(完整版)mTOR信号通路图
经典信号通路之PI3K-AKT-mTOR信号通 路
![经典信号通路之PI3K-AKT-mTOR信号通 路](https://img.taocdn.com/s3/m/94cf8150a45177232e60a21b.png)
经典信号通路之PI3K-AKT-mTOR信号通路PI3K是一种胞内磷脂酰肌醇激酶,与v.src和v.ras等癌基因的产物相关,且PI3K本身具有丝氨酸/苏氨酸(Ser/Thr)激酶的活性,也具有磷脂酰肌醇激酶的活性。
由调节亚基p85和催化亚基p110构成。
磷脂酰肌醇3-激酶(PI3Ks)蛋白家族参与细胞增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节。
PI3K活性的增加常与多种癌症相关。
PI3K磷 酸化磷脂酰肌醇PI(一种膜磷脂)肌醇环的第3位碳原子。
PI在细胞膜组分中所占比例较小,比磷脂酰胆碱、磷脂酰乙醇胺和磷脂酰丝氨酸含量少。
但在脑细胞膜中,含量较为丰富,达磷脂总量的10%。
PI的肌醇环上有5个可被磷酸化的位点,多种激酶可磷酸化PI肌醇环上的4th和5th位点,因而通常在这两位点之一或两位点发生磷酸化修饰,尤其发生在质膜内侧。
通常,PI-4,5-二磷酸(PIP2)在磷脂酶C的作用下,产生二酰甘油(DAG)和肌醇-1,4,5-三磷酸。
PI3K转移一个磷酸基团至位点3,形成的产物对细胞的功能具有重要的影响。
譬如,单磷酸化的PI-3-磷酸,能刺激细胞迁移(cell trafficking),而未磷酸化的则不能。
PI-3,4-二磷酸则可促进细胞的增殖(生长)和增强对凋亡的抗性,而其前体分子PI-4-磷酸则不 然。
PIP2转换为PI-3,4,5-三磷酸,可调节细胞的黏附、生长和存活。
PI3K的活化PI3K可分为3类,其结构与功能各异。
其中研究最广泛的为I类PI3K, 此类PI3K为异源二聚体,由一个调节亚基和一个催化亚基组成。
调节亚基含有SH2和SH3结构域,与含有相应结合位点的靶蛋白相作用。
该亚基通常称为p85, 参考于第一个被发现的亚型(isotype),然而目前已知的6种调节亚基,大小50至110kDa不等。
催化亚基有4种,即p110α,β,δ,γ,而δ仅限于白细胞,其余则广泛分布于各种细胞中。
信号通路3—PI3K-AKT-mTOR
![信号通路3—PI3K-AKT-mTOR](https://img.taocdn.com/s3/m/9b7628235727a5e9856a6153.png)
信号通路3 —PI3K/AKT/mTORAPExBIO一、PI3K/Akt/mTORPI3K/AKT/mTOR是调节细胞周期的重要细胞内信号通路。
PI3K/AKT/mTOR信号通路与细胞的休眠、增殖、癌变和寿命直接相关。
PI3K激活后磷酸化并激活AKT,将其定位在质膜中。
信号通过AKT传递到下游不同的靶点,如激活CREB,抑制p27,将FOXO定位于细胞质中,激活PtdIns-3ps,及激活mTOR(影响p70或4EBP1的转录)。
该通路的激活因子包括EGF、shh、IGF-1、胰岛素和CaM。
该信号通路的拮抗因子,包括PTEN、GSK3B、和HB9。
在多种癌症中,PI3K/AKT/mTOR通路是过度活化的,因此减少凋亡并促进增殖。
然而,该通路在成人干细胞尤其是神经干细胞的分化过程中促进细胞生长和增殖。
1. PI3KPhosphatidylinositide 3-kinases,是一种胞内磷脂酰肌醇激酶。
由调节亚基p85和催化亚基p110构成。
与v.sre和v.ras等癌基因的产物相关。
PI3K本身具有丝氨酸/苏氨酸(Ser/Thr)激酶的活性,也具有磷脂酰肌醇激酶的活性。
2. Akt又称PKB(protein kinase B)。
是一种丝氨酸/苏氨酸特异性蛋白激酶,在多种细胞生长过程中发挥关键作用,如葡萄糖代谢、凋亡、细胞增殖、转录和细胞迁移。
Akt的Ser473可以被PDK1磷酸化。
PKB与PKA和PKC均有很高的同源性,该激酶被证明是反转录病毒安基因v-akt 的编码产物,故又称Akt。
3. mTORMammalian target of rapamycin。
mTOR与其它蛋白质结合,形成两种不同蛋白质复合物,mTOR复合物1(mTORC1,)和mTOR复合物2(mTORC2),它们调节不同的细胞过程。
mTORC1由mTOR、mTOR调节相关蛋白Raptor、MLST8和非核心组分PRAS40、DEPTOR 组成。
Ras-Raf-MAPK, mTOR-PI3K-AKT信号通路详解
![Ras-Raf-MAPK, mTOR-PI3K-AKT信号通路详解](https://img.taocdn.com/s3/m/743c4d76561252d380eb6ef7.png)
Signal molecules
Ligand/Agonist
Proteins and peptides:
Hormones, cytokines
Bind to Amino acid derivatives: membrane Catecholamine receptors Chemical Signal Extracellular molecules Physical Signal
Ligand-Receptor binding is an reversible equilibrium process, obeying the law of mass
Receptors Properties:
• • • • Specificity Saturability High affinity Reversibility
8. External signals induce two direct cellular responses: (1) changes the activity of pre-existed proteins (2) changes in gene expression.
