态电阻减小,电流减小时二极管动态电阻增大的特点,加入非线性环节,从而使输出电压稳定。
2.2 方案二RC移相振荡器电路结构电:由反向输入比例放大器,电压跟随器,和三节RC相移网络组成。
电路如图C所示:图C RC移相振荡器原理图电路原理:放大电路的相移为-180度,利用电压跟随器的阻抗变换作用减小放大电路输入电阻R1对RC相移网络的影响。
RC正弦波振荡电路-完整版课件

8.2.1 RC 串并联网ห้องสมุดไป่ตู้振荡电路
电路组成:
放大电路 —— 集成运放 A ;
选频与正反馈网络 —— R、C 串并联电路;
稳幅环节 —— RF 与 R 组成的负反馈电路。
图 8.2.1
一、RC 串并联网络的选频特性
F
U f U
2 1 2
R1
R2
1 jR2C2
1
R2
RT
RF R
改变 RF,可改变反馈深度 。增加负反馈深度,并且满足
图 8.2.4
则电路可以起振,并产生比较稳定而失真较小的正 弦波信号。
采用具有负温度系数的热敏电阻 RT 代替反馈电阻 RF ,可实现自动稳幅。
8.2.2 其他形式的 RC 振荡电路 一、移相式振荡电路 270º
180º
集成运放产生的相位移 A 90º
= 180º,如果反馈网络再相移 0
f0
f
180º, 即 可 满 足 产 生 正 弦 波 振
荡的相位平衡条件。
当 f = f0 时,相移 180º,满 足正弦波振荡的相位条件。
图 8.2.6
振荡频率为:
起振条件:RF > 12 R
二、双 T 选频网络振荡电路
振荡频率约为:
图 8.2.8
当 f = f0 时,双 T 网络的相移为 F = 180º;反相比例 运放的相移 A = 180º,因此满足产生正弦波振荡的相位
jC1 1 jR2C2
Z1
1
Z2
(1
R1 R2
C2 C1
)
j( R1C2
1 R2C1
)
取 R1 = R2 = R , C1 = C2 = C ,令
RC正弦波振荡电路工作原理及案例分析

RC正弦波振荡电路工作原理及案例分析
工作原理:
1.当电路通电时,运放的输出为零,电容C充电通过电阻R。
电荷通
过电容器和电阻器的匝线,使负电荷集中在负端子,正电荷集中在正端子。
2.当电容器电荷积累到一定程度时,电压开始在电容器上积累。
3.这时,电容器上的电压开始向运放的反馈电路输出,导致运放开始
放大并输出一个正弦波振荡信号。
4.当输出电压经过电容衰减后,电容开始放电,电压开始下降直到为零。
5.在电容放电的过程中,运放输出变为负值,反馈电路也发生变化,
导致运放开始放大反向信号,输出一个负幅度的振荡信号。
6.重复以上过程,可以产生一个稳定的正弦波振荡信号。
案例分析:
假设我们需要设计一个频率为1kHz的正弦波振荡电路,我们可以选
择适当的电容和电阻数值来实现这个要求。
1.选择电容C和电阻R的数值为:C=1μF,R=1kΩ。
2.计算振荡频率:f=1/(2πRC)=1/(2π*1kΩ*1μF)≈1kHz。
3.搭建电路并接入运放,通过对电容和电阻的数值进行调整,可以调
节输出的正弦波振荡频率和幅度。
4.测量输出波形,可以通过示波器来观察振荡信号的频率和幅度是否
符合设计要求。
通过以上案例分析,我们可以看到RC正弦波振荡电路的设计方法和
工作原理。
通过调节电容和电阻的数值,可以实现不同频率和幅度的正弦
波信号输出。
这种电路在信号发生器、音频放大器等领域有着广泛的应用。
RC正弦波振荡器

