4-3 角动量 角动量守恒定律【普通物理学】

合集下载

4-3 角动量 角动量守恒定律

4-3 角动量 角动量守恒定律

vM = (2 gh)
第四章 刚体转动
12
碰撞后的瞬间, 碰撞后的瞬间 M, B , N具有相同的线速度 具有相同的线速度
4 – 3 角动量 角动量守恒定律
物理学教程 第二版) (第二版)
vM = (2gh)
12
M,N和跷板系统 , 和跷板系统 角动量守恒
l u N = uM = u = ω 2
B
2
刚体定轴转动运动状态的描述 L = Jω Ek = Jω 2 2 刚体定轴转动运动状态的描述
ω = 0, p = 0
ω ≠ 0, p = 0
ω
pi
Hale Waihona Puke pj第四章 刚体转动
4 – 3 角动量 角动量守恒定律 一 质点的角动量和刚体的角动量 1 质点角动量 质点在垂直于 z 轴平面 上以角速度 ω 作半径为 r 的圆运动. 的圆运动 质点角动量(相对圆心) 质点角动量(相对圆心) θ = 90
考虑到
θ = ωt
7 lg dr 12 v 0 g = cos ω t = cos( t) dt 2ω 24 v 0 7l
第四章 刚体转动

l 1 l 2 2 mv0 = ml + m( ) ω 4 12 4
ω = 12 v 0 7l
第四章 刚体转动
4 – 3 角动量 角动量守恒定律
物理学教程 第二版) (第二版)
12 v 0 ω= 7 l
角动量定理
dL d( Jω ) dJ M= = =ω dt dt dt
d 1 dr 2 2 mgr cosθ = ω ( ml + mr ) = 2mrω dt 12 dt
4 – 3 角动量 角动量守恒定律

