[理学]古典回归模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习
理解掌握总体回归模型和样本回归模型的区别; 比较总体回归模型、样本回归模型和总体回归函 数、样本回归函数。
了解随机误差项产生的原因;比较随机误差项和 残差项。
着重理解古典假设。
二、古典回归模型的基本假定
为什么要作基本假定? 模型中随机误差项,估计的参数是随机变量, 只有对随机误差的分布作出假定,才能确定所 估计的参数分布性质,也才可能进行假设检验 和区间估计。 只有具备一定的假设条件,所作出的估计才具 有较好的统计性质。
六大假定
⑴解释变量非随机,被解释变量随机 ⑵零均值假定(正态性假定) ⑶同方差假定 ⑷非自相关性假定 ⑸解释变量与随机误差项不相关假定 ⑹无多重共线性假定 补充:延伸到y
⒋回归分析
回归的古典意义: 高尔顿在1889年发表的著作《自然的遗传》中,首次
提出了回归的概念 (父母身高与孩子身高的关系)
回归的现代意义: 一个应变量对若干解释变量依存关系的研究
回归分析的基本思想: 在相关分析的基础上,对具有相关关系的两个或多个变
量之间的数量变化的一般关系进行测定,确定一个相应的数 学表达式,以便从一个已知量来推断另一个未知量. 回归的目的(实质):
均值,二者之差用ei 表示,ei 称为剩余项或残差项:
或者
ei Yi Yˆi
Yi ˆ1 ˆ2 Xi ei
对样本回归的理解
Yi ˆ1 ˆ2 Xi ei
如果能够获得 ˆ1和ˆ2 的数值,显然:
ˆ1 和 ˆ2 是对总体回归函数参数 1和 2 的估计
Yˆi 是对总体条件期望E(YXi)的估计
第二章 回归模型
引例
从2004年中国国际旅游交易会上获悉,到2020 年,中国旅游业总收入将达到3000亿美元,相 当于GDP的8%至11%。 ?
是什么决定性因素能使中国旅游业总收入到 2020年达到3000亿美元? 旅游业的发展与这种决定性因素的数量关系究竟 如何?
怎样具体测定旅游业发展与这种决定性因素的数 量关系?
注意
实际的经济研究中总体回归函数通常是未知的, 只能根据经济理论和实践经验去设定。“计量” 的目的就是寻找PRF。
总体回归函数中Y和X的关系可以是线性的, 也可以是非线性的。
⒉总体回归函数的表现形式
⑴条件均值表现形式 假如Y的条件均值E(YXi)是解释变量X的线性函数, 可表示为 E(YXi)=f(Xi)=1+2Xi 1 和 2 分别是总体回归函数的总体回归参数参数
样本回归线还不是总体回归线,至多只是未知 总体回归线的近似表现。
样本回归函数的表现形式
样本回归函数如果为线性函数,则表示为
Yˆi ˆ1 ˆ2 Xi
其中,Yˆi是与 X i相对应的Y的样本条件均值
ˆ1和 ˆ2分别是样本回归函数的参数
被解释变量Y的实际观测值 Yi 不完全等于样本条件
研究变量相互之间的依存关系时,首先需要分 析它们是否存在相关关系,随后要明确相关关 系的类型,而且还应计量其相关关系的密切程 度,在统计上这种分析研究称为相关分析。相 关分析主要是指用一个指标(相关系数)去表 明现象间相互依存关系的性质和密切程度。
计量经济学关心的是:变量间的因果关系及隐 藏在随机性后面的统计规律性,这靠相关分析 无法完成.相关分析并不能说明变量间相关关 系的具体形式,还不能从一个变量的变化去推 测另一个变量的具体变化。这时就需要运用回 归分析。
y
...
...
.. .
. ..
..
