高中数学一轮复习课件《椭圆》
合集下载
高中数学一轮复习课件:“椭圆的定义及其标准方程” (共28张PPT)
问题3:在笔尖运动的过程中,哪些 长度
是变化的?哪些长度是不变的?
并且回答问题2:椭圆是满足什么条件的轨 迹呢?
请看用超级画板进行的动态演示:
(超级链接2)
椭圆的定义
椭圆定义的文字表述: 椭圆定义的符号表述:
• 平面上到两个定点 的距离的和(2a) 等于定长(大于 |F1F2 |)的点的轨 迹叫椭圆。 • 定点F1、F2叫做椭 圆的焦点。 • 两焦点之间的距离 叫做焦距(2C)。
♦ 求动点轨迹方程的一般步骤: 坐标法 (1)建系; (2)设点; (3)列等式; (4)等式坐标化; (5)检验.
师生互动,导出椭圆的方程:
♦ 问题8、探讨建立平面直角坐标系的方案
(学生分组讨论,合作探究) y y y
y F1
O O O
y F2
M M
O F2
xx x
O
x F1
x
方案二 方案一 原则:一般利用对称轴或已有的互相垂直的线段 所在的直线作为坐标轴.这样能使方程的形式简单、 运算简单。
(问题11)如果椭圆的焦点 在y上,那么椭圆的标准方程 又是怎样的呢?
如果椭圆的焦点在y轴上(选取方式不同,调换x,y F1 (0, c), F2 (0, c) 轴) 如图所示,焦点则变成 x2 y2 只要将方程中 2 2 1 的 x, y 调换,即可得
课题:
二、【自主探究,形成概念】 ——“定性”地画出椭 圆
问题2: 动点按照某种规律运动形成的轨迹叫
曲线,那么椭圆是满足什么条件的轨迹呢?
数学实验(做一做)
请同学们拿出课前准备好的一块纸板, 一段细绳,两枚图钉,同桌间相互磋商、动手 绘图 .并思考问题:
在绳长 (设为 2 a )不变的条件下, 实验1:当两个图钉重合在一点时,画出 的图形是什么? (圆) 实验2:改变两个图钉之间的距离(让绳 长大于两个图钉之间的距离),画出的图形是 什么? (椭圆)
椭圆及其几何性质课件-高三数学一轮复习
B 分别为 C 的左,右顶点.P 为 C 上一点,且 PF⊥x 轴.过点 A 的直线 l
与线段 PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C
的离心率为( A )
A.13
B.12
C.23
D.34
[解析] 设点 M(-c,y0),OE 的中点为 N,则直线 AM 的斜率 k=a-y0 c, 从而直线 AM 的方程为 y=a-y0 c(x+a), 令 x=0,得点 E 的纵坐标 yE=aa-y0c.同理,OE 的中点 N 的纵坐标 yN=aa+y0c. 因为 2yN=yE,所以a+2 c=a-1 c,即 2a-2c=a+c,所以 e=ac=13.故选 A.
(2)已知椭圆xa22+by22=1(a>b>0)上有一点 A,它关于原点的对称点为 B,点 F
为椭圆的右焦点,且 AF⊥BF.设∠ABF=α,且 α∈1π2,π6,则该椭圆的离 心率 e 的取值范围为( A )
A.
3-1,
6
3
B.[ 3-1,1)
C.
46,
6
3
D.0,
6
3
[解析] 如图所示,设椭圆的左焦点为 F′,连接 AF′,BF′,则四边形 AFBF′
为矩形,因此|AB|=|FF′|=2c,|AF|+|BF|=2a,|AF|=2csin α,|BF|=2ccos
α,∴2csin α+2ccos α=2a,
∴e=sin
1 α+cos
α=
2sin1α+π4.∵α∈1π2,π6,∴α+π4∈π3,51π2,
∴sinα+π4∈ 23,
2+ 4
6,∴
2sinα+π4∈ 26,1+2
高中数学椭圆课件
已知椭圆的一个焦点到椭圆上任意一点的距离的 最小值为4,求椭圆的标准方程。
题目4
已知椭圆上任意一点P与椭圆中心O的距离为d, 求点P到椭圆两个焦点的距离之差的绝对值。
答案3
根据椭圆的性质,焦点到椭圆上任意一点的距离 的最小值为半短轴b。已知这个距离的最小值为4 ,可以得出半短轴b=4。由于没有给出半长轴a的 具体数值,所以无法确定椭圆的标准方程。
注意事项:避免常见错误和陷阱
方程形式
注意椭圆的标准方程形式,不要混淆不同的形式 。
焦点位置
注意焦点的位置,有时题目中没有明确指出焦点 的位置,需要自己判断。
参数范围
在解题时,要注意参数的范围,不要超出范围进 行计算。
单位长度
在计算时,要注意单位长度的一致性,不要出现 单位不匹配的情况。
06
椭圆的练习题与答案解析
已知椭圆的一个焦点到 椭圆上任意一点的距离 和为10,求椭圆的标准 方程。
根据椭圆的定义,任意 一点到两个焦点的距离 之和为常数,这个常数 等于长轴的长度。已知 这个距离和为10,可以 得出半长轴a=5。由于 没有给出半短轴b的具 体数值,所以无法确定 椭圆的标准方程。