角动量守恒定律_概述及解释说明

角动量守恒定律_概述及解释说明

角动量守恒定律概述及解释说明1. 引言1.1 概述角动量守恒定律是物理学中一个重要的基本原理,它描述了在不受外力或转矩作用下,系统的总角动量将保持不变。

这一定律有着广泛的应用,在自然界和工程领域中都扮演着至关重要的角色。

1.2 文章结构本文将首先介绍角动量守恒定律的基本概念,包括角动量的定义和性质,以及角动量守恒的原理和在自然界中的应用。

接着我们会详细解释数学原理,包括刚体系统和非刚体系统中角动量守恒的推导过程,并探讨转矩与角动量之间的关系。

然后,我们将通过经典实例分析实验来验证角动量守恒定律,并探讨其应用和验证方法。

最后,我们会对角动量守恒定律的重要性进行总结,并回顾其在物理领域中的广泛应用,并展望未来研究方向。

1.3 目的本文旨在全面介绍角动量守恒定律,并深入探讨其数学原理、实验验证以及在实际应用中的案例。

通过对角动量守恒定律的深入理解,能够帮助读者更好地理解物理学中的基本原理,同时也有助于激发读者对未来研究方向的思考。

2. 角动量守恒定律的基本概念2.1 角动量的定义和性质角动量是刻画旋转运动的物理量,它与物体的质量、速度以及距离有关。

角动量的定义为一个物体在给定参考点周围旋转时所具有的动力学特性。

其数学表达式为L = r x p,其中L表示角动量,r表示从参考点到物体质心位置矢量,p表示物体的线性动量。

根据右手法则,可以确定角动量的方向与线性动量和半径之间的关系。

角动量具有以下几个重要性质:1) 角动量是矢量,在运算中需要考虑其方向;2) 角动量大小与速度、质量及距离之间的积相关;3) 在封闭系统中,总角动量守恒。

2.2 角动量守恒的原理角动量守恒指在一个封闭系统中,如果没有外力或外力矩作用于该系统,则系统总角动量将保持不变。

这意味着在不受外界干扰的情况下,系统内各个部分相对于共同参考点的角动量之和保持不变。

这一原理可以通过牛顿第二定律和牛顿第三定律的推导来解释。

根据牛顿第二定律,一个物体的角动量变化率等于作用在该物体上的转矩。

4-3角动量 角动量守恒定律

4-3角动量 角动量守恒定律
A
B
1 v∝ r
r r
近 日
v v 彗星

A
rA
r F
r v B远
rB
B点

vA > vB
r vA
彗星
13
4-3 角动量 角动量守恒定律
第四章 刚体转动
比较
t2
r r ∫ Fdt =ΔP
t1
r r dP F= dt
动量
r r dL M= dt t
2
角动量
r r ∫ M
7
4-3 角动量 角动量守恒定律
第四章 刚体转动
讨论 子细 弹绳 击质 入量 沙不 袋计
系统的动量、角动量和机械能是否守恒? 系统的动量、角动量和机械能是否守恒?
o
v v
子 弹 击 入 杆
o
圆 锥 摆
o
v θ T
'
m
v v
v p
o
v v
R
以子弹和沙袋为系统 以子弹和杆为系统 圆锥摆系统 守恒; 不守恒; 动量: 不守恒; 守恒; 不守恒; 动量 不守恒; 角动量: 守恒; 守恒; 守恒; 角动量 守恒; 守恒; 守恒; 不守恒 . 机械能: 守恒 . 8 机械能 不守恒 .
考虑到
θ =ωt
7lg 12v0 dr g = cosωt = cos( t) dt 2ω 24v0 7l
21
4-3 角动量 角动量守恒定律
第四章 刚体转动
r L
本节小结: 本节小结:
角动量: 一.角动量:
L = Jω
质点的角动量: ⑴质点的角动量:
第四章 刚体转动
vM = 2gh
6mvM ω= (m′ + 6m)l

角动量 角动量守恒定律

角动量 角动量守恒定律

角动量与线动量关系
角动量与线动量的关系
角动量是线动量在物体绕某点或某轴 转动时的表现形式,二者之间存在密 切关系。
动量守恒定律
在不受外力作用的情况下,物体的总 动量(包括线动量和角动量)保持不 变,即动量守恒定律。
02
角动量守恒定律
守恒条件及适用范围
守恒条件
当系统不受外力矩作用时,系统的角动量守恒。即在没有外力矩的情况下,系统内部各部分之间的相 互作用力不会导致系统总角动量的改变。
06
总结与展望
课程内容回顾与总结
角动量的定义与性

角动量是物体绕某点或某轴转动 的动量,具有矢量性质,其大小 与物体的质量、速度和转动半径 有关。
角动量守恒定律的
表述
在没有外力矩作用的情况下,系 统内的角动量保持不变,即角动 量守恒。
角动量守恒定律的
应用
角动量守恒定律在天体物理、刚 体转动、分子运动等领域有广泛 应用,如行星运动、陀螺仪工作 原理等。
对未来研究方向的展望
角动量守恒定律在复 杂系统较成熟,但在复 杂系统中的应用还有待深入研究, 如多体问题、非线性问题等。
角动量与其他物理量 的关系研究
角动量与能量、动量等物理量之 间存在一定的联系,未来可以进 一步探讨它们之间的关系,以及 如何利用这些关系解决实际问题。
在机械工程中,飞轮储能系统被应用 于能量回收和节能领域。飞轮储能系 统利用刚体定轴转动的角动量守恒定 律,通过加速和减速飞轮来储存和释 放能量。这种储能方式具有高效率、 环保等优点,在电动汽车、风力发电 等领域具有广阔的应用前景。
04
质点和质点系相对于固定 点角动量守恒
质点相对于固定点角动量定义和性质
双星系统由两颗互相绕转的恒星组成。在双星系统中,两颗恒星的角动量守恒,因此它们的轨道周期、距离和质量之 间存在一定关系。

4-3 角动量 角动量守恒定律

4-3 角动量 角动量守恒定律
2 2 2
在光滑的水平桌面上,放有质量为M的木块 木块与一弹簧相连, 的木块, 例 在光滑的水平桌面上,放有质量为 的木块,木块与一弹簧相连, 弹簧的另一端固定在O点 弹簧的劲度系数为k,设有一质量为m的子弹以 弹簧的另一端固定在 点,弹簧的劲度系数为 ,设有一质量为 的子弹以 垂直于OA射向 并嵌在木块内, 射向M并嵌在木块内 所示.弹簧原长 初速 垂直于 射向 并嵌在木块内,如图 所示 弹簧原长 ,子弹击 v0 l0 中木块后,木块M运动到 点时刻,弹簧长度变为l,此时OB垂直于 运动到B点时刻 垂直于OA, 中木块后,木块 运动到 点时刻,弹簧长度变为 ,此时 垂直于 , 求在B点时 点时, 求在 点时,木块的运动速度 . v2 解 击中瞬间,在水平面内,子弹与木块组成 的系统沿 v0 方向动量守恒,即有
M h N B l C
l/2
A
设跷板是匀质的,长度为 , 设跷板是匀质的,长度为l,质量为m', 跷板可绕中部支撑点C 在竖直平面内转动, 跷板可绕中部支撑点 在竖直平面内转动, 演员的质量均为m.. 演员的质量均为 .. 碰撞前M落在 A点的速度 解 碰撞前M落在 A点的速度
vM = (2 gh)
l0 (m + M)v1 = l (m + M)v 2 sin θ
由①、②式联立求得 v2 的大小为
k(l − l0 ) 2 m2 2 v2 = v0 − (m + M) 2 m+M
由③式求得 v2 与OB的夹角为
θ = arcsin
l0 mv 0
2 l m 2 v 0 − k(l − l0 ) 2 (m + M)
l u= ω 2
12
碰撞后的瞬间, 、 具有相同的线速度 碰撞后的瞬间,M、N具有相同的线速度