RC正弦波振荡器一、实训目的1、掌握RC桥式正弦波振荡器的电路构成及工作原理;2、熟悉正弦波振荡器的调整、测试方法;3、观察参数对振荡频率的影响,学习振荡频率的测试方法;4、熟悉RC正弦波振荡器故障的分析和处理。
二、实训所需挂件及附件序号型号备注1 PMT01电源控制屏该控制屏包含“液晶显示屏”等模块2 PMT-60电子技术实训电源组件该挂件包含“电源及信号源”等模块3 PMT-61电子技术实训组件(一)该挂件包含“RC正弦波振荡器”等模块4 双踪示波器自备三、实训原理RC正弦波振荡器的原理图如下图2-5所示;图2-5 RC桥式正弦波振荡器RC桥式正弦波振荡器又称为文氏桥振荡器,电路由同相放大器和具有选频作用的RC串并联正反馈网络两部分组成,即放大电路A V和选频网络F V。
A V为由集成运放LF353组成的同相放大电路,①脚输出频率为f0的信号通过RC串并联反馈到放大器的输入端③脚。
因为RC选频网络的反馈系数F=1/3,因此,只要使放大器的放大倍数Auf=3,就能满足振幅平衡条件;由于同相放大器的输入信号与输出信号的相位差为00,RC串并联选频网络对于频率为f0信号的相移也为00,所以信号的总相移满足相位平衡条件,属正反馈。
因此,电路对信号中频率为f0的分量能够产生自激振荡,而其他的频率分量由于选频网络的作用,反馈电压低,相位不为零,则不产生自激振荡。
在实用的RC桥式振荡器电路中,反馈电阻Rf(相当于图2-5中的RP2)常采用具有负温度系数的热敏电阻以便顺利起振,当振荡器的输出幅度增大时,流过Rf 的电流增强,随热敏电阻的温度上升其电阻变小,使放大器的增益下降,这将自动调节振荡输出信号趋于稳定。
RC桥式振荡器电路的振荡频率取决于RC选频回路的R1、C1、RP1、C2参数,通常情况下,R1=RP1=R 、C1=C2=C ,振荡频率为)2/(10RC f π=四、实训方法1、用万用表监测使RP1=R1=10K ,用导线从PMT-60挂件上将±15V 电源接到PMT-61挂件的“RC 桥式振荡器”模块的±15V 输入端。
实验RC正弦波振荡器

实验四 RC 正弦波振荡器一、 实验目的1. 进一步学习RC 正弦波振荡器的组成及其振荡条件2. 学会测量、调试振荡器二、实验原理从结构上看,正弦波振荡器是没有输入信号的、带选频网络的正反馈放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。
RC 串并联网络(文氏桥)振荡器电路型式如图1所示。
振荡频率 RC21f O π 起振条件 |A|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图1 RC 串并联网络振荡器原理图三、 实验设备与器件1. +12V 直流电源2. 函数信号发生器3. 双踪示波器4. 频率计5. 直流电压表6. 3DG12×2 或 9013×2电阻、电容、电位器等四、 实验内容1. RC 串并联选频网络振荡器(1) 按图2组接线路图2 RC串并联选频网络振荡器将电位器Rw顺时针方向旋到底,接入+12V电源和地,不接RC串并联网络(即A点和B 点不连接),测量放大器静态工作点,将数据填入表1。
表1 放大器静态工作点数据记录给放大器一个频率为2kHz、幅度为0.5V的正弦输入ui, 即从B点接入到信号发生器,用示波器分别测量Ui和Uo的值,求出放大器的电压放大倍数,填入表2。
表2 放大器电压放大倍数数据记录(2) 接通RC串并联网络,并使电路起振,用示波器观测输出电压u O波形,调节Rw使获得满意的正弦信号,记录波形及其参数填入表3(可允许少量失真以维持波形稳定)。
表3 起振波形数据记录(3) 测量振荡频率,并与计算值进行比较。
数据填入表4。
表4 起振波形振荡频率数据记录(4) RC 串并联网络幅频特性的观察将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。
RC正弦波振荡电路 ppt课件

具有正负反馈两个通路的RC正弦波振荡器
正负反馈两个通路的RC正弦波振荡器框图 正反馈网络 B+ : 产生振荡所必须;负反馈网络 B- : 抑制高次谐波。
实现振荡器的两种方案
1、B+ 为带通特性, B-为全通特性 2、B- 为带通特性, B+为全通特性
在 f0附近,正反馈 >负反馈, 满足起振条件;
1 3
AB A( ) 1 起振条件
1
Rf 1
正反馈网络的传3输系数R:f 1 R f 2
BBB R 1Z1Z13R1ZR2f2R1R1ff2R1RCC12f22CRRR112f 1Cj31(12R2CCA11
1
R1C2
)
R 2R 平衡时要求
• 模拟微分方程的求解。已知自由振荡的数学模型是二阶微
分方程:
d 2uo dt 2
o
duo dt
2ouo
0
上式经两次微分可得:
uo 0 uodt 02 uodt dt
0 uo 0 uodtdt
PPT课件
9
只有当ε=0时,其解为等幅振荡。但是,由于开机时电路初始状 态的随机性,容易造成使ε<0,而使电路停振。故一般选ε>0, 电路起振后产生增幅振荡,再增设限幅电路使其趋于等幅振荡。
远离 f0时,负反馈 >正反馈,抑制PP高T课次件谐波。
3
B 文氏电桥振荡器
Rf 1
电负阻反Rf1馈和系R数f2组成负反馈网络,R全f 1通网R f络2
正电反路馈的网环络反有馈电系阻数R为1﹑R2和电容C1﹑C2组成,
具A有B带通A特(性B B )
B 两称个为反 文馈 氏网 电o络 桥构振R成荡1C一器个。电桥,故此振荡器
最简单的rc振荡电路图