提高练习题:挑战更高难度
题目3
椭圆的准线与焦点
定义
椭圆的准线是指与椭圆焦点距离 相等的点所在的直线。
性质
准线与椭圆相交于四个点,这四 个点称为椭圆的焦点。焦点到椭 圆中心的距离称为焦距。
03
椭圆的方程求解方法
直接法求解椭圆方程
定义椭圆
根据椭圆的定义,确定椭圆的标准方程。
确定参数
根据椭圆的标准方程,确定参数a、b、c的值。
求解方程
高中数学椭圆课件
目
CONTENCT
题目4
已知椭圆上任意一点P与椭圆中心O的距离为d, 求点P到椭圆两个焦点的距离之差的绝对值。
答案3
根据椭圆的性质,焦点到椭圆上任意一点的距离 的最小值为半短轴b。已知这个距离的最小值为4 ,可以得出半短轴b=4。由于没有给出半长轴a的 具体数值,所以无法确定椭圆的标准方程。
注意事项:避免常见错误和陷阱
方程形式
注意椭圆的标准方程形式,不要混淆不同的形式 。
焦点位置
注意焦点的位置,有时题目中没有明确指出焦点 的位置,需要自己判断。
参数范围
在解题时,要注意参数的范围,不要超出范围进 行计算。
单位长度
在计算时,要注意单位长度的一致性,不要出现 单位不匹配的情况。
06
椭圆的练习题与答案解析
已知椭圆的一个焦点到 椭圆上任意一点的距离 和为10,求椭圆的标准 方程。
根据椭圆的定义,任意 一点到两个焦点的距离 之和为常数,这个常数 等于长轴的长度。已知 这个距离和为10,可以 得出半长轴a=5。由于 没有给出半短轴b的具 体数值,所以无法确定 椭圆的标准方程。
提高练习题:挑战更高难度
题目3
椭圆的准线与焦点
定义
椭圆的准线是指与椭圆焦点距离 相等的点所在的直线。
性质
准线与椭圆相交于四个点,这四 个点称为椭圆的焦点。焦点到椭 圆中心的距离称为焦距。
03
椭圆的方程求解方法
直接法求解椭圆方程
定义椭圆
根据椭圆的定义,确定椭圆的标准方程。
确定参数
根据椭圆的标准方程,确定参数a、b、c的值。
求解方程
高中数学椭圆课件
目
CONTENCT
2023年高考数学(理科)一轮复习课件——椭圆 第二课时 直线与椭圆
第九章 平面解析几何
索引
内容 索引
考点突破 题型剖析
分层训练 巩固提升
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
考点一 直线与椭圆的位置关系
1.若直线 y=kx+1 与椭圆x52+my2=1 总有公共点,则 m 的取值范围是( D )
A.m>1
B.m>0
C.0<m<5且m≠1
2,且过点1, 22.
(1)求椭圆C的方程;
解 由题意得2c=2,即c=1,所以a2=b2+c2=b2+1. 将1, 22代入b2x+2 1+by22=1,可得b2+1 1+21b2=1, 即2b2+b2+1=2b2(b2+1),整理得(2b2+1)(b2-1)=0, 解所得以椭b2=圆-C12的(舍方)或程为b2x=22+1,y2则=1a.2=2,
索引
训练 1 (1)已知椭圆xa22+by22=1(a>b>0),点 F 为左焦点,点 P 为下顶点,平行于 FP 的直线 l 交椭圆于 A,B 两点,且 AB 的中点为 M1,12,则椭圆的离心率
为( A )
2
1
A. 2
B.2
1
3
C.4
D. 2
解析 设A(x1,y1),B(x2,y2), ∵AB 的中点为 M1,12,∴x1+x2=2,y1+y2=1. ∵∵xaP212F+∥by212l=,1∴,kxaP222F+=byk222l==-1. bc=xy11- -yx22.
索引
(2)过椭圆 C 左焦点 F1 的直线 l(不与坐标轴垂直)与椭圆 C 交于 A,B 两点, 若点 H-31,0满足|HA|=|HB|,求|AB|.
解 由题意得F1(-1,0). 设直线l的方程为y=k(x+1)(k≠0),A(x1,y1),B(x2,y2), 联立椭圆C与直线l的方程, 可得x2+2k2(x+1)2=2, 整理得(2k2+1)x2+4k2x+2k2-2=0, Δ=16k4-4(2k2+1)(2k2-2)=8(k2+1)>0, 则 x1+x2=-2k42k+2 1,x1x2=22kk22+ -12.
索引
内容 索引
考点突破 题型剖析
分层训练 巩固提升
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
考点一 直线与椭圆的位置关系
1.若直线 y=kx+1 与椭圆x52+my2=1 总有公共点,则 m 的取值范围是( D )
A.m>1
B.m>0
C.0<m<5且m≠1
2,且过点1, 22.