cell membrane receptors
Signal Receptor Transducer
Targets
Response
SIGNALS MAY HAVE CONTEXT-DEPENDENT EFFECTS
Effector protein
common features of cell signaling
1. Receptors could either be cell membrane or nuclear receptors.
mTOR信号通路在细胞自噬和凋亡调节中的作用
![mTOR信号通路在细胞自噬和凋亡调节中的作用](https://img.taocdn.com/s3/m/c0724a90970590c69ec3d5bbfd0a79563c1ed4dc.png)
综 述162 *基金项目: 国家自然科学基金青年基金(81704054)“基于JAK/STAT及PI3K/Akt/mTOR信号通路研究贞术消积汤对肝癌细胞的干预作用及其机制”;国家自然科学基金面上项目(81873312)“基于皮肤微生物群与Th17/Treg失衡相关性探讨发汗祛风托毒方治疗白癜风机制及病因学研究”;中国博士后科学基金资助项目(2014M551288)“鳖甲煎丸对肝癌细胞的抑制作用及其机制研究”;黑龙江省博士后资助项目(LBH-Z13205)“鳖甲煎丸诱导肝癌细胞凋亡及对JAK-STAT信号通路的影响”;黑龙江省自然科学基金面上项目(H201462)“温阳发汗法对白癜风T细胞免疫异常的作用机制研究”;黑龙江中医药大学研究生创新科研项目(2020yjscx013)“基于STAT3信号通路研究IL-12诱导肝癌细胞自噬的分子机制”①黑龙江中医药大学基础医学院 黑龙江 哈尔滨 150040②黑龙江中医药大学中医药研究院 黑龙江 哈尔滨 150040③黑龙江中医药大学附属第一医院皮肤科 黑龙江 哈尔滨 150040作者简介:孙阳,女,(1979- ),博士,副教授,研究方向:中医药抗肿瘤分子机制的基础研究。
[文章编号] 1672-8270(2021)01-0162-05 [中图分类号] R394 [文献标识码] A孙 阳① 孙 悦① 顾媛媛② 陶雪莲① 王远红③*mTOR信号通路在细胞自噬和凋亡调节中的作用*中国医学装备2021年1月第18卷第1期 China Medical Equipment 2021 January V ol.18 No.1Role of mTOR signaling pathway in the regulation of autophagy and apoptosis/SUN Yang, SUN Yue, GU Yuan-yuan, et al//China Medical Equipment,2021,18(1):162-166.[Abstract] Autophagy and apoptosis widely exist in cells, which are the degradation and recycling process of biomolecules in cell and play an important role in cell growth and metabolism. Their interaction jointly promote and influence the programmed death of cells, and maintain the self-stability of body and stress response under external environmental stimulation. The mTOR signaling pathway is one of classical signaling pathway of regulating autophagy-apoptosis that plays an important role in cell metabolism. This paper combined with mTOR signaling pathway and related research progress. It mainly discussed the role and relevant research progress of autophagy and apoptosis in cell metabolism and organism growth-development, and reviewed the autophagy and apoptosis in cell growth, development, aging and tumor formation. This will provide a positive reference in the diagnosis and treatment of tumor and other diseases. [Key words] mTOR signaling pathway; Autophagy; Apoptosis[First-author’s address] College of Basic Medicine Heilongjiang University of Chinese Medicine, Harbin 150040,China.[摘要] 自噬及凋亡广泛存在于细胞中,是细胞内生物大分子的降解再循环过程,在细胞生长代谢中发挥着重要作用。