最简单的rc振荡电路图不需要外加信号就能自动地把直流电能转换成具有一定振幅和一定频率的交流信号的电路就称为振荡电路或振荡器。
这种现象也叫做自激振荡。
或者说,能够产生交流信号的电路就叫做振荡电路。
一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。
放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。
正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。
选频网络则只允许某个特定频率f0能通过,使振荡器产生单一频率的输出。
振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压uf和输入电压Ui要相等,这是振幅平衡条件。
二是uf和ui必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。
一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。
振荡器按振荡频率的高低可分成超低频(20赫以下)、低频(20赫~200千赫)、高频(200千赫~30兆赫)和超高频(10兆赫~350兆赫)等几种。
按振荡波形可分成正弦波振荡和非正弦波振荡两类。
正弦波振荡器按照选频网络所用的元件可以分成LC振荡器、RC 振荡器和石英晶体振荡器三种。
石英晶体振荡器有很高的频率稳定度,只在要求很高的场合使用。
在一般家用电器中,大量使用着各种LC振荡器和RC振荡器。
LC 振荡器LC振荡器的选频网络是LC谐振电路。
它们的振荡频率都比较高,常见电路有3种。
(1)变压器反馈LC振荡电路图1(a)是变压器反馈LC振荡电路。
晶体管VT是共发射极放大器。
变压器T的初级是起选频作用的LC谐振电路,变压器T的次级向放大器输入提供正反馈信号。
接通电源时,LC回路中出现微弱的瞬变电流,但是只有频率和回路谐振频率f0相同的电流才能在回路两端产生较高的电压,这个电压通过变压器初次级L1、L2的耦合又送回到晶体管V的基极。
从图1(b)看到,只要接法没有错误,这个反馈信号电压是和输入信号电压相位相同的,也就是说,它是正反馈。
RC正弦波振荡电路识读

第1篇遗嘱公证房产尊敬的公证员:我,XXX,男/女,身份证号码:XXXXXXXXXXXXXXXXXXX,现年XX岁,住址:XXXXXXXXXXXXXXXXXXX。
鉴于我目前身体状况良好,精神状态清醒,为确保我身后家产得到妥善处理,现将我的房产进行遗嘱公证,特此立遗嘱如下:一、遗嘱内容1. 我名下位于XXXXXXXXXXXXXXXXXXX的房产(房产证号:XXXXXXXXXXXXXXXXXXX,以下简称“该房产”),位于XXXXXXXXXXXXXXXXXXX,建筑面积为XXXXXXXX平方米,房款总价为XXXXXXXXXXX元。
2. 我将该房产的全部产权无偿赠予我的儿子/女儿XXX(身份证号码:XXXXXXXXXXXXXXXXXXX,以下简称“继承人”)。
3. 遗嘱生效后,继承人应承担以下义务:(1)妥善保管该房产,确保房产安全,不得擅自处分。
(2)依法纳税,承担房产产生的各项费用。
(3)不得侵犯其他共同继承人的合法权益。
二、遗嘱效力1. 本遗嘱自公证之日起生效。
2. 如有特殊情况,需变更或撤销本遗嘱,应另行公证。
3. 本遗嘱一式三份,其中一份由继承人保管,一份由公证处存档,一份由我本人保留。
三、遗嘱见证人1. 鉴于我目前身体状况良好,精神状态清醒,无需见证人。
2. 如有特殊情况,需见证人,应另行公证。
四、其他事项1. 本遗嘱内容真实、合法,不存在欺诈、胁迫等情形。
2. 我在立遗嘱过程中,未受到任何单位、个人或组织的干涉。
3. 本遗嘱经公证处公证后,具有法律效力。
特此立遗嘱。
立遗嘱人:XXX公证日期:XXXX年XX月XX日公证员:XXXXXXXXXXXXXXXXXXX公证处:XXXXXXXXXXXXXXXXXXX附件:1. 房产证复印件2. 身份证复印件3. 遗嘱书原件以上遗嘱公证房产范文仅供参考,具体内容请根据个人实际情况进行调整。
在立遗嘱过程中,请务必遵守国家法律法规,确保遗嘱的真实性、合法性和有效性。
反馈与振荡—RC正弦波振荡器(电子技术课件)