(1)求椭圆C的方程;
解 由题意得2c=2,即c=1,所以a2=b2+c2=b2+1. 将1, 22代入b2x+2 1+by22=1,可得b2+1 1+21b2=1, 即2b2+b2+1=2b2(b2+1),整理得(2b2+1)(b2-1)=0, 解所得以椭b2=圆-C12的(舍方)或程为b2x=22+1,y2则=1a.2=2,
索引
训练 1 (1)已知椭圆xa22+by22=1(a>b>0),点 F 为左焦点,点 P 为下顶点,平行于 FP 的直线 l 交椭圆于 A,B 两点,且 AB 的中点为 M1,12,则椭圆的离心率
为( A )
2
1
A. 2
B.2
1
3
C.4
D. 2
解析 设A(x1,y1),B(x2,y2), ∵AB 的中点为 M1,12,∴x1+x2=2,y1+y2=1. ∵∵xaP212F+∥by212l=,1∴,kxaP222F+=byk222l==-1. bc=xy11- -yx22.
索引
(2)过椭圆 C 左焦点 F1 的直线 l(不与坐标轴垂直)与椭圆 C 交于 A,B 两点, 若点 H-31,0满足|HA|=|HB|,求|AB|.
解 由题意得F1(-1,0). 设直线l的方程为y=k(x+1)(k≠0),A(x1,y1),B(x2,y2), 联立椭圆C与直线l的方程, 可得x2+2k2(x+1)2=2, 整理得(2k2+1)x2+4k2x+2k2-2=0, Δ=16k4-4(2k2+1)(2k2-2)=8(k2+1)>0, 则 x1+x2=-2k42k+2 1,x1x2=22kk22+ -12.
2023年高考数学(理科)一轮复习课件——椭圆 第一课时 椭圆及其性质
2.若点P在椭圆上,F为椭圆的一个焦点,则 (1)b≤|OP|≤a; (2)a-c≤|PF|≤a+c.
索引
3.焦点三角形:椭圆上的点 P(x0,y0)与两焦点构成的△PF1F2 叫作焦点三角形, r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2 的面积为 S,则在椭圆xa22+yb22=1(a>b>0)
2c=
23,短轴长
2b=12,离心率
e=ac=
3 2.
索引
5.(易错题)已知椭圆x52+ym2=1(m>0)的离心率 e= 510,则 m 的值为___3_或__2_3_5___.
解析 若 a2=5,b2=m,则 c= 5-m.
由ac= 510,即
5-m= 5
510,解得 m=3.
若 a2=m,b2=5,则 c= m-5.
索引
法二(定义法) 椭圆2y52+x92=1 的焦点为(0,-4),(0,4),即 c=4. 由椭圆的定义知,2a= ( 3-0)2+(- 5+4)2+ ( 3-0)2+(- 5-4)2,解 得 a=2 5. 由 c2=a2-b2 可得 b2=4. 所以所求椭圆的标准方程为2y02 +x42=1.
索引
3.设点 P 为椭圆 C:xa22+y42=1(a>2)上一点,F1,F2 分别为 C 的左、右焦点,且
43 ∠F1PF2=60°,则△PF1F2 的面积为____3____.
解析 由题意知,c= a2-4.
又∠F1PF2=60°,|F1P|+|PF2|=2a,|F1F2|=2 a2-4, ∴|F1F2|2 = (|F1P| + |PF2|)2 - 2|F1P|·|PF2| - 2|F1P|·|PF2|cos 60°= 4a2 - 3|F1P|·|PF2|=4a2-16,
索引
3.焦点三角形:椭圆上的点 P(x0,y0)与两焦点构成的△PF1F2 叫作焦点三角形, r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2 的面积为 S,则在椭圆xa22+yb22=1(a>b>0)
2c=
23,短轴长
2b=12,离心率
e=ac=
3 2.
索引
5.(易错题)已知椭圆x52+ym2=1(m>0)的离心率 e= 510,则 m 的值为___3_或__2_3_5___.
解析 若 a2=5,b2=m,则 c= 5-m.
由ac= 510,即
5-m= 5
510,解得 m=3.
若 a2=m,b2=5,则 c= m-5.
索引
法二(定义法) 椭圆2y52+x92=1 的焦点为(0,-4),(0,4),即 c=4. 由椭圆的定义知,2a= ( 3-0)2+(- 5+4)2+ ( 3-0)2+(- 5-4)2,解 得 a=2 5. 由 c2=a2-b2 可得 b2=4. 所以所求椭圆的标准方程为2y02 +x42=1.
索引
3.设点 P 为椭圆 C:xa22+y42=1(a>2)上一点,F1,F2 分别为 C 的左、右焦点,且
43 ∠F1PF2=60°,则△PF1F2 的面积为____3____.
解析 由题意知,c= a2-4.
又∠F1PF2=60°,|F1P|+|PF2|=2a,|F1F2|=2 a2-4, ∴|F1F2|2 = (|F1P| + |PF2|)2 - 2|F1P|·|PF2| - 2|F1P|·|PF2|cos 60°= 4a2 - 3|F1P|·|PF2|=4a2-16,
椭圆的几何性质课件高三数学一轮复习
Fra bibliotek× √
核心考点·分类突破
解题技法
求椭圆标准方程的步骤
考点二 椭圆的几何性质 考情提示 高考对椭圆性质的考查是历年的重点,主要以离心率或与椭圆有关的最值问题为载 体考查逻辑推理与运算求解能力.