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律

精品文档,知识共享!!!角动量定理及角动量守恒定律一、力对点的力矩:如图所示,定义力F对O 点的力矩为: F r M ⨯=大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。

二、力对转轴的力矩:力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。

1)力与轴平行,则0=M;2)刚体所受的外力F在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。

力的大小与力臂的乘积,称为力F对转轴的力矩,用M表示。

力矩的大小为: Fd M = 或: θsin Fr M =其中θ是F 与r的夹角。

3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F,一个在垂直与转轴平面内的分力2F ,只有分力2F才对刚体的转动状态有影响。

对于定轴转动,力矩M的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。

三、合力矩对于每个分力的力矩之和。

合力 ∑=i F F合外力矩 ∑∑∑=⨯=⨯=⨯i i i M F r F r F r M=即 ∑i M M=四、质点的角动量定理及角动量守恒定律在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。

同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。

角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。

在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。

至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。

大学物理 角动量 角动量守恒定律课件

大学物理 角动量 角动量守恒定律课件

1 2 r gt , p mv mgt 2
r
v
2.4 角动量守恒定律
o
若以O为参考点,质点在任 意时刻的角动量为:
R
A
r
r
v
R
L0 r P ( R r ) p R mgt .
rmgt ; 方向垂直纸面向里
2.4 角动量守恒定律
• 若质点作匀速直线运动,以 O点为参考点,质点的角动 量为:
L0 r mv r mv const
L0 r mv sin r mv
• 注意:对不同的参考点有不同的角动量
开普勒第二定律 对于任一行星,由太阳 到行星的矢径在相等的 时间内扫过相等的面积
2.4 角动量守恒定律
3、质点系的角动量定理及守恒定律
质点系角动量对时间的变化率等 于质点系所受合外力矩,而与内 力矩无关。
写成积分式
dL 即: M 外 dt
L0

t
t0
L Mdt dL L L0 L
t0 L0
L Li ri pi ri mi vi
质点系的角动量守恒
当 M 外 0 时,L 恒矢量
2.4 角动量守恒定律 例1 一半径为 R 的光滑圆环置于竖直平面内.一质 量为 m 的小球穿在圆环上, 并可在圆环上滑动. 小球开始 时静止于圆环上的点 A (该点在通过环心 O 的水平面上), 然后从 A 点开始下滑.设小球与圆环间的摩擦略去不计.求 小球滑到点 B 时对环心 O 的角动量和角速度. 解 小球受重力和支持 力作用, 支持力的力矩为零, 重力矩垂直纸面向里

第五节 角动量角动量守恒定理

第五节 角动量角动量守恒定理

第五章角动量角动量守恒定理本章结构框图学习指导本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。

许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。

建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。

本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。

还请注意动量守恒在天体问题、粒子问题中的应用。

基本要求1.理解质点、质点系、定轴刚体的角动量概念。

2.理解定轴刚体的转动惯量概念,会进行简单计算。

3.理解力矩的物理意义, 会进行简单计算。

4.掌握刚体定轴转动定律,熟练进行有关计算。

5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定理,熟练进行有关计算。

6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。

内容提要1.基本概念刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。

定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。

即:I的大小与刚体总质量、质量分布及转轴位置有关。

质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。

表5.1对质点、质点系、定轴刚体的角动量进行了比较。

表5.1质点、质点系和定轴刚体的角动量力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1):即:大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。