Rf R1
F 1 3
Au
1
Rf R1
Rf值略大于2R1
RC正弦波振荡器
振荡的频率
fo
1 2RC
调节R和C可使RC正弦波振荡器的频率在一个相当宽的范围内得到调节。 在实际应用中,常将电阻R用双连电位器代替,或将电容C用双连电容器代替。 实验室用的低频信号发生器多采用RC桥式振荡器。
RC正弦波振荡器的电路构成
RC正弦波振荡器适用于低频振荡,一般用于产生1Hz~1MHz的低频信号。 它的电路结构简单,目前常用的低频信号源大多采用这种形式的振荡电路等。
由集成运放构成放大电路 放大电路
RC串并联网络作为选频电路,同时还作为正反馈电路
选频电路 正反馈电路
Rf组成的负反馈电路作为稳幅电路,并能减小失真 稳幅电路
RC串联电路、RC并联电路、Rf和R1接成电桥电路。 因而称为RC桥式振荡器或文氏桥式振荡器。
RC串联电路
RC并联电路
RC正弦波振荡器的工作原理
RC正弦波振荡器
相位平衡条件
反馈系数
R XC
F 1
3
反馈电压与放大器输出电压同相位
RC正弦波振荡器
幅值平衡条件同Leabharlann 比例运算电路AuF>1起振
Au
1
电路识图16-正弦波振荡器电路原理分析

电路识图16-正弦波振荡器电路原理分析振荡器是一种不需要外加输入信号,而能够自己产生输出信号的电路。
输出信号为正弦波的振荡器称为正弦波振荡器。
正弦波振荡器由放大电路和反馈电路两部分组成,反馈电路将放大电路输出电压的一部分正反馈到放大电路的输入端,周而复始即形成震荡,如下图所示。
正弦波振荡器有变压器耦合、三点式振荡器、晶体振荡器、RC振荡器等多种电路形式。
一、变压器耦合振荡器变压器耦合振荡器电路如下图所示。
LC谐振回路接在晶体管VT 集电极,振荡信号通过变压器T耦合反馈到VT基极。
正确接入变压器反馈线圈L1与振荡线圈L2之间的极性,即可保证振荡器的相位条件。
R1,R2为VT提供合适的偏置电压,使VT有足够的电压增益,即可保证振荡器的振幅条件。
满足了相位、振幅两大条件,振荡器便能稳定的产生振荡,经C4输出正弦波信号。
变压器耦合振荡器工作原理可用下图说明:L2与C2组成的LC并联谐振回路作为晶体管VT的集电极负载,VT的集电极输出电压通过变压器Y的振荡线圈L2耦合至反馈线圈L1,从而有反馈至VT基极作为输入电压。
由于晶体管VT的集电极电压与基极电压相位相反,所以变压器Y的两个线圈L1与L2的同名段接法应相反,使变压器T同时起到倒相作用,将集电极输出电压倒相后反馈给基极,实现了形成振荡所必须的正反馈。
因为并联谐振回路在谐振时阻抗最大,且为纯电阻,所以只有谐振频率f0能够满足相位条件而形成振荡,这就是LV回路的选频作用。
电路振荡频率计算公式如下变压器耦合振荡器的特点是输出电压大,适用于频率较低的振荡电路。
二、三点式振荡器三点式振荡器是指晶体管的三个电极直接与振荡回路的三个端点相连接而构成的振荡器,如下图所示。
三个电抗中,Xbe,Xce必须是相同性质的电抗(同是电感或同是电容),Xcb则必须是与前两者相反性质的电抗,才能满足振荡的相位条件。
三点式振荡器有多种形式,较常用的有电感三点式振荡器、电容三点式振荡器、改进型电容三点式振荡器等。
rc正弦波振荡电路

rc正弦波振荡电路
RC正弦波振荡电路是一种基于电容和电阻的电路,它可以产生稳定的正弦波输出。
这种电路常用于信号发生器和频率调整电路。
电路图如下所示:
```
R C
+---^----->|---+---->|-----+
| | |
| | |
| _|_ |
| | | |
| V_in | ^ | |
+---^-----------+|_|-------+
```
其中,R表示电阻,C表示电容,V_in表示输入的直流电压。
正弦波振荡电路工作原理如下:
1. 初始情况下,电容C的电压为0,电容上没有电荷。
2. 当输入电压V_in施加到电路上时,C开始充电。
3. 由于电路中存在电阻R,C充电的速度受到阻尼作用。
4. 随着时间的推移,C的电压逐渐增大,直到它达到与
V_in相等的电压。
5. 当C的电压达到峰值后,电容开始放电。
6. 放电过程中,电压降低,直到电压减小到接近0的程度。
7. 当C的电压降低到一定程度时,它又开始充电,循环重复。
8. 由于阻尼作用,电压的上升和下降过程是平滑的,从而
产生了正弦波输出。
值得注意的是,RC正弦波振荡电路的频率取决于电容C的值和电阻R的值。
你可以根据具体的需求选择合适的RC 值,以获得所需的振荡频率。
27-02RC正弦波振荡电路