2.求解与椭圆有关的范围、最值问题的常用思路 (1)充分利用椭圆的几何性质,结合图形进行分析. (2)注意利用椭圆的范围如-a≤x≤a,-b≤y≤b,0<e<1构造不等式. (3)列出所求目标的解析式,构造函数利用单调性,或者利用基本不等式求最值或范 围.
预计2025年高考椭圆的几何性质仍会出题,三种题型都可能会出,往往会 预测
与其他知识交汇出题.
必备知识·逐点夯实
知识梳理·归纳 椭圆的几何性质
焦点的位置
图形
标准方程
焦点在x轴上 +=1(a>b>0)
焦点在y轴上 +=1(a>b>0)
范围
顶点 性 质 轴长
焦点 离心率 a,b,c的关系
_-_a_≤_x_≤_a_,_且__-b_≤_y_≤_b_
_-_b_≤_x_≤_b_,_且__-a_≤_y_≤_a_
_A_1_(_-a_,_0_)_,A_2_(_a_,0_)_, _B__1(_0_,-_b_)_,B__2(_0_,b_)_
_A_1_(_0_,-_a_)_,A_2_(_0_,a_)_, _B__1(_-_b_,0_)_,B__2(_b_,0_)_
谢谢观赏!!
长轴长=2a,短轴长=2b
_F__1(_-_c,_0_)_,F_2_(_c_,0_)_
_F__1(_0_,_-c_)_,F__2(_0_,c_)_
e=,且e∈(0,1)
核心考点·分类突破
解题技法
求椭圆标准方程的步骤
考点二 椭圆的几何性质 考情提示 高考对椭圆性质的考查是历年的重点,主要以离心率或与椭圆有关的最值问题为载 体考查逻辑推理与运算求解能力.
2.求解与椭圆有关的范围、最值问题的常用思路 (1)充分利用椭圆的几何性质,结合图形进行分析. (2)注意利用椭圆的范围如-a≤x≤a,-b≤y≤b,0<e<1构造不等式. (3)列出所求目标的解析式,构造函数利用单调性,或者利用基本不等式求最值或范 围.
预计2025年高考椭圆的几何性质仍会出题,三种题型都可能会出,往往会 预测
与其他知识交汇出题.
必备知识·逐点夯实
知识梳理·归纳 椭圆的几何性质
焦点的位置
图形
标准方程
焦点在x轴上 +=1(a>b>0)
焦点在y轴上 +=1(a>b>0)
范围
顶点 性 质 轴长
焦点 离心率 a,b,c的关系
_-_a_≤_x_≤_a_,_且__-b_≤_y_≤_b_
_-_b_≤_x_≤_b_,_且__-a_≤_y_≤_a_
_A_1_(_-a_,_0_)_,A_2_(_a_,0_)_, _B__1(_0_,-_b_)_,B__2(_0_,b_)_
_A_1_(_0_,-_a_)_,A_2_(_0_,a_)_, _B__1(_-_b_,0_)_,B__2(_b_,0_)_
谢谢观赏!!
长轴长=2a,短轴长=2b
_F__1(_-_c,_0_)_,F_2_(_c_,0_)_
_F__1(_0_,_-c_)_,F__2(_0_,c_)_
e=,且e∈(0,1)
椭圆及其性质课件-2025届高三数学一轮复习
,
=
+
向量的数量积求解;
= ,再由 =
+ ,借助
思路二:先利用椭圆定义以及在焦点三角形中用余弦定理先求出
,
=
+
和等于四条边的平方和求解.
思路三:利用等面积,即
点的坐标.ຫໍສະໝຸດ = ,再利用平行四边形对角线的平方
2025届高考数学一轮复习讲义
平面解析几何之椭圆及其性质
1.椭圆的定义
条件
结论1
,
①________为椭
平面内与两个定点 , 的距离的和等
于常数(大于 )的点
+ =
>
结论2
点的轨
迹为椭圆
圆的焦点;
②_______为椭圆
求 ⋅ 的值,通过整体代入可求其面积等.
1.(2023·全国甲卷)设 , 为椭圆:
+ = 的两个焦点,点在上,
若 ⋅ = ,则 ⋅ =(
A.1
B.2
√
)
C.4
D.5
解析:选B.方法一:因为 ⋅ = ,所以 ⊥ ,则
的焦距
若= ,则动点的轨迹是线段 ;若< ,
则动点 的轨迹不存在.
2.椭圆的标准方程及几何性质
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
顶点
+
= >>
+
2025年高考数学一轮复习-9.5.1-椭圆的定义及标准方程【课件】
考法 答题的第一问中.
预计2025年高考求椭圆的标准方程、直线与椭圆的交汇问题仍会
预测 出题,一般以解答题出现,求椭圆的离心率,考查比较灵活,一般以选择
题、填空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.椭圆的定义
常数
把平面内与两个定点F1,F2的距离的和等于______(大于|F
1F2|)的点的轨迹叫做椭圆.