对于力矩的概念应该注意明确以下问题:•区分力对参考点的力矩和力对定轴的力矩:力对某轴的力矩是力对轴上任意一点的力矩在该轴上的投影。

例如:某力对x、y、z轴的力矩就是该力对原点的力矩在三个坐标轴上的投影:由上可知:力对参考点的力矩是矢量,而力对定轴的力矩是代数量。

角动量守恒定律.pptx

角动量守恒定律.pptx

角动量守恒定律
一、角动量定理
由转动定律
4-3 角动量守恒定律
M dL dt
Mdt dL
L L t2 Mdt L2 dL
t1
L1
21
系统所受合外力矩的冲量矩等于系统 角动量的增量。
4-3 角动量守恒定律
二、角动量守恒定律
由角动量定理:
t2 t1
M
d
t
L2
L1
若 M 0,则 L J =恒矢量
4-3 角动量守恒定律
一、角动量定理:
t2 tL1
二、角动量守恒定律:
若 M 0,则 L J =恒量
1、刚体: J不变, 也不变(大小、方向) 2、非刚体: J变, 变 → J ,;J ,
课后思考:
4-3 角动量守恒定律
试分析为什么直升机要安装尾翼螺旋桨呢?
4-3 角动量守恒定律
内容:当系统所受合外力矩为零时,则 系统的总角动量保持不变。
应用:
4-3 角动量守恒定律
1、刚体: J不变, 也不变 (大小、方向)
应用:
4-3 角动量守恒定律
2、非刚体: J变, 变 → J ,;J ,
4-3 角动量守恒定律
2、非刚体: J变, 变 → J ,;J ,
J ,
J ,
小结:

大学物理-角动量定理和角动量守恒定律

大学物理-角动量定理和角动量守恒定律
当系统所受外力矩为零时,系统内各物体角动量 之和保持不变。
系统内物体之间的相互作用力矩不会改变系统的 总角动量。
角动量守恒的应用举例
天体运动
行星绕太阳公转、卫星绕地球运 行等天体运动中,角动量守恒定
律是重要的理论基础。
陀螺仪
陀螺仪利用角动量守恒原理,通过 高速旋转来保持方向稳定,广泛应 用于导航、制导和控制系统。
机械系统
在机械系统中,如旋转机械、齿轮 传动等,角动量守恒定律用于分析 系统的动态平衡和稳定性。
04 角动量定理与守恒定律的 实际意义
在天文学中的应用
描述行星和卫星的运动
角动量定理和守恒定律在天文学中用于描述行星和卫星围绕中心天体的运动。 这些定律帮助科学家理解天体的旋转和轨道运动,以及它们之间的相互作用。
预测天文现象
通过应用角动量定理和守恒定律,科学家可以预测天文现象,如行星的轨道变 化、卫星的旋转等。这些预测有助于更好地理解宇宙的演化。
在航天工程中的应用
航天器姿态控制
角动量定理和守恒定律在航天工程中用于控制航天器的姿态 。通过合理地布置航天器上的动量轮,可以调整航天器的角 动量,实现姿态的稳定和控制。
L = m × v × r,其中L是 角动量,m是质量,v是 速度,r是转动半径。
角动量单位
在国际单位制中,角动量 的单位是千克·米²/秒 (kg·m²/s)。
角动量定理表述
角动量定理
01
对于一个封闭系统,其总角动量保持不变,即系统内力的力矩
之和为零。
表述形式
02
dL/dt = ΣM = 0,其中dL/dt表示角动量的时间变化率,ΣM表
角动量守恒的应用
角动量守恒定律在许多物理现 象中都有应用,如行星运动、 陀螺仪等。

4-3角动量 角动量守恒定律

4-3角动量 角动量守恒定律

第四章 刚体的转动
v v v M = r ×F
Z
v L
M =0 v v v L=r×p L = rmυ sin 90 = mr ω = Jω
0 2
v p
o
守恒
r
m v
行星绕太阳、卫星绕地球的椭圆轨道运动 行星绕太阳、卫星绕地球的椭圆轨道运动——行星 行星 对太阳、 对太阳、卫星对地球的角动量守恒
第四章 刚体的转动 二 刚体定轴转动的角动量定理和角动量守恒定律 1 刚体定轴转动的角动量
内力矩可以改变系统各组成部分 的角动量, 的角动量,但不能改变系统的总 角动量
在冲击等问题中 冲击等问题中
Q M >> M
in
ex
∴L ≈C
角动量守恒定律是自然界的一个基本定律. 角动量守恒定律是自然界的一个基本定律
4 – 3 角动量 角动量守恒定律
第四章 刚体的转动
一物体正在绕固定光滑轴自由转动, (A)它受热膨胀或遇冷收缩时,角速度不变。 (B)它受热时角速度变大,遇冷时角速度变小。 (C)它受热膨胀或遇冷收缩时,角速度均变大。 (D)它受热时角速度变小,遇冷时角速度变大。
m v
如果力的作用线通过固定点: 如果力的作用线通过固定点 M=0 O
F
4 – 3 角动量 角动量守恒定律
第四章 刚体的转动
v v dL M= dt