利用二极管的正向伏安特性的非线性自动稳幅。 起振时信号小,二极管电阻大
RF2
– + +
Au 1 + (RF1+ RF2)/R1 > 3
uO
起振后二极管电阻逐渐减小, Au 1 + RF2/R1 = 3
R
C
R1
–
二极管稳幅振荡电路
RC正弦波振荡电路
移相式振荡电路
反相放大器
| AF | 1
选频特性好,频率调节较困难, 适用于产生单一频率的波形
要提高其振荡频率,必须减小 R 和 C 的值,放大器的输出电阻和晶体管的极 间电容将影响其选频特性,输出频率不稳定。
RC正弦波振荡电路
RC串并联网络振荡电路——选频特性
当 f f0
1 U f 的幅值达到最大,为 U 幅 时, 2 RC
值的⅓,两者同相。
1 3
Fu
90
F
0
RC串并联选频网络
0
90
RC串并联网络的频率特性曲线
RC正弦波振荡电路
RC串并联网络振荡电路——振荡频率
相位平衡条件:
1
振荡频率:
10
f0
1 2 RC
2C
R3
0
优点:频率稳定性好,输出波形失真小。
可以视为是一个低通滤波电
路和一个高通滤波电路的并联。
缺点:频率调节较为困难。
较适用于产生单一频率的正弦波信号
RC正弦波振荡电路
三种RC振荡电路的比较
RC串并联网络振荡电路 移相式振荡电路 双T形选频网络振荡电路
RC正弦波振荡电路
RC正弦波振荡电路
RC正弦波振荡电路

FVm
ax
1 3
f 0
RC正弦波振荡电路
2. RC串并联选频网络的选频特性
1
FV 32 ( 0 )2 0
0
f arctg 0
当
0
1 RC
时,
3 FVmax
f
1
3
0
FV
1/3
0.1
1
10
/0
RC串并联选频网络的幅频响应
f
90
0.1 1
10
/ 0
90
RC串并联选频网络的相频响应
RC正弦波振荡电路
模拟电子技术
知识点: RC正弦波振荡电路
RC正弦波振荡电路
1. 电路原理图
RC串并联网络 ——选频网络 兼作反馈网络
放大电路
F V
R
C
RC
Rf
+ _
A
V
o
R1
AV
RC正弦波振荡电路
1. 电路原理图
四臂电桥
R
Rf
C
+ _
A
V
o
RC
R1
RC正弦波振荡电路
1. 电路原理图
选频特性
放大电路 指标
F V
非线性作用 负反馈↑
振荡条件
AV 3
R C
a 0 R
C
Rf
+ _
A
R1
V
o
RC正弦波振荡电路
5. 具体的稳幅措施
➢ 如R1可采用具有正温度系数的热敏电阻代替; ➢ 或Rf可采用具有负温度系数的热敏电阻代替。
Av
1
Rf R1
R C
RC
Rf
RC正弦波振荡电路图