m-TOR通路
![m-TOR通路](https://img.taocdn.com/s3/m/543b5a6490c69ec3d5bb75ed.png)
mTOR与生长、衰老、癌变、糖尿病
• mammalian target of rapamycin(mTOR)
• mTOR通路就是调节生长和应对饥饿的中心通路, 它的激活促进细胞生长,然而当这种生成不受控制 时,癌症衰老和新陈代谢等疾病随之出现。mTOR 信号过量表达促进癌细胞生长,过量饮食刺激 mTOR过量表达可能是糖尿病的关键病因之一。最 近研究发现mTOR通路控制衰老速度,抑制mTOR 通路是一个有前景的延长寿命的方法。
mTOR与生长因子
• Rheb 是一个对mTORC1有关键的生长因子。 • Rheb的丢失会解除生长因子和营养盐的促进作用。Rheb的过量
表达可以作为单独的促进因素激活mTORC1、生长因子可通过 PI3K-Akt轴调控mTORC1,Wnt通路对mTORC1也有影响。
mTOR与能量、应激
• 由于细胞需要稳定的能量供应,然而哺乳动物摄取能量是间断的,所 以需要能量的储存和释放,这种调节主要是胰岛素,mTOR接收胰岛 素等信号从而影响新陈代谢。
• 值得注意的是在下丘脑局部应用亮氨酸可以通过mTORC1诱导产 生饱腹感,相反用雷帕霉素抑制则增加饮食。这些作用在人体新 陈代谢有深远的影响。
mTOR与肿瘤
• mTOR肿瘤产生作用的直接证据是mTOR抑制剂相关基因的突变 可促进肿瘤形成。
• 越来越多的证据证明自噬在肿瘤中发挥非常重要的作用。研究表 明通过激活mTORC1可抑制自噬从而间接促进肿瘤形成。
感想
• 做学术虽然要有应用于现实的理想并且要写在讨论部分里,但是 当具体到某一个研究和实验时,不应太在意它的应用价值,比如 这篇综述许多科学家研究了数年却依然没有应用于临床,像我这 样的初学者更不能对自己的研究有不切实际的想法。
小分子抑制剂、激动剂、拮抗剂--PI3KAktmTOR信号通路
![小分子抑制剂、激动剂、拮抗剂--PI3KAktmTOR信号通路](https://img.taocdn.com/s3/m/9a1f20b1551810a6f5248668.png)
PI3K/AKT/mTORPI3K/AKT/mTOR是调节细胞周期的重要细胞内信号通路。
PI3K/AKT/mTOR信号通路与细胞的生长、存活、增殖、凋亡、血管生成、自吞噬过程中发挥着重要的生物学功能。
该通路是由磷脂酰肌醇3- 激酶(PI3Ks)、丝氨酸/苏氨酸蛋白激酶(Akt)和哺乳动物雷帕霉素靶蛋白(mTOR)组成。
PI3K/Akt/mTOR通路过程PI3K激活后产生PIP3, PIP3促使PDK1(phosphoinositide dependent kinase-1)磷酸化含有PH结构域的信号AKT蛋白(Ser308),从而活化AKT。
AKT有很多下游效应,可通过磷酸化多种酶、激酶和转录因子等下游因子,进而调节细胞的功能。
mTOR,是PI3K/Akt 下游的一种重要的丝氨酸-苏氨酸蛋白激酶,调节肿瘤细胞的自噬的经典通路。
PI3K/Akt/mTOR信号通路图按靶点分类:*PI3KPI3K,是一种胞内磷脂酰肌醇激酶,也具有丝氨酸/苏氨酸(Ser/Thr)激酶的活性。
能够通过PI3K诱发PIP3生成的激活因子,则能够激活Akt 信号途径,包括受体酪氨酸激酶、整合素、B 细胞和T 细胞受体、细胞因子受体、G 蛋白偶联受体等等。
*Akt又称PKB或Rac,是一种丝氨酸/苏氨酸特异性蛋白激酶B,在细胞存活和凋亡中起重要作用,如葡萄糖代谢、凋亡、细胞增殖、转录和细胞迁移。
Akt的Thr308可以被PDK1磷酸化,而被部分激活。
或者473位点上的丝氨酸被mTORC2磷酸化,激发Akt的完全酶活性。
*mTORmTOR是细胞生长和增殖的重要调节因子。
mTOR与其它蛋白质结合,形成两种不同蛋白质复合物,mTORC1和mTORC2,参与调节不同的细胞过程。
*GSK-3。
(完整版)mTOR信号通路图
![(完整版)mTOR信号通路图](https://img.taocdn.com/s3/m/d96deddcf01dc281e43af047.png)