t2
t1
v v v M d t = L2 − L1
冲量矩
∫t1
t2
v M dt
质点的角动量定理: 质点的角动量定理:对同一参考点 O ,质点所受 的冲量矩等于质点角动量的增量. 的冲量矩等于质点角动量的增量 3 质点的角动量守恒定律

43角动量角动量守恒定律

43角动量角动量守恒定律

r
F
dL
M
dt dt
dt
14
物理学
第五版
质点的合外力矩
4-3 角动量
M
dL
dt
角动量守恒定律
作用于质点的合外力对参考点 O 的力矩,等于质点对 该点 O 的角动量随时间的变化率.
2 质点的角动量定理
t2 t1
Mdt
L2
L1
冲量矩
t2
M
dt
t1
3 质点的角动量守恒定律
M 0 , L 恒矢量
做匀变速转动.
与二维平面圆周 运动情况相同
质点匀变速直线运动 刚体绕定轴作匀变速转动
v v0 at
0 t
x
x0
v0t
1 2
at 2
0
0t
1 2
t
2
v2
v02 2a(x x0 )
2
2 0
2 (
0
)
3
物理学
第五版
4-3 角动量 角动量守恒定律
三 角量与线量的关系
ω d
dt
dω dt
4-3 角动量 角动量守恒定律
对定轴转的刚体,受合外力矩M,从t1到t2内,角速度
M从 1变d(为J)2, 积dL分可得: dt dt
t2 t1
Mdt
L2
L1
冲量矩 J2 J1
刚体的角动量定理: 刚体绕定轴转动时,刚体的冲量矩等 于角动量的增量
非刚体定轴转动的角动量定理
了解
t2
t1
Mdt
J 22
i
i
L J
2 M刚 i体定dd轴Lti 转动ddt的(m角ir动i2量)定理
O ri

3-4角动量守恒定律

3-4角动量守恒定律

、角动量
—、用规里
质量为也、以速度I鬼动的质点,其动量为
V V
p = mu
按照相仿的方法.刚体绕定轴转动时,把转动惯量和角速度的乘积称为刚体对定轴的角动量,用符号£表示
L —Ico
角动量是描述物体转动状态的物理量
在si中.角动量的单位是千克二次方米毎秒,符号为kgin-s4二、角动量定理
刚体绕定轴转动时,在给定的时间内,作用于刚体的合外力矩的冲量矩,等于刚体对该定轴的角动量的增量。