RC正弦波振荡电路图RC正弦波振荡电路图:二:RC正弦波振荡电路常见的RC正弦波振荡电路是RC串并联式正弦波振荡电路,它又被称为文氏桥正弦波振荡电路。
串并联网络在此作为选频和反馈网络。
它的电路图如图(1)所示:它的起振条件为:。
它的振荡频率为:它主要用于低频振荡。
要想产生更高频率的正弦信号,一般采用LC正弦波振荡电路。
它的振荡频率为:。
石英振荡器的特点是其振荡频率特别稳定,它常用于振荡频率高度稳定的的场合。
下面还是RC正弦波电路图:采用RC选频网络构成的振荡电路称为RC振荡电路,它适用于低频振荡,一般用于产生1Hz1MHZ的低频信号.常用RC振荡电路有RC桥氏振荡电路和RC移相式振荡电路.本节只重点介绍由串并联选频网络构成的RC桥式振荡电路.一、RC网络的频率响应RC串并联网络的电路如下图所示。
RC串联臂的阻抗用Z1表示, <--IWMS_AD_BEGIN--><--IWMS_AD_END-->RC并联臂的阻抗用Z2表示。
其频率响应如下:当R1=R2=R,C1=C2=C则有幅频特性::相频特性:?由上图可见,当时,达到最大值并等于1/3,相位移为00,输出电压与输入电压同相,对于该频率,所取的输出电压即幅度是最大的,所以RC串并联网络具有选频作用.二、RC桥式振荡电路(1) ?RC桥式振荡电路的构成RC桥式振荡电路如图所示,RC 串并联网络接在运算放大器的输出端和同相输入端构成了带有选频作用的正反馈网络,另外Rf、R1接在运算放大器的输出端和反相输入端之间,与集成运放一起构成负反馈放大电路.由下图可见,正反馈电路与负反馈电路构成一文氏电桥电路,运算放大器的输入端和输出端分别跨接在电桥的对角线上,所以把这种振荡电路称为RC桥式振荡电路.对于负反馈放大电路,输入信号由同相端输入(即振荡信号由此输入),根据虚短、虚断可求得负反馈闭环电压放大倍数选频网络在f0时振幅起振条件:相位起振条件:(2) RC文氏桥振荡电路的稳幅过程RC桥式振荡电路的稳幅作用是靠热敏电阻Rf实现的。
RC正弦波振荡电路

RC正弦波振荡电路概念:采用RC选频网络构成的振荡电路称为RC正弦波振荡电路;它试用于低频振荡,产生1MHZ以下的低频信号。
电路原理图:电路由放大电路和选频网络组成。
放大电路是由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点.选频网络由电阻电容串并联组成,同时兼作正反馈网络。
电路元件参数:电阻4个(10K欧2个、4。
95K欧、10K欧各一个)、电容2个10nF、LM358集成块一个、直流电源+12V、-12V。
RC串并联选频网络RC串并联选频网络如下图(a)所示,它在正弦波振荡电路中既为选频网络,又为正反馈网络,所以其输入电压为,输出电压为。
当信号频率足够低时,,因而网络的简化电路及其电压和电流的向量如图(b)所示。
超前,当频率趋于零时,相位超前趋近于+900,且趋近于零.当信号频率足够高时,,因而网络的简化电路及其电压和电流的向量如图(c)所示。
滞后,当频率趋近于无穷大时,相位滞后趋近于-900,且趋近于零.当信号频率从零逐渐变化到无穷大时,的相位将从+900逐渐变化到-900。
因此,对于RC串并联选频网络,必定存在一个频率f0,当f=f0时,=同相。
通过计算可求出RC串并联选频网络的频率特性,如下图所示,其谐振频率。
RC桥式正弦波振荡电路:因为正弦波振荡器的起振条件是,从幅频特性曲线可得,当f=f0时,F=1/3,所以当A>3时,即RC串并联选频网络匹配一个电压放大倍数略大于3的正反馈放大器时,就可构成正弦波振荡器。
从理论上讲,任何满足放大倍数要求的放大电路与RC串并联选频网络都可组成正弦波振荡电路;但是,实际上,所选用的放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻,以减小放大电路对选频特性的影响,使振荡频率几乎仅仅决定于选频网络。
因此,通常选用引入电压串联负反馈的放大电路,如同相比例运算电路.由RC串并联选频网络和同相比例运算电路所构成的RC桥式正弦波振荡电路如图所示。
rc正弦波振荡电路工作原理

rc正弦波振荡电路工作原理
RC正弦波振荡电路是一种常用的电路,用于产生稳定的正弦波信号。
它由电阻(R)和电容(C)组成,通过控制电阻和电容的数值可以调节输出的频率和幅值。
工作原理如下:当电路中的电源打开时,电容开始充电。
由于电容的充电过程是一个指数衰减的过程,因此电压会逐渐增加。
当电压达到某个临界值时,电容开始放电,电压开始降低。
这样,电容会周期性地充电和放电,产生周期性的电压变化。
在RC电路中,电阻的作用是控制电容的充放电速度。
较大的电阻值会使充放电过程变慢,从而降低输出信号的频率。
而电容的作用是存储电荷,控制电容的数值可以调节输出信号的幅值。
较大的电容值会使电容储存更多的电荷,从而增加输出信号的幅值。
通过调节电阻和电容的数值,可以实现不同频率和幅值的正弦波输出。
例如,当电阻和电容的数值较大时,输出信号的频率会较低,幅值较大;而当电阻和电容的数值较小时,输出信号的频率会较高,幅值较小。
RC正弦波振荡电路在电子设备中有广泛的应用,例如在音频设备中用于产生声音信号,或在通信设备中用于产生调制信号。
它的工作原理简单可靠,且调节灵活,因此得到了广泛的应用和研究。
RC正弦波振荡电路是一种基于电阻和电容的振荡电路,通过调节电
阻和电容的数值可以产生稳定的正弦波信号。
它的工作原理简单可靠,应用广泛。
《RC正弦波振荡电路》课件