mTOR信号通路图mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。
它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。
正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP 酶Rheb(Ras-homolog enriched in brain)的抑制剂,而Rheb是mTOR活化所必需的刺激蛋白,因此TSC-1/TSC-2在正常情况下抑制mTOR的功能。
当Akt活化后,它可磷酸化TSC-2的Ser939和Thr1462,抑制了TSC-1/TSC-2复合物的形成,从而解除了对Rheb 的抑制作用,使得mTOR被激活。
活化的mTOR通过磷酸化蛋白翻译过程中的某些因子来参与多项细胞功能,其中最主要的是4EBP1和P70S6K。
在整个PI3K/Akt/mTOR信号通路中,有一条十分重要的负反馈调节剂就是10号染色体上缺失与张力蛋白同源的磷酸酶基因(phosphatase and tensin homology deleted on chromosome 10, PTEN)。
PTEN是一个肿瘤抑制基因,位于人染色体10q23。
它有一个蛋白酪氨酸磷酸酶结构域,在这条通路中可以将PI-3,4-P2与PI-3,4,5-P3去磷酸化,从而负调节PI3K下游AKt/mTOR信号通路的活性。
本信号转导涉及的信号分子主要包括IRS-1,PI3K,PIP2,PIP3,PDK1,PTEN,Akt,TSC1,TSC2,Rheb,mTOR,Raptor,DEPTOR,GβL,p70S6K,ATG13,4E-BP1,HIF-1,PGC-1α,PPARγ,Sin1,PRR5,Rictor,PKCα,SGK1,PRAS40,FKBP12,Wnt,LRP,Frizzled,Gαq/o,Dvl,Erk,RSK,GSK-3,REDD1,REDD2,AMPK,LKB1,RagA/B,RagC/D等。
PI3K-AKT-mTOR信号通路与前列腺癌
![PI3K-AKT-mTOR信号通路与前列腺癌](https://img.taocdn.com/s3/m/e716f836cc7931b765ce1592.png)
PI3K-AKT-mTOR信号通路与前列腺癌PI3K / Akt / mTOR信号通路具有多种功能,包括调节细胞存活,分化和干细胞样特性,生长,增殖,代谢,迁移和血管生成。
成员:PI3K、AKT、mTOR、PTENPI3K,是磷脂酰肌醇-3-激酶的缩写,可分为3类,Ⅰ、Ⅱ、Ⅲ类。
其中研究最广泛的为Ⅰ类PI3K,Ⅰ类PI3K由酪氨酸激酶受体(RTK)、G蛋白偶联受体和一些致癌基因(如大鼠肉瘤癌基因RAS)激活。
Ⅰ类又可分ⅠA和ⅠB类,其中ⅠA类PI3K与癌症最相关。
p85α ( 由PIK3R1编码)β (由PIK3R2编码)γ ( 由PIK3R1编码)p110α( 由PIK3CA编码)p110β(由PIK3CB编码)p110δ(由PIK3CD编码)AKT(蛋白激酶B,PKB,又称为Akt)是PI3K重要的下游分子,被活化后,通过多种方式来影响其下游的相关分子,使细胞存活,是关键的抗凋亡调控分子mTOR(哺乳动物雷帕霉素靶蛋白)是一种丝氨酸-苏氨酸蛋白激酶,细胞内存在mTORC1和mTORC2两种不同的复合体。
其属于PI3K/Akt 下游的重要成分。
PTEN(磷酸酶和张力蛋白同源物))是一种肿瘤抑制蛋白。
可将PIP3去磷酸化生成PIP2。
当PTEN 下调时,可引起PI3K / Akt / mTOR 途径的激活。
PI3K-AKT-mTOR信号通路PI3K的激活导致4,5-二磷酸磷脂酰肌醇[PI(4,5)P2]磷酸化为3,4,5-三磷酸磷脂酰肌醇[PI(3,4,5)P3],随后将Akt募集到质膜上并激活。
(当配体与膜受体结合后,受体激活p85并招募p110,进而催化膜内表面的PIP2生成PI3P。
PI3P作为第二信使,进一步激活AKT和PDK1。
)Akt活化通过两个残基的磷酸化介导:T308通过磷酸肌醇依赖性蛋白激酶-1(PKD1)磷酸化;S473通过mTOR复合物2(TORC2)磷酸化。
Akt的完全激活是必需通过上述两者磷酸化。
干货细胞信号通路图解之细胞代谢相关通路
![干货细胞信号通路图解之细胞代谢相关通路](https://img.taocdn.com/s3/m/1dfba11353ea551810a6f524ccbff121dc36c552.png)
干货细胞信号通路图解之细胞代谢相关通路(1)Insulin Receptor Signaling:胰岛素是控制关键的能量代谢功能如葡糖和脂代谢过程中的主要激素。
胰岛素激活胰岛素受体酪氨酸激酶,后者磷酸化并召集不同的底物接头蛋白如IRS家族蛋白。