这一规律称为刚体定轴转动的角动量定理。

根据转动
定律二、角动量守恒定律
当作用于物体的合外力矩等于零时,物体的角动量保持不变。

这一规律称为角动量守恒定律。

例A5质量为,讥半径为确转台,可绕过中心的竖直轴转动,如图所示.质量为册人站在台的边缘.M 初,人和台都静止,后来P人在台的边缘开始跑动。

设人的角速度(相对地面}为 Q求转台的转动角速度(忽
略转轴处的摩擦力矩和空气阻力)o 解:
人和转台系统不受外力矩作用, 其角动量
守恒。

开始时刻,人.台系统的角动暈厶严0
后来,人的角动量为L:=mR2co 台的角动量
为A如曲负号说明转台沿与人相反方面
转动°。

角动量定理角动量守恒定律

角动量定理角动量守恒定律
应用牛顿第二定律
在系统整体上应用牛顿第二定律,得到系统受到的合外力矩为零时 的角动量守恒条件。
推导角动量守恒定律
根据系统总角动量和角动量守恒的条件,推导出角动量守恒定律, 即在合外力矩为零时,系统总角动量保持不变。
推导过程中的注意事项与难点解析
注意事项
在推导过程中,需要注意定义和计算过程中的符号约定,以及正确应用牛顿第二 定律。
角动量定理与守恒定律的适用范围
角动量定理适用于描述物体在受到外 力矩作用下的旋转运动,特别是需要 分析力矩对旋转运动的影响时。
角动量守恒定律适用于描述某些特定 条件下物体的旋转运动,如系统不受 外力矩作用或系统内力的力矩相互抵 消等。
04
角动量定理与守恒定律的 推导过程
角动量定理的推导过程
定义角动量
03
角动量守恒定律则是在一定条件下,物体的角动量保持不变 。
角动量定理与守恒定律的区别
角动量定理是一个运动方程,用于描 述旋转运动的物体在外力矩作用下的 运动规律,而角动量守恒定律则是一 个守恒条件,用于描述某些特定情况 下旋转运动的物体角动量的保持。
VS
角动量定理是一个瞬时规律,关注的 是物体在某一时刻的运动状态,而角 动量守恒定律则是一个时间平均规律, 关注的是物体在一段时间内的平均运 动状态。
矩作用会导致旋转物体角动量的增加或减少。
02
揭示旋转运动的本质
角动量定理阐明了旋转运动的本质特征,即旋转物体的角动量是守恒的,
但可以通过力矩作用进行改变。
03
指导设计旋转机械
角动量定理在旋转机械设计和运行中具有指导意义,例如在电动机、发
电机、陀螺仪等设备的设计中,需要考虑力矩作用和角动量的变化。
角动量守恒定律的物理意义

3-4 角动量 角动量守恒定律

3-4 角动量 角动量守恒定律

M 外力矩 0
故角动量守恒

m1
以地面为参照,选取轴的正方向如图
设台的角速度为
人对地的速率
v人 v 台 R

Rm2 (v 台 R) J 台 0(1)
1 J m1 R 2 ....(2) 2
解得:
2mv 台 ( M 2m ) R
11
例3 质量很小长度为l 的均匀细杆,可 绕过其中心 O并与纸面垂直的轴在竖直平面 内转动.当细杆静止于水平位置时,有一只 小虫以速率 v 垂直落在距点O为 l/4 处,并背 0 离点O 向细杆的端点A 爬行.设小虫与细杆 的质量均为m.问:欲使细杆以恒定的角速 度转动,小虫应以多大速率向细杆端点爬行?
M 外z

M 外z J z
t2
d Lz d Jz dt dt
—转动定律
二、 刚体定轴转动的角动量定理

t1
M 外z d t ( J z )2 ( J z )1
M 外z 0 ,则 J z const .
对刚体系, M外z = 0 时, J iz i const. ,
'
圆锥摆系统
动量不守恒;
R
T
m
p
o
v
O’O轴角动量守恒; 机械能守恒.
10
例2.质量为m1、半径为R的转台,可绕通过中心的竖直轴 转动。质量为m2的人站在边沿上,人和转台原来都静止。 如果人沿台边缘奔跑,若人相对台的速率为 v 时,求 台对地的角速度, (设转轴光滑) 解:以m1、m2为研究对象 + m2
Байду номын сангаас
3mva 1 2 2 mva ( ml ma ), 2 2 3 m'l 3ma

4-3 角动量 角动量守恒定律

4-3 角动量 角动量守恒定律

冲量矩
∫t1
t2
v M dt
质点的角动量定理: 质点的角动量定理:对同一参考点 O ,质点所受 的冲量矩等于质点角动量的增量 冲量矩等于质点角动量的增量. 等于质点角动量的增量 1.3 质点的角动量守恒定律
v v M = 0, L =
恒矢量
的合力矩为零时, 质点所受对参考点 O 的合力矩为零时,质点对该 的角动量为一恒矢量. 参考点 O 的角动量为一恒矢量
Q M in >> M ex ∴ L ≈ 常量
7
4-3 角动量 角动量守恒定律
例1:彗星绕太阳作椭圆轨道运动,太阳位于椭圆轨 :彗星绕太阳作椭圆轨道运动, 道的一个焦点上,问系统的角动量是否守恒? 道的一个焦点上,问系统的角动量是否守恒?近日点 与远日点的速度谁大? 与远日点的速度谁大? 解:在彗星绕太阳轨 道运转过程中, 道运转过程中,只受 万有引力作用, 万有引力作用,万有 引力不产生力矩, 引力不产生力矩,系 统角动量守恒。 统角动量守恒。
O
i
v vi
mi
∫t1
t2
M d t = Jω 2 − Jω1
质量元: 质量元: m i ri ∆
2
ω
= mr 2ω
6
某圆周运动质点: 某圆周运动质点: L
4-3 角动量 角动量守恒定律
刚体定轴转动的角动量定理 刚体定轴转= Jω2 − Jω1
= 常量
2.3 刚体定轴转动的角动量守恒定律 刚体定轴转动的角动量守恒定律 若 M = 0 ,则 L = Jω 讨论 内力矩不改变系统的角动量. 内力矩不改变系统的角动量 在冲击等问题中 冲击等问题中
5
4-3 角动量 角动量守恒定律
刚体定轴转动的角动量定理 角动量定理和 二 刚体定轴转动的角动量定理和角动量守恒定律 2.1 刚体定轴转动的角动量 刚体定轴转动的角动量