(3)
源自教材第113页例6.此题给出椭圆的另一种定义方式
[例1](1)如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在
2 2
+y =1
圆上运动时,则线段PD的中点M的轨迹方程为______________.
4
【解析】(1)设点M的坐标为(x,y),点P的坐标为(x0,y0),
(6)焦点三角形的周长为2(a+c).
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.
(
×
)
提示:(1)因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆;
(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.
(
×
)
提示:(2)由于2a<|F1F2|,动点不存在,因此轨迹不存在;
(3)平面内到点F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的
预计2025年高考求椭圆的标准方程、直线与椭圆的交汇问题仍会
预测 出题,一般以解答题出现,求椭圆的离心率,考查比较灵活,一般以选择
题、填空题的形式出现.
必备知识·逐点夯实
知识梳理·归纳
1.椭圆的定义
常数
把平面内与两个定点F1,F2的距离的和等于______(大于|F
1F2|)的点的轨迹叫做椭圆.
(3)
源自教材第113页例6.此题给出椭圆的另一种定义方式
[例1](1)如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在
2 2
+y =1
圆上运动时,则线段PD的中点M的轨迹方程为______________.
4
【解析】(1)设点M的坐标为(x,y),点P的坐标为(x0,y0),
(6)焦点三角形的周长为2(a+c).
基础诊断·自测
类型
辨析
改编
易错
高考
题号
1
2
4
3
1.(思考辨析)(正确的打“√”,错误的打“×”)
(1)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆.
(
×
)
提示:(1)因为2a=|F1F2|=8,动点的轨迹是线段F1F2,不是椭圆;
(2)已知F1(-4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆.
(
×
)
提示:(2)由于2a<|F1F2|,动点不存在,因此轨迹不存在;
(3)平面内到点F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的
高中数学椭圆的简单几何性质(共16张PPT)公开课ppt课件
半轴长
长半轴长为a,短半轴
长为b. a>b
离心率
e c a
a、b、c的关系 a2=b2+c2
x2 b2
y2 a2
1(a
b
0)
|x|≤ b,|y|≤ a
关于x轴、y轴成轴对称; 关于原点成中心对称
(b,0)、(-b,0)、 (0,a)、(0,-a)
(0 , c)、(0, -c)
长半轴长为a,短半
轴长为b. a>b
e c a
a2=b2+c2
例1.已知椭圆方程为9x2+25y2=225,
它的长轴长是: 10 ,短轴长是: 6 ,
焦距是: 8
,离心率= 4 ,
5
焦点坐标是: (0, 4) ,顶点坐标是:(5, 0)0,,3
外切矩形的面积等于:
60
。
练1.求下列椭圆的长轴长、短轴长、焦点坐标、顶点坐 标和离心率.
A1
F1
bocΒιβλιοθήκη aA2F2
B1
3、椭圆的顶点
x2 a2
y2 b2
1(a b 0)
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?,说明椭圆与 x轴的交点?
*顶点:椭圆与它的对称轴 的四个交点,叫做椭圆的 顶点。
*长轴、短轴:线段A1A2、 A1 B1B2分别叫做椭圆的长轴 (-a,0)F1 和短轴。
(1)x2+9y2=81
(2) 25x2+9y2=225
(3)16x2+y2=25
(4) 4x2+5y2=1
练2.已知椭圆 x2 (m 3) y2 m(m 0) 的离心率 e 3 ,
2025届高中数学一轮复习课件《椭圆(二)》ppt
高考一轮总复习•数学
(2)由题意知,直线 AC 不垂直于 y 轴. 设直线 AC 的方程为 x=ty-2,A(x1,y1),C(x2,y2),
即 kAC≠0,可设为倒斜截式. 联立xx=2+ty2-y2=2,8, 消去 x 并整理得 (t2+2)y2-4ty-4=0,Δ=32(t2+1)>0, 所以 y1+y2=t2+4t 2,y1y2=-t2+4 2,
方法二(优解):因为直线过点(0,1),而 0+14<1,即点(0,1)在椭圆内部,所以可以推断
直线与椭圆相交.故选 A.
解析 答案
高考一轮总复习•数学
第13页
3.已知 F 是椭圆2x52 +y92=1 的一个焦点,AB 为过椭圆中心的一条弦,则△ABF 面积
的最大值为( )
A.6
B.15
C.20
高考一轮总复习•数学
第1页
第九章 解析几何
第6讲 椭圆(二)
高考一轮总复习•数学
第2页
复习要点 1.能够把研究直线与椭圆位置关系的问题转化为研究方程解的问题,会根 据根与系数的关系及判别式解决问题.2.通过对椭圆的学习,进一步体会数形结合的思想.
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
第25页
设直线与椭圆的交点坐标为 A(x1,y1),B(x2,y2), 则有|AB|= 1+k2[x1+x22-4x1x2]
1 = 1+k2[y1+y22-4y1y2](k 为直线斜率,k≠0). 提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判 别式.
高考一轮总复习•数学
可知 A,B 关于原点对称.