IRS上酪氨酸被磷酸化后成为众多信号传导关联蛋白的结合位点。
其中,PI3K在胰岛素功能中起主要的作用,大部分是通过活化Akt/PKB和PKCζ级联来完成的。
活化的Akt通过抑制GSK-3诱导糖原的合成,通过mTOR和下游元件影响蛋白合成,通过抑制几个促凋亡分子(Bad,Forkhead家族转录因子,GSK-3)影响细胞生存。
胰岛素促进肌肉和脂肪细胞对葡糖的吸收,这是因为它能促使还有GLUT4的囊泡转移到细胞膜上。
GLUT4的移位需要PI3K/Akt通路的参与和IR介导的CAP 的磷酸化和形成CAP:Cbl:CrkII复合体。
胰岛素信号通路也会影响细胞生长和有丝分裂,主要是通过Akt级联进行,也会有Ras/MAPK通路的参与。
另外,胰岛素信号通路可以通过中断CREB/CBP/Torc2的结合抑制肝脏中的糖异生。
胰岛素信号通路还可以通过激活SREBP-1C,USF1和LXR来促进脂肪酸的合成。
从Akt/PKB,PKCζ,p70 S6K和MAPK级联得到的负反馈信息会导致丝氨酸的磷酸化和IRS信号通路的失活。
(2)AMPK Signaling:AMP激活的蛋白激酶( AMPK, AMP-activated protein kinase)是细胞能量稳态平衡调节的关键分子。
这个激酶的激活响应细胞耗竭胞内ATP的压力,如低葡萄糖,缺氧,缺血和热激。
该激酶是一个异质三聚体,由一个α催化亚基和β、γ调节亚基组成。
AMP与γ亚基结合后,该复合体发生异构化并激活,成为上游主要激酶AMPKK,LKB1更适合的底物,在α亚基的Thr172位发生磷酸化。
当代谢激素包括adiponectin和leptin刺激时,AMPK响应细胞内钙的改变也能被CAMKK2在Thr172直接磷酸化。
mTOR信号通路与调节
![mTOR信号通路与调节](https://img.taocdn.com/s3/m/ee5b920be87101f69e31952f.png)
万方数据医学分子生物学杂志,2009,6(6):542-546JMedMolBid,2009,6(6):542-546·543·的结合位点,是雷帕霉素与mTOR相互作用的区,域,该区发生突变后可以完全阻止雷帕霉素对mTOR的抑制作用。
FRB区之后为激酶区,该区具有丝/苏氨酸蛋白激酶活性,能使丝/苏氨酸发生磷酸化。
最后为FAT碳末端区即FATC区。
FAT和FATC区可调节mTOR激酶的活性”1(图1)。
其活性。
进而抑制依赖eIF.4E转录的起动及蛋白质的表达。
当roTOR磷酸化4E—BPl后,可使其激活,活化的4E.BPl与eIF4E分离,于是解除了对转录的抑制作用‘6l。
q删㈣删1]■●||■●嘎}町oHEAT重复序列FATFRB激酶区FATC图1mTOR的结构示意图roTOR存在两种不同的复合物形式。
2002年,Loewith等【51首次在酵母中鉴别出多种TOR相关蛋白,包括KOGI、AV01、AV02、AV03(AV01/2/3)和LS髓。
TORl能与KOGI结合形成一个对mpamycin敏感的复合物,称为TOR复合物1(TORcomplexl,TORCl);而TOR2结合AV01/2/3及LS鸭形成对rapamycin不敏感的复合物,即TORC2。
氨基酸测序显示Raptor(regulatoryassoci-atedproteinofroTOR)是酵母KOGl在哺乳动物中的同系物。
roTOR可与Raptor及哺乳动物LSrI’8形成一个对rapamycin抑制敏感的复合物,称为mTOR复合物1(mTORcomplex1,mTORCl)。
Rictor(rapamycin—insensitivecompanionofmTOR)蛋白是酵母AV03的同系物,其与Sinl(也称为Mipl)及LST8构成了roTOR复合物2(mTORcomplex2,mTORC2)。
mTORC2对rapamycin耐受,因此不能与FKBPl2一rapamycin复合物结合【4]。
mTOR通道
![mTOR通道](https://img.taocdn.com/s3/m/4ac072e10242a8956aece403.png)
研究显示mTOR基因在肝癌组织中的过度表达高于癌旁组织(p<0.05),两组差异有统计学意义,表明处于活化状态的DREAM可能在肝癌的发生、发展过程中发挥重要作用。
TOR蛋白最初在酵母的突变株中被鉴定,随后在哺乳动物细胞内发现了这种结构和功能高度保守的TOR蛋白,称之为哺乳动物mTOR,又称FK506结合蛋白(FKBPl2)、FRAP、RAFTl、RAPTl或SEP,是一种进化上高度保守的丝氨酸/苏氨酸蛋白激酶。
现已证实,mTOR是一种分子量为289 X100的蛋白激酶,是3一磷脂酰肌醇激酶相关激酶家族(P13Ks)中FK50合蛋白的相关蛋白。