4_3角动量 角动量守恒定律

4_3角动量 角动量守恒定律

二 刚体定轴转动的角动量定理和角动量守恒定律 1 刚体定轴转动的角动量
L i = m i ri v i = m i ri ω
2
ω
v ri
mi
z
L = ∑ mi ri vi = (∑ mi ri 2 )ω = Jω
i i
O
v vi
L = Jω
刚体对转轴的 转动惯量
2 刚体定轴转动的角动量定理
dLi d (mi ri vi ) d (mi ri ω) Mi = = = dt dt dt
质点的角动量
v L
z
v v
v r
θ m y
x
v L
o
v v
θ
v r
v p
v L
L = mr ω = Jω
2
v m o r
二 质点的角动量守恒定律
Q∫
t2
t1
v v v M d t = L2 − L1
v v v ∴ M = 0, L2 =L1 =恒矢量
质点所受对参考点 O 的合力矩为零时,质点对该 的合力矩为零时, 的角动量为一恒矢量. 参考点 O 的角动量为一恒矢量
例1:杆质量M ,长l,绕中点转动,J =
初速水平 v,射入下端,问 ω = ? 解:碰撞前角动量
M 2 l ,开始竖直静止。子弹m, 12
M
(1)
l L1 = mv 2 碰撞后角动量
L2 = J ω
(2)