第五节椭圆课件高三数学一轮复习
() A. + y 2=1
B. =1
C. =1
D. =1
高中总复习·数学(提升版)
A. F 1, F 2的坐标分别为(-2,0),(2,0) B. 椭圆的离心率为 C. | PF 1|的最小值为1 D. 当 P 是椭圆的短轴端点时,∠ F 1 PF 2取到最大值
高中总复习·数学(提升版)
高中总复习·数学(提升版)
第五节 了解椭圆的实际背景,感受椭圆在刻画现实世界和解决实际问题中 的作用.
2. 经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、标准方程 及简单几何性质.
3. 通过椭圆的学习,进一步体会数形结合的思想. 4. 了解椭圆的简单应用.
高中总复习·数学(提升版)
高中总复习·数学(提升版)
2. 焦点三角形:椭圆上的点 P ( x 0, y 0)与两焦点 F 1, F 2构成的△ PF 1 F 2叫做焦点三角形,如图所示,设∠ F 1 PF 2=θ.
高中总复习·数学(提升版)
(4)焦点三角形的周长为2( a + c ).
高中总复习·数学(提升版)
1. 已知 F 1(-1,0), F 2(1,0)是椭圆 C 的焦点,过 F 2且垂直于 x 轴的直线交椭圆 C 于 A , B 两点,且| AB |=3,则 C 的方程为
感 谢 观 看!
PART 1
知识 体系构建
必备知识 系统梳理 基础重落实
课前自修
高中总复习·数学(提升版)
高中总复习·数学(提升版)
A. 2
B. 3
C. 5
D. 7
解析: 由椭圆的定义| PF 1|+| PF 2|=2 a =10,所以| PF 2|=7.
高中总复习·数学(提升版)
9.5.1椭圆定义及其性质-2021届高三数学(新高考)一轮复习课件(共39张PPT)
解析:若 a2=5,b2=m,则 c=
5-m,由ac=
510,即
5-m= 5
510,
解得 m=3;若 a2=m,b2=5,则 c=
m-5.由ac=
510,即
m-5= 5
510,
解得 m=7.
三、走进高考
5.[2019·全国Ⅰ卷]已知椭圆 C 的焦点为 F1(-1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点.若|AF2|=2|F2B|,|AB|=|BF1|,则 C 的 方程为( )
A.x22+y2=1 B.x32+y22=1 C.x42+y32=1 D.x52+y42=1
答案:B
解析:令|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1| =4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x, 所以|AF1|=2x.在△BF1F2 中,由余弦定 理 得 |BF1|2 = |F2B|2 + |F1F2|2 - 2|F2B|·|F1F2|cos∠BF2F1,即 9x2=x2+22 -4xcos∠BF2F1 ①,在△AF1F2 中,由 余 弦 定 理 得 |AF1|2 = |AF2|2 + |F1F2|2 - 2|AF2|·|F1F2|cos∠AF2F1,即 4x2=4x2+
答案:A 解析:∵焦点在 x 轴上,∴a2=m-2,b2=10-m,∴c2=a2-b2 =m-2-10+m=2m-12=4.∴m=8.
2.[选修一·P80 T3]过点 A(3,-2)且与椭圆x92+y42=1 有相同焦点 的椭圆的方程为( )
A.1x52 +1y02 =1 B.2x52 +2y02 =1 C.1x02 +1y52 =1 D.2x02 +1y52 =1
2024年高考数学一轮复习(新高考版)《椭圆》课件ppt
A.x62+y52=1
√B.x52+y42=1
C.x32+y22=1
D.x42+y32=1
如图,不妨设A(x0,y0)在第一象限,由椭圆的左焦 点F1(-1,0),点C,F1是线段AB的三等分点, 得C为AF1的中点,F1为BC的中点, 所以x0=1, 所以a12+by202=1, 解得 y0=ba2,即 A1,ba2, 所以 C0,2ba2 ,B-2,-2ba2 ,
(2)(2022·全国甲卷)椭圆 C:ax22+by22=1(a>b>0)的左顶点为 A,点 P,Q 均 在 C 上,且关于 y 轴对称.若直线 AP,AQ 的斜率之积为14,则 C 的离心 率为
√A.
3 2
1 C.2
2 B. 2
1 D.3
设P(m,n)(n≠0),
则Q(-m,n),易知A(-a,0),
常用结论
(3)|PF1|max=a+c,|PF1|min=a-c. (4)|PF1|·|PF2|≤|PF1|+2 |PF2|2=a2. (5)4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos θ. (6)焦点三角形的周长为2(a+c).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.
b4 将点 B 的坐标代入椭圆方程得a42+4ba22=1, 即a42+4ba22=1,
结合a2-b2=c2=1,解得a2=5,b2=4, 所以椭圆的标准方程是x52+y42=1.
题型三 椭圆的几何性质
命题点1 离心率 例 4 (1)(2022·太原模拟)设 F1,F2 是椭圆 E:ax22+by22=1(a>b>0)的左、右
椭圆课件-2025届高三数学一轮基础专项复习
2.[链接苏教选必一P88—P89知识]椭圆的右焦点为,椭圆上的两点, 关于原点对称,若,且椭圆的离心率为,则椭圆 的方程为( )
A
A. B. C. D.
【解析】由题意知,,关于原点对称,所以,得,又椭圆的离心率为,所以 ,得,故椭圆的方程为 ,选A.