.
x
图2.1
⒉相关关系的类型
•从涉及的变量数量看 简单相关——只有两个变量的相关关系 多重相关(复相关)——三个或三个以上变量的 相关关系。例:某人身高与体重与年龄的关系 •从变量相关关系的表现形式(可根据散点图) 线性相关 非线性相关 •从变量相关关系变化的方向 正相关:收入 对消费量影响 负相关:价格 不相关
⒊相关程度的度量
X和Y的总体线性相关系数:
CovX ,Y VarX VarY
X和Y的样本线性相关系数:
XY
2 XY
XY
Xi X Yi Y N
Xi X 2 N Yi Y 2 N
相关系数的特点
⑴相关系数取值在[-1,1] ⑵当r=0时,表明X与Y没有线性相关关系 ⑶当0<|r|<1时,表明X与Y存在一定的线性相关
• Y的条件期望
对于X的每一个取值, 对Y所形成的分布确定其期 望或均值,称为Y的条件期 望或条件均值E(YXi)
图2.2
xi
⒌回归线与回归函数
回归线:对于每一个X的取值,都有Y的条件 期的望点E的(Y轨X迹i)所与形之成对的应直,线代或表曲这线些,Y的称条为件回期归望线。
回归函数:被解释变量Y的条件期望随解释变 量X的变化而有规律的变化,如果把Y的条件 期望E(YXi)表示为X的某种函数 E(YXi)=f(Xi) 这个函数称为回归函数。
第一节 古典回归模型
对经济变量相互关系的计量,最基本的方法 是回归分析。回归分析是计量经济学的主要工具, 也是计量经济学理论和方法的主要内容。只有一 个解释变量的线性回归模型是最简单的,称为简 单线性回归模型或一元线性回归模型。本章从一 元线性回归模型入手,讨论在基本假定满足的条 件下,对经济变量关系计量的基本理论和方法, 这也是我们学习的基础。
⑵个别值表现形式(随机设定形式) 对于一定的Xi,Y的每一个值Yi分布在E(YXi)的周围, 若 是令随每机一变个量值Yi与条件均值E(YXi)的偏差i,显然i
则有 i= Yi-E(YXi)= Yi- 1-2Xi Yi= 1+2Xi + i
对线性回归模型线性的两种解释
对变量而言是线性的——Y的条件均值是X的 线性函数
E Y Xi 0 1Xi
样本回归模型
样本回归函数(直线)
Yi ˆ0 ˆ1Xi ei
残差
Yˆi ˆ0 ˆ1Xi
根据课本例题p17~20进行说明
回归分析的目的
用样本回归函数去估计总体回归函数 由于样本对总体总是存在代表性误差,SRF总
会过高或过低估计PRF。 要解决的问题 寻求一种规则和方法,使得到的SRF的参数尽 可能接近总体回归函数的参数。这样的规则和 方法有很多,最常用的就是最小二乘法。
可分为:总体回归函数;样本回归函数
㈡总体回归函数(PRF)
⒈总体回归函数的概念 前提:假如已知所研究的经济现象的总体被解 释变量Y和解释变量X的每个观测值,可以计 算出总体被解释变量Y的条件期望E(YXi),并 将其表现为解释变量X的某种函数 E(YXi)=f(Xi) 这个函数称为总体回归函数(PRF)
ei 在概念上类似总体回归函数中的 i ,可以视 为对 i 的估计
样本回归函数与总体回归函数的关系
Y
Yi
Yˆi
E(YXi)
SRF
i
ei
PRF
图2.5
Xi
X
总体回归模型
Yi E Y Xi i 0 1Xi i
总体回归函数(直线)
系统变 化部分
非系统 变化部分
百度文库图2.3
产生随机误差的原因
(1)模型中被忽略的因素的影响; (2)变量观测值的观测误差的影响; (3)模型函数形式的设定误差的影响; (4)其它随机因素的影响。 见p20-21 设置随机误差的意义: p21
㈣样本回归函数(SRF)
样本回归线:
对于X的一定值,取得Y Y 的样本观测值,可计算其条 件均值,样本观测值条件均 值的轨迹,称为样本回归线。
应对考虑的问题
确定作为研究对象的经济变量(如我国旅游业总收 入)
分析影响研究对象变动的主要因素(如我国居民收 入的增长)
分析各种影响因素与所研究经济现象的相互关系 (决定相互联系的数学关系式)
确定所研究的经济问题与影响因素间具体的数量关 系(需要特定的方法)
分析并检验所得数量结论的可靠性(多种检验) 运用数量研究结果作经济分析和预测(实际应用)
对参数而言是线性的——Y的条件均值是的线 性函数 例子
计量经济学中的线性回归模型主要指参数“线 性”
㈢随机误差项
概念
各个Yi值与条件均值
E(YXi)的偏差i代表排
除在模型以外的所有因
素对Y的影响
Y
性质
i是期望为0,有一定
分布的随机变量
随机误差项的性质决
定着计量经济方法的选
X
择。
区别:
从研究目的上,相关分析用一定的数量指标(相关系 数)度量变量间相关联系的方向和程度;回归分析却是要 寻求变量间联系的具体数学形式,是要根据解释变量的固 定值去估计和预测被解释变量的平均值。
从对变量的处理上,相关分析对称的对待相互联系的 变量,相关的变量不一定具有因果关系,均视为随机变量; 回归分析是建立在变量因果关系的基础上的,研究解释变 量的变动对被解释变量的具体影响。回归分析必须划定解 释变量和被解释变量,对变量的处理是不对称的。
关系。若r>0表明为正相关,r<0表明为负相关。 ⑷当|r|=1时,表明X与Y完全线性相关。
使用相关系数应注意的问题
X和Y 都是相互对称的随机变量。 简单相关系数只反映变量间的线性相关程度,
不能说明非线性相关关系。 样本相关系数是总体相关系数的样本估计值,
由于抽样波动,样本相关系数是个随机变量, 其统计显著性有待检验。 相关系数只能反映线性相关程度,不能确定因 果关系,不能说明相关关系具体接近哪条直线
由固定的解释变量去估计应变量的平均值。
相关分析与回归分析的联系及区别
联系:二者都是对变量间依存关系的研究,二 者可以互相补充。相关分析可以表明变量间相 关关系的性质和程度,只有当变量间存在一定 程度的相关关系时,进行回归分析去寻求相关 的具体数学形式才有意义。同时,在进行相关 分析时如果要具体确定变量间相关的具体数学 形式,又要依赖回归分析,而且相关分析中相 关系数的确定也是建立在回归分析的基础上。
二者都只是从数据出发定量分析经济变量间相互联系的手 段,并不能决定经济现象之间的本质联系。本质需要结合 实际经验分析,并要从经济学原理上加以说明。对本来没 有内在联系的经济现象,仅凭数据进行相关分析和回归分 析,可能是一种“伪相关”和“伪回归”。
注意的几个概念
•Y的条件分布
当解释变量X取某固定 Y 值时(条件),Y的值不确 定,Y的不同取值形成一定 的分布,这就是Y 的条件 分布。
样本回归函数:
如果把被解释变量Y的 样本条件均值表示为解释变 量X的某种函数,这个函数 称为样本回归函数(SRF)
图2.4
xi
样本回归函数的特点
每次抽样都能获得一个样本,就可以拟合一条 样本回归线,所以样本回归线随抽样波动而变 化,可以有很多条(SRF不唯一)
样本回归函数的函数形式应与设定的总体回归 函数的函数形式一致
一、回归分析
㈠相关与回归(统计学知识介绍)
在统计学中考察经济变量间的依存关系,通常分
确定性的函数 Y=f(X)
函数关系
例子,商品销售量X和销售额Y Y=PX
不确定性的随机关系
相关关系
Y=f(X)+ (为随机变量)
例子,居民消费函数 Y=a+bX+
没有关系
⒈相关关系的表现 对相关关系的描述通常最直观的是座标图