mTOR也被称为FRAP(FKBPpamycin—associated protein),属于磷酸肌醇激酶3一相关激酶(PIKKs)家族的一员,是P13K/Akt的下游底可通过改变翻译调节因子4E-BPI(真核细胞启动因子4E结合蛋白)、eIF 一4GI(真核细胞翻译起始因子4G和p70s6k的磷酸化状态启动翻译过程。
进一步研究结果显示,mTOR作为P13K/Akt(磷脂酰肌醇酶/蛋白激酶B,PKB)信号通路下游的一个效应分子,在调节细胞生长、细胞周期进程、蛋白质合成与降解、参与膜蛋白转运、蛋白激酶C信号转导等生理和病理过程中发挥作用,可以被看作是细胞生长的中心调节因子P13K的下游效应蛋白Akt,在人癌中经常处于高度激活状态。
mTOR作为Akt下游的重要效应子在肿瘤发生中扮演重要角色。
在P13K二Akt/mTOR这条{号通路中,Akt 所产生的效应受到两个肿瘤抑制基因、的负调控:PTEN,处于Akt的上游;TSCl/TSC2AKT的下游和mTOR的上游。
现已发现,许多肿瘤都伴有mTOR信号通路的调控异常。
与肿瘤发生密切相关的多种生理过程如细胞生长增殖、细胞周期调控。
细胞迁移等都受到mTOR的调控;Cyclin D、c-myc等多种癌基因的表达在翻译水平上也受到mTOR调控矗在肿瘤发生中,mTOR通路相关受体组成性激活、P13I瞪的催化亚基PllO扩增、Akt扩增、PTEN功能缺失:TSC1—TSC2突变缺失、elF4E和S6K扩增或过表达现象频频出现。
细胞信号通路详解之mTOR信号通路
![细胞信号通路详解之mTOR信号通路](https://img.taocdn.com/s3/m/51ff5bb7bdeb19e8b8f67c1cfad6195f312be80a.png)
细胞信号通路详解之mTOR信号通路mTOR ( 哺乳动物雷帕霉素靶标) 是一种分子量为289 kDa 的丝氨酸/ 苏氨酸蛋白激酶,属于磷脂酰肌醇3- 激酶相关激酶(PIKK)家族。
该蛋白由一个催化激酶结构域、一个FRB(FKBP12-雷帕霉素结合)结构域、C- 末端附近的一个预测的自抑制结构域(抑制子结构域)、氨基末端多达20 个重复的HEAT 基序以及FAT (FRAP-ATM-TRRAP)和FATC (FAT C-末端)结构域组成。
TOR 的C 末端与磷脂酰肌醇3- 激酶(PI3K)的催化结构域高度同源。
TOR 蛋白在进化上从酵母到人类都是保守的,人、小鼠和大鼠的mTOR 蛋白在氨基酸水平上有95% 的同源性。
人mTOR 基因编码2549 个氨基酸的蛋白质,与酵母TOR1 和TOR2 的序列同源性分别为42% 和45% 。
mTOR 在参与控制细胞生长和增殖的信号通路中起中心作用(参考文献1)。
mTOR 通路受多种细胞信号的调控,包括有丝分裂生长因子、胰岛素等激素、营养素(氨基酸、葡萄糖)、细胞能量水平和应激条件。
PI3K/Akt(v-Akt小鼠胸腺瘤病毒癌基因同源1)信号转导通路是通过mTOR 传递信号的主要通路,在介导细胞存活和增殖中起重要作用。
通过 PI3K/Akt 通路的信号是由与细胞膜上的受体结合的生长因子的有丝分裂刺激启动的。
这些受体包括IGFR (胰岛素样生长因子受体)、PDGFR (血小板衍生生长因子受体)、EGFR (表皮生长因子受体)和HER 家族。
来自激活的受体的信号直接传递到PI3K/Akt 通路,或者,也可以通过由致癌蛋白RAS 激活的生长因子受体激活。
RAS 是另一个信号转导的中枢开关,而且已证实是MAPK (丝裂原活化蛋白激酶)信号转导通路的关键激活子。
胰岛素也可通过IRS1/2 (胰岛素受体底物-1/2)激活PI3K/Akt 通路。
胰岛素结合激活IR (胰岛素受体)酪氨酸激酶,使IRS1 或IRS2 磷酸化。
细胞走向自噬的信号通路机制
![细胞走向自噬的信号通路机制](https://img.taocdn.com/s3/m/05152f0d0a4c2e3f5727a5e9856a561252d32117.png)
细胞走向自噬的信号通路机制自噬是细胞内部一种重要的代谢途径,它能够分解储备物质,维持细胞内平衡,促进细胞生长和再生等过程。
在许多生理和病理情况下,细胞都会通过不同的途径来激活自噬过程,以应对复杂的环境和应激情况。
本文将从信号通路机制的角度来讨论细胞走向自噬的具体过程。
一、AMPK信号通路AMPK是腺苷酸活化蛋白激酶的缩写,它是细胞内大量存在的一个重要蛋白质,其主要作用是在细胞代谢过程中调节ATP的水平。
当细胞内ATP含量下降时,AMPK就会被激活,并调节一系列代谢酶的活性,从而促进自噬过程的启动。
此外,AMPK还会激活TSC1/TSC2复合体,抑制TORC1的活性,进一步促进自噬的进行。
二、mTOR信号通路mTOR是哺乳动物雷帕霉素靶点蛋白的缩写,它是一个高度保守的蛋白质,在细胞代谢和生长中扮演着重要的角色。