l M J = J m + J M = m( ) 2 + l 2 2 12 (3)
mv
ω
碰撞过程中, M的重力矩为零, m的重力矩忽略不计。由 角动量守恒,得
有许多现象都可以 用角动量守恒来说明. 用角动量守恒来说明 花样滑冰 跳水运动员跳水
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v0
v
u
A
h
14
质量 m'在 A 点和 B 点只受有心力作用 ,
角动量守恒
mv0 (R h) mvBR
vB (R h)v0 R 1 727 m s1
飞船在 A点喷出气体后,在到达月球的 过程中,机械能守恒
1 2
mvA2
G
mMm Rh
1 2
mvB2
G
mM m R
15
1 2
mv
2 A
mi
ri
2,合 )外M力di i矩(n J0)
dt
dt dt
18
对定轴转的刚体,受合外力矩M,从
t1到 t2内,角速度从ω1变为 ω2,积分可得:
t2
t1
Mdt
J2
J1
非刚体定轴转动的角动量定理
t2
t1
Mdt
J 22
J11
当转轴给定时,作用在物体上的冲量
矩等于角动量的增量 ——定轴转动的角动
量定理.
0
0
得 L mR 3 2 (2g sin )1 2
L mR2
( 2g sin )1 2
R
10
*例2 一质量为 m 的登月飞船,在离 月球表面高度 h 处绕月球作圆周运动.飞船 采用如下登月方式:当飞船位于点 A 时,它 向外侧短时间喷射出粒子流,使飞船与月球 相切地到达点 B , 且OA 与 OB 垂直.飞船 所喷气体相对飞船的速度为 u 1.00 104 m s1 试问:登月飞船在登月过程中所需消耗燃料
力的时间累积效应: 冲量、动量、动量定理.
力矩的时间累积效应: 冲量矩、角动量、角动量定理.
1
一 质点的角动量定理和角动量守恒定律
质点运动
p
mv
刚体定轴转动
0, p 0
L J
0, p 0
pi
p j
2
1 质点的角动量
速度 时对
质Ov 的量在位为空矢间m为运的动r质 ,,点质某以
点对参考点O的角动量
7
例1 一半径为 R 的光滑圆环置于竖直平 面内. 一质量为 m 的小 球穿在圆环上, 并可在 圆环上滑动. 小球开始 时静止于圆环上的点 A (该点在通过环心 O 的 水平面上),然后从 A 点开始下滑.设小球与圆环间的摩擦力略 去不计.求小球滑到点 B 时对环心 O 的角 动量和角速度.
8
P
B vB
R
O
vA
v0
v
u
A
h
gM
G
mM R2
v0
( R2gM Rh
)1
2
1 633
m s1
13
飞船在A点以相对
速度 u 向外喷气的短
时间里 , 飞船的质量
减 获 使少 得 飞了 速 船度的m的速而增度为量变m为',vv并A, ,
其值为
vA (v02 v2 )1 2
B vB
R
O
vA
L
r
p
r
mv
zL
v
rm
xo
y
L
v
r
3
大 小L rmvsin
L 的方向符合右手法则
zL
v
rm
角动量单位:kg·m2·s-1
※质点以 作半径为 r
xo
L
v
y
r
的圆周运动,相对圆心
L mr 2 J
L
o
p
m r
2 质dp点 的角F动,量定dL理 ?
Lrp
dt dL
d
(r
解 小球受力 、 作用, FN 的力矩为 FN
零,重力矩垂直纸面向里
M mgRcos
由质点的角动量定理
mgRcos dL
dt
dL mgRcos dt
9
考虑到 d dt, L mRv mR 2
得LdL m2 gR3 cosθ dθ
由题设条件积分上式
L LdL m2 gR3
cos d
19
3 刚体定轴转动的角动量守恒定律
若 M 0,则 L J =常量
如果物体所受的合外力矩等于零, 或者不受外力矩的作用,物体的角动量 保持不变 ——角动量守恒定律.
20
讨论
➢ 守恒条件 M 0
若 J 不变,不变; 若 J 变, 也变,但 L J 不变.
➢ 内力矩不改变系统的角动量.
➢ 在冲击等问题中M in M exL 常量
和角动量守恒定律
1 刚体定轴转动
的角动量
L
mi ri 2
i
(
miri2 )
i
L J
z
O ri
vi
mi
17
2 刚体定轴转动的角动量定理
质点mi受合M力i 矩dMdLti(i 包 括d(MdJtiex)、Mdditin()miri2)
对定轴转动的刚体
M Miex
d( J )
dL
M
d( dt
m 的质量 是多少?
11
已知
m 1.20 104 kg h 100 km R 1740km u 1.00 104 m s1 gM 1.62 m s2
B vB
R
O
vA
v0
v
u
A
h
12
解 设飞船在点
A
的速度
v0
,
月球质
量 mM ,由万有引力和
牛顿定律
G
(
mM R
m h)
2
m v02 Rh
➢ 角动量守恒定律是自然界的一个基本定律.
21
许多现象都可 以用角动量守恒来 说明.
➢花样滑冰 ➢跳水运动员跳水
点击图片播放
22
自然界中存在多种守恒定律
动量守恒定律 能量守恒定律 角动量守恒定律
电荷守恒定律 质量守恒定律 宇称守恒定律等
23
例3 质量很小长度为l 的均匀细杆,可 绕过其中心 O并与纸面垂直的轴在竖直平面 内转动.当细杆静止于水平位置时,有一只
质点角动量的增量——质点的角动量定理.
6
3
质点的角动量守恒定律
当 M 0,L 恒矢量
M
dL
dt
当质点所受对参考点O的合力矩为零 时,质点对该参考点O的角动量为一常矢
量——质点的角动量守恒定律. 一种是注合:力合F力 矩0M,另一0, 种可是能合有力两F种虽情不况为:
零,但合力通过参考点O,致使合力矩为零.
小虫以速率 v0 垂直落在距点O为 l/4 处,并背
离点O 向细杆的端点A 爬行.设小虫与细杆 的质量均为m.问:欲使细杆以恒定的角速 度转动,小虫应以多大速率向细杆端点爬行?
O
l/4
24
dt p)
r
dp
dr
p
dt dr
dt v,v
p
0
dt
dt
dt dL
r
dp
r
F
dt
dt
5
M
dL
dt
作用于质点的合外力对参考点 O 的力矩,
等于质点对该点 O 的角动量随时间的变化率.
t2
Mdt
t1
冲量矩
L2
t2
M
dt
L1
对同一参考点Ot1 ,质点所受的冲量矩等于
G
mMm Rh
1 2
mvB2
G
mM m
2G
mM R
取月球质量 mM 7.35 10 22 kg 得 vA 1 636 m s1
于是 v (vA2 v02 )1 2 100 m s1
而 (m)u mv m mv u 120 kg
16
二 刚体定轴转动的角动量定理
相关文档
最新文档