解后反思若椭圆的左、右焦点分别为,,,两点在椭圆上,且关于坐标原点对称,则,,, 四点所构成的四边形为平行四边形,若或四边形有一个内角为 ,则该四边形为矩形.
10.[人A选必一P115习题3.1第4题变式]求满足下列条件的椭圆的标准方程.
(1)长半轴长为4,半焦距为,焦点在 轴上;
【答案】设椭圆方程为,(注意焦点在 轴上)由题意得,,,所以 ,所以其标准方程为 .
(2)与椭圆有相同的焦点,且经过点 ;
【答案】易知椭圆的焦点坐标为 ,设所求椭圆方程为,则 ,因为椭圆过点,所以,即 ,所以,所以所求椭圆的标准方程为 .
教材知识萃取
方法技巧利用椭圆的简单几何性质求最值或范围的思路
(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系,利用函数或基本不等式求最值或范围;
(2)将所求范围用 , , 表示,利用 , , 自身的范围、关系求范围.
教材素材变式
1.[多选][苏教选必一P93习题3.1(2)第13题变式]如图所示,一个底面半径为 的圆柱被与其底面成 角的平面所截,截面是一个椭圆,则( )
3.[人B选必一P141练习A第4题变式]已知,分别是椭圆的左顶点和右焦点, 是椭圆上一点,直线与直线相交于点,且是顶角为 的等腰三角形,则该椭圆的离心率为( )
C
A. B. C. D.
【解析】如图,设直线与轴的交点为,由是顶角为 的等腰三角形,知, ,则在中, .又,所以.结合得,即 ,解得或 (舍去).故选C.
A
A. B. C. D.
【解析】由题意知,,关于原点对称,所以,得,又椭圆的离心率为,所以 ,得,故椭圆的方程为 ,选A.
解后反思若椭圆的左、右焦点分别为,,,两点在椭圆上,且关于坐标原点对称,则,,, 四点所构成的四边形为平行四边形,若或四边形有一个内角为 ,则该四边形为矩形.
10.[人A选必一P115习题3.1第4题变式]求满足下列条件的椭圆的标准方程.
(1)长半轴长为4,半焦距为,焦点在 轴上;
【答案】设椭圆方程为,(注意焦点在 轴上)由题意得,,,所以 ,所以其标准方程为 .
(2)与椭圆有相同的焦点,且经过点 ;
【答案】易知椭圆的焦点坐标为 ,设所求椭圆方程为,则 ,因为椭圆过点,所以,即 ,所以,所以所求椭圆的标准方程为 .
教材知识萃取
方法技巧利用椭圆的简单几何性质求最值或范围的思路
(1)将所求问题用椭圆上点的坐标表示,利用坐标范围构造函数或不等关系,利用函数或基本不等式求最值或范围;
(2)将所求范围用 , , 表示,利用 , , 自身的范围、关系求范围.
教材素材变式
1.[多选][苏教选必一P93习题3.1(2)第13题变式]如图所示,一个底面半径为 的圆柱被与其底面成 角的平面所截,截面是一个椭圆,则( )
3.[人B选必一P141练习A第4题变式]已知,分别是椭圆的左顶点和右焦点, 是椭圆上一点,直线与直线相交于点,且是顶角为 的等腰三角形,则该椭圆的离心率为( )
C
A. B. C. D.
【解析】如图,设直线与轴的交点为,由是顶角为 的等腰三角形,知, ,则在中, .又,所以.结合得,即 ,解得或 (舍去).故选C.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:(1) 已知椭圆的对称轴是坐标轴,O为坐标原 点,F是一个焦点,A是一个顶点,若椭圆的长轴 长是6,且cos∠OFA=2/3。则椭圆方程为 ________________。
(2) 设椭圆
x2
y2
1 上的点P到右准线的距离
100 36
为10,那么点P到左焦点的距离等于_______。
二.例题:
椭圆
高三备课组
一.基本知识概要
1 椭圆的两种定义:
①平面内与两定点F1,F2的距离的和等于定
长 2a F1F2 的点的轨迹,即点集M={P|
|PF1|+|PF2|=2a,2a>|F1F2|};(2a F1F2 时 为线段 F1F2 ,2a F1F2 无轨迹)。其中两定 点F1,F2叫焦点,定点间的距离叫焦距。
y2 b2
2
1(a>b>0)的焦点为 。求证:PF1F2 的面
F1
积 S b2 tan 。(图见教材P119页例2的图)
【思维点拨】 :解与 PF1F2 (P为椭圆上的点 ) 有关 的问题,常用正弦定理或余弦定理,并结合 PF1 PF2 2a 来解决。
例3:若中心在原点,对称轴为坐标轴的椭圆与
【思维点拨】解与△P F1F2有关的问题(P为椭 圆上的点)常用正弦定理或余弦定理,并且结 合|PF1|+|PF2|=2a来求解。
例5:(1)已知点P的坐标是(-1,3),F是椭圆
x2 y 2 1 的右焦点,点Q在椭圆上移动,当
16 12
QF 1 PQ 取最小值时,求点Q的坐标,并求出其
2
最小值。
直线x+y=1交于A、B两点,M为AB的中点,直线
OM(O为原点)的斜率为 2 ,且OA⊥OB,求椭
圆的方程。
2
【思维点拨】“OA⊥OB x1x2+y1y2=0”(其中 A(x1,y1),B(x2,y2))是我们经常用到的一个结论.