在正常情况下,mTOR能够抑制自噬的启动,使细胞更多地利用自身的营养和氧气来进行代谢和合成。
但当细胞遭受应激或恶劣环境时,mTOR信号通路会被抑制,自噬启动。
三、Beclin-1信号通路Beclin-1是自噬启动复合物的一个重要组成部分,它的主要作用是在自噬前期参与PHLPP1的磷酸化和AMPK的激活过程中。
在源于内源性信号的自噬中,Beclin-1能够调节Bcl-2/Bcl-xL复合物的稳定性,从而抑制复合物的反自噬作用。
这说明在自噬启动时,Beclin-1在细胞内的表达量和功能状态是至关重要的。
四、ULK1/2信号通路ULK1/2是一个重要的ATG1蛋白家族成员,并且是调控自噬的一个重要节点。
在启动自噬的过程中,ULK1/2蛋白质能够磷酸化和激活APL,ATG101,C12orf44等各种自噬蛋白。
此外,ULK1/2蛋白还能够调节mTOR复合物的活性,从而促进自噬的进行。
总结细胞的自噬过程非常重要,它能够帮助细胞调节代谢,翻译,RNA转运等多种基本生理功能,同时也是应对各种环境和应激情况的一种重要途径。
经典信号通路之PI3K-AKT-mTOR信号通路
![经典信号通路之PI3K-AKT-mTOR信号通路](https://img.taocdn.com/s3/m/4cf1000076c66137ee061917.png)
经典信号通路之PI3K-AKT-mTOR信号通路PI3K是一种胞内磷脂酰肌醇激酶,与v.src和v.ras等癌基因的产物相关,且PI3K 本身具有丝氨酸/苏氨酸(Ser/Thr)激酶的活性,也具有磷脂酰肌醇激酶的活性。
由调节亚基p85和催化亚基p110构成。
磷脂酰肌醇3-激酶(PI3Ks)蛋白家族参与细胞增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节。
PI3K活性的增加常与多种癌症相关。
PI3K磷酸化磷脂酰肌醇PI(一种膜磷脂)肌醇环的第3位碳原子。
PI在细胞膜组分中所占比例较小,比磷脂酰胆碱、磷脂酰乙醇胺和磷脂酰丝氨酸含量少。
但在脑细胞膜中,含量较为丰富,达磷脂总量的10%。
PI的肌醇环上有5个可被磷酸化的位点,多种激酶可磷酸化PI肌醇环上的4th和5th 位点,因而通常在这两位点之一或两位点发生磷酸化修饰,尤其发生在质膜内侧。
通常,PI-4,5-二磷酸(PIP2)在磷脂酶C的作用下,产生二酰甘油(DAG)和肌醇-1,4,5-三磷酸。
PI3K转移一个磷酸基团至位点3,形成的产物对细胞的功能具有重要的影响。
譬如,单磷酸化的PI-3-磷酸,能刺激细胞迁移(cell trafficking),而未磷酸化的则不能。
PI-3,4-二磷酸则可促进细胞的增殖(生长)和增强对凋亡的抗性,而其前体分子PI-4-磷酸则不然。
PIP2转换为PI-3,4,5-三磷酸,可调节细胞的黏附、生长和存活。
PI3K的活化PI3K可分为3类,其结构与功能各异。
其中研究最广泛的为I类PI3K, 此类PI3K 为异源二聚体,由一个调节亚基和一个催化亚基组成。
调节亚基含有SH2和SH3结构域,与含有相应结合位点的靶蛋白相作用。
该亚基通常称为p85, 参考于第一个被发现的亚型(isotype),然而目前已知的6种调节亚基,大小50至110kDa不等。
催化亚基有4种,即p110α, β,δ,γ,而δ仅限于白细胞,其余则广泛分布于各种细胞中。
干货揭开mTOR的神秘面纱,信号通路一点就通
![干货揭开mTOR的神秘面纱,信号通路一点就通](https://img.taocdn.com/s3/m/c3c1ece3900ef12d2af90242a8956bec0975a530.png)
干货揭开mTOR的神秘面纱,信号通路一点就通mTOR是一个重要的真核细胞信号,其稳定性影响T细胞中细胞因子的表达,参与免疫抑制,影响转录和蛋白质合成,调节细胞的生长、凋亡、自噬等。
mTOR在肿瘤中也经常被激活,通过关键代谢酶的表达改变和/或活性改变,来进一步控制癌细胞的生长和代谢。
致癌信号传导和代谢改变在癌细胞中往往是相互关联的。
癌细胞通过代谢重编程,来确保在营养稀缺和压力微环境中的存活和增殖。
已有很多研究表明,癌症特异性代谢改变,包括氨基酸,葡萄糖,核苷酸,脂肪酸和脂质的异常代谢。
而代谢重编程往往由致癌信号传导介导。
mTOR信号传导就经常在肿瘤中被激活,并通过关键代谢酶的表达改变和/或活性改变,来进一步控制癌细胞的生长和代谢。
相反,代谢改变,例如通过增加的葡萄糖或氨基酸摄取,也可以影响mTOR 信号传导。
mTOR信号参与可以调节氨基酸,葡萄糖,核苷酸,脂肪酸和脂质的代谢,在研究中极其重要。
所以,今天带大家揭开mTOR 的神秘面纱。
mTOR研究可以追溯到1964年发现的雷帕霉素,因为它的全称叫做哺乳动物雷帕霉素靶点( mammalian target of rapamycin,mTOR ) 。