元件介绍:RC正弦波振荡电路
电阻(R)
• 控制电期
放大器
• 增强信号强度 • 稳定输出波形
工作步骤:RC正弦波振荡电路
1
1. 电荷储存
电容充电,储存电荷。
2
2. 电荷放电
电容放电,释放储存的电荷。
3
3. 正弦波输出
通过重复充放电过程,产生稳定的正弦波输出。
《RC正弦波振荡电路》 PPT课件
本PPT课件介绍RC正弦波振荡电路的定义、基本原理、元件介绍、工作步骤、 实验结果、应用领域和发展前景。
定义:RC正弦波振荡电路
1 基本概念
RC正弦波振荡电路是一种能够产生稳定正弦波输出的电路,由电阻(R)和电容(C)组 成。
2 工作原理
通过不断充放电过程中的能量转换,实现电荷的周期性振荡,从而产生稳定的正弦波。
实验结果:RC正弦波振荡电路
示波器波形
波形图显示了RC正弦波振荡电 路产生的稳定正弦波。
频率测量
振幅测量
通过测量电路输出的频率,验
测量电路输出的振幅,评估RC
证RC正弦波振荡电路的稳定性。 正弦波振荡电路的信号强度。
应用领域:RC正弦波振荡电路
通信系统
用于产生高频信号,传输 信息。
科学实验
用于实验室研究和测量设 备。
音频设备
用于产生音频信号,如音 乐播放器和音响设备。
发展前景:RC正弦波振荡电路
1
技术进步
不断改进电路设计和性能,提高正弦波的质量和稳定性。
2
应用扩展
应用领域不断扩大,涵盖更多行业和领域。
3
创新发展
探索新的电路结构和元件组合,拓宽RC正弦波振荡电路的应用领域。
RC振荡电路

R C振荡电路(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除RC 正弦波振荡电路RC桥式正弦波振荡电路的主要特点是采用RC串并联网络作为选频和反馈网络,因此我们必须先了解它的频率特性,然后再分析这种正弦振荡电路的工作原理。
1.定性分析图XX_01 RC串并联网络如图XX_01a所示。
为了讨论方便,假定输入电压是正弦波信号电压,其频率可变,而幅值保持恒定。
如频率足够低时,,,此时,选频网络可近似地用图XX_01b所示的RC高通电路表示。
随着w的下降,输出电压将减小,输出电压超前于输入电压的相位角j f也就愈大。
但超前角j f的最大值小于90°。
当频率足够高时,,,则选频网络近似地用图XX_01c所示的RC低通电路来表示。
这是一个相位滞后的RC电路,频率愈高,输出电压愈小,输出电压滞后于输入电压的相位角j f愈大。
同样,滞后角j f的最大值也小于90°。
综上分析可以推出,在某一确定频率下,其输出电压幅度可能有某一最大值;同时,相位角j f从超前到滞后的过程中,在某一频率f0下必有j f=0。
2.定量计算由图XX_01a所示RC串并联电路可得,和。
设,,令,则得(1)当上式分母中虚部系数为零时,RC串并联网络的相角为零。
满足这个条件的频率可由式(1)求出:或(2)图XX_02 将式(5)代入式(4)得(3)因此有(4)和(5)由式(4)及式(5)可知,当或(6)时,幅频响应的幅值为最大,即(7)而相频响应的相位角为零,即(8)由式(7)和式(8)可画出串并联选频网络的幅频相位和相频响应,如图XX_02所示。
1.电路组成图XX_01是RC桥式振荡电路的原理电路,这个电路由两部分组成,即放大电路和选频网络。
选频网络(即反馈网络)的选频特性已知,在处,RC串并联反馈网络的,,根据振荡平衡条件和,可知放大电路的输出与输入之间的相位关系应是同相,放大电路的电压增益不能小于3,即用增益为3(起振时,为使振荡电路能自行建立振荡,应大于3)的同相比例放大电路即可。
RC桥式振荡电路及工作原理