例4:已知椭圆的焦点是F1(-1,0),F2(1, 0),P为椭圆上的一点,且|F1F2|是|PF1|和|PF2| 的等差中项。(1)求椭圆方程; (2)若点P 在第三象限,且∠P F1F2=1200,求tan∠F1PF2。
2.在椭圆的两种标准方程中,总有a>b>0, c a2 b2 并且椭圆的焦点总在长轴上;
3.待定系数法和数形结合是最基本的方法与思 想.在解题时要熟练运用.
同学们
来学校和回家的路上要注意安全
同学们
来学校和回家的路上要注意安全
(3) 已知F1为椭圆的左焦点,A,B分别为椭圆的 右顶点与上顶点,P为椭圆上的点,当PF1⊥F1A, PO∥AB(O为椭圆中心)时,椭圆的离心率 e=_______。(教材P 119页例1)。
(4)已知椭圆 x2 y2 1上的点P到左焦点的距离
25 9
等于到右焦点的距离的两倍,则P的坐标是 _________。
一.基本知识概要
1 椭圆的两种定义: ②平面内一动点到一个定点和一定直 线的距离的比是小于1的正常数的点的 轨迹,即点集M={P| PF e ,0<e<1
的常数。( e 1 为抛d 物线; e 1 为
双曲线)
2 标准方程:
(1)焦点在x轴上,中心在原点:c a2 b2 (a>b>0);
成)。
4.重难点:椭圆的定义、标准方程和椭 圆的简单的几何性质。
5.思维方式:待定系数法与轨迹方程法。 6.特别注意:椭圆方程中的a,b,c,e与坐 标系无关,而焦点坐标,准线方程,顶 点坐标,与坐标系有关。因此确定椭圆 方程需要三个条件:两个定形条件a,b, 一个定位条件焦点坐标或准线方程。
二.例题:
A.坐标系下的性质:
③顶点:A1(-a,0),A2(a,0),B1(0,
-b),B2(0,b),长轴|A1A2|=2a,短轴
|B1B2|=2b;( 半a 长轴长, 半b 短轴长);
④准线方程:x a 2 ;或
பைடு நூலகம்
a2 y
c
c
⑤焦半径公式:P(x0,y0)为椭圆上任一点。
|PF1|= r左 =a+ex0,|PF2|= r右 =a-ex0; |PF1|= r上=a+ey0,|PF2|= r下 =a-ey0;
(2)设椭圆的中心是坐标原点,长轴在x轴上,
离心率为
,已知点P
这个椭圆上的
点的最远距e 离是3 ,求这个0, 3椭圆的方程,并
2
求椭圆上到点P的距7离是
的2点 的坐标。
7
三、课堂小结: 1.椭圆定义是解决问题的出发点,要明确参数 a,b,c,,e的相互关系,几何意义与一些概念的 联系.尤其是第二定义,如果运用恰当,可收到 事半功倍的效果(如关于求焦半径的问题).
【思维点拨】
1)求离心率一般是先得到a,b,c的一个 关系式,然后再求e;
2)由椭圆的一个短轴端点,一个焦点,中 心O为顶点组成的直角三角形在求解椭 圆问题中经常用到;
3)结合椭圆的第二定义,熟练运用焦半径 公式是解决第(3)小题的关键。
例2:如图,设E:x 2
与 F2
,且
a2 P E, F1PF2
②两种标准方程可用一般形式表示:Ax2+By2=1 (A>0,B>0,A≠B),当A<B时,椭圆的焦 点在x轴上,A>B时焦点在y轴上。
3.性质:
对于焦点在x轴上,中心在原点:x
(a>b>0)有以下性质:
a
2 2
y2 b2
1
A.坐标系下的性质:
①范围:|x|≤a,|y|≤b;
②对称性:对称轴方程为x=0,y=0,对称中心 为O(0,0);
焦点F1(-c,0), F2(c,0)。
其中
x2 y 2 (1 一个
a2 b2
Rt )
2 标准方程:
(2)焦点在y轴上,中心在原点:c a2 b2 (a>b>0); 焦点F1(0,-c),F2(0,c)。 其中 y 2 x2 1
a2 b2
注意:
①在两种标准方程中,总有a>b>0,c a2 b2 并且椭圆的焦点总在长轴上;
PF a c, PF a c
max
min
B.平面几何性质:
⑥离心率:e = ac(焦距与长轴长之比) 0,1;e 越
大越扁,e 0 是圆。
⑦焦准距 p b2 ;准线间距 2a2
c
c
⑧两个最大角F1PF2
max
F1 B2
F2
,
A1PA2
max
A1 B2
A2
焦点在y轴上,中心在原点:y 2 x2 1 (a>b>0)的性质可类似的a给2 出b(2 请课后完