mTOR是一类丝/苏氨酸激酶,C端与磷脂酰肌醇激酶( PI3K ) 催化域同源,但是其本身又不具备酯酶激酶的活性,而是Ser/Thr蛋白激酶活性。
在细胞内存在mTORC1和mTORC2两种不同的复合体,由于mTORC2组分在小鼠中的缺失以及mTORC2抑制剂缺失而引起的早期致死性使其研究变得复杂。
经过几十年的研究表明,mTOR属于一个重要的真核细胞信号,其稳定性影响T细胞中细胞因子的表达,参与免疫抑制,影响转录和蛋白质合成,调节细胞的生长、凋亡、自噬等。
mTOR则被认定为肿瘤治疗的新靶点,对运动、代谢、神经等疾病具有重要的调节作用。
在疾病研究方面,mTOR在各种细胞过程中被激活,比如肿瘤形成、血管生成、胰岛素抵抗、脂肪形成及淋巴细胞活化,在多种癌症及2型糖尿病中表达失调。
PI3K-Akt-mTOR信号通路
![PI3K-Akt-mTOR信号通路](https://img.taocdn.com/s3/m/417abc49814d2b160b4e767f5acfa1c7aa008239.png)
PI3K/Akt/mTOR信号通路关键词:信号通路抑制剂细胞目的:通过特异性阻断PI3K和mTOR,观察HepG2和Hep3B细胞株PI3K/Akt/mTOR信号通路活性及生物学行为的改变,探讨相关的分子机制。
方法:在培养的HepG2、Hep3B人肝癌细胞株和人正常肝细胞株QSG-7701上,以免疫印迹方法(Western blot)检测各细胞株中PI3K(p110α亚单位)、PTEN、pAkt(S473,T308)和p-mTOR(S2448)的表达情况;分别用PI3K抑制剂LY294002(50μmol/ml)和mTOR抑制剂Rapamycin(RAPA,50 nmol/ml)孵育HepG2和Hep3B细胞,以MTT比色法检测细胞的增殖能力,以流式细胞术(Flow cytometry)检测细胞周期和凋亡情况,以Western blot法检测细胞中pAkt(S473,T308)和p-mTOR(S2448)的表达改变。
结果:PTEN在HepG2和Hep3B细胞中基本无表达,在QSG-7701细胞株中高表达,pAkt和p-mTOR在HepG2和Hep3B细胞中的表达较QSG-7701细胞均显著升高;LY294002和RAPA均呈剂量-时间依赖的抑制HepG2和Hep3B细胞生长。
饱和效应浓度的LY294002和RAPA作用24小时后,HepG2和Hep3B 细胞均呈现明显的G0/G1期阻滞,处于S期的细胞比例较对照组显著减少(P<0.01);两给药组中HepG2细胞和Hep3B细胞的凋亡率与对照组比较均显著增加(P<0.01);两给药组HepG2细胞的凋亡率显著高于Hep3B细胞(P<0.01或P<0.05),并且HepG2细胞的凋亡率在RAPA给药组显著高于LY294002给药组(P<0.01),但Hep3B细胞的凋亡率在两组间无显著差异。
饱和效应浓度的LY294002作用48小时后,HepG2和Hep3B细胞中pAkt(T308,S473)和p-mTOR(S2448)的表达水平较对照组均显著降低(P<0.01),饱和效应浓度的RAPA作用48小时后,HepG2和Hep3B细胞中P-mTOR(S2448)的表达水平较对照组均显著降低(P<0.01),而pAkt(T308,S473)的表达水平较对照组均显著升高(分别P<0.01)。
细胞常见信号通路图片合集
![细胞常见信号通路图片合集](https://img.taocdn.com/s3/m/7ab97a6e998fcc22bdd10d1a.png)
•·NGF信号通路(2004-8-16)•·TGF beta 信号转导(2004-8-16)•·细胞凋亡信号(2004-8-16)•·线粒体输入信号(2004-8-16)•·ROS信号(2004-8-16)•·Toll-Like 受体家族(2004-8-16)•·Toll-Like 受体(2004-8-16)•·actin肌丝(2004-8-16)•·Wnt/LRP6 信号(2004-8-16)•·WNT信号转导(2004-8-16)•·West Nile 西尼罗河病毒(2004-8-16)•·Vitamin C 维生素C在大脑中的作用(2004-8-16)•·视觉信号转导(2004-8-16)•·VEGF,低氧(2004-8-16)•·TSP-1诱导细胞凋亡(2004-8-16)•·Trka信号转导(2004-8-16)•·dbpb调节mRNA (2004-8-16)•·CARM1甲基化(2004-8-16)•·CREB转录因子(2004-8-16)•·TPO信号通路(2004-8-16)•·Toll-Like 受体(2004-8-16)•·TNFR2 信号通路(2004-8-16)•·TNFR1信号通路(2004-8-16)•·TNF/Stress相关