调整电阻RW(即改变了反馈R f),使电路起振,且波形失真最小。如不能起振,则说明负反馈太强,应适当加大R f,如波失真严重,则应适当减少R f。
改变选频网络的参数C或R,即可调节振荡频率。一般采用改变电容C作频率量程切换(粗调),而调节R作量程内的频率细调。
为了使振荡幅度稳定,通常在放大电路的负反馈回路里加入非线性元件来自动调整负反馈放大电路的增益,从而维持输出电压幅度的稳定。图中的两个二极管D1,D2便是稳幅元件。当输出电压的幅度较小时,电阻R4两端的电压低,二极管D1、D2截止,负反馈系数由R3、RW及R4决定;当输出电压的幅度增加到一定程度时,二极管D1、D2在正负半周轮流工作,其动态电阻与R4并联,使负反馈系数加大,电压增益下降。输出电压的幅度越大,二极管的动态电阻越小,电压增益也越小,输出电压的幅度保持基本稳定。
RC桥式振荡电路及工作原理
RC桥式振荡电路及工作原理
RC桥式正弦振荡电路如下图所示。其中R1、C1和R2、C2为串、并联选频网络,接于运算放大器的输出与同相输入端之间,构成正反馈,以产生正弦自激振荡。
R3、RW及R4组成负反馈网络,调节RW可改变负反馈的反馈系数,从而调节放大电路的电压增益,使电压增益满足振荡的幅度条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RC正弦波振荡电路图文分析原理参考电路图5.7所示,搭建一个100KHz的正弦波振荡电路。
U O
(a)测试电路(b)输出波形
图5.7 RC正弦波振荡电路(multisim)
LC振荡电路的振荡频率过低时,所需的L和C就很大,这将使振荡电路结构不合理,经济不合算,而且性能也变坏,在几百千赫兹以下的振荡电路常采用RC振荡电路。
由RC 元件组成的选频网络有RC称相型,RC串并联型,RC双T型等结构。
这里主要介绍RC串并联型网络组成的振荡电路,即RC桥式正弦波振荡电路。
一、RC串并联型网络的选频特性
RC桥式电路如图5.8所示,设R1=R2=R,C1=C2=C,
11
1
2
1
2
11
1
2
11
2
j CR
Z R
j C j C
R
j C R
Z
j CR
R
j C
ω
ωω
ω
ω
ω
+
=+=
==
+
+
则反馈系数
2
12
1
1
3()
f
o
U Z
F
U Z Z j CR
CR
ω
ω
===
++-
令 01C R ω=
,即 012f RC
π= 则式(7-13)可写为
000
001
1
3(
)3()
F f f j j f f
ωωωω
=
=
+-+-
其频率特性曲线如图5.9(a )、(b )所示。
从图中可看出,当信号频率f =f 0时,u f 与u 0同相,且有反馈系数 01
3
f
U F U =
=为最大。
(a)幅频特性 (b)相频特性
图5.8 RC 串并联网络 图5.9RC 串并联网络的频率特性 二、RC 桥式振荡电路 1、电路组成
图5.9所示电路是文氏电桥振荡电路的原理图,它由同相放大器A 及反馈网络F 两部分组成。
图中RC 串并联电路组成正反馈选频网络,电阻R f 、R 是同相放大器中的负反馈回路,由它决定放大器的放大倍数。
RC 桥式振荡电路的起振条件
同相放大器的输出电压0U 与输入电压i U 同相,即0a ϕ=,从分析RC 串并联网络的选频特性知,当输入RC 网络的信号频率f =f 0时,0U 与f U 同相,即0f ϕ=,整个电路的相移0f a ϕϕϕ=+=,即为正反馈,满足相位平衡条件。
放大器的放大倍数1f u R A R
=+
,从分析RC 串联网络的选频特性知,在R 1=R 2=R ,C 1=C 2=C
的条件下,当f=f 0时,反馈系数F=1/3达到最大,此时,只要放大器的电压放大倍数略大
于连(即R f ≥2R ),就能满足AF >1的条件,振荡电路能自行建立振荡。
R 1
C 1R 1
C 2
-U o +
-
+
U f
Z 1
Z 2
图5.10文氏电桥振荡电路的原理图 图5.11 稳幅的振荡电路
3、稳幅方法
根据振荡幅度的变化来改变负反馈的强弱是常用的自动稳幅措施。
如图5.11所示电路就是一个稳幅的文氏振荡电路。
图中R 1、R 2、C 1、C 2构成正反馈选频网络,结型场效应管3DJ6作可变电阻的稳幅电路,这种电路使场效应管工作在可变电阻区,使其成为压敏电阻。
D 和S 两端的等效阻抗随栅压而变,以控制反馈通路的反馈系数,从而稳定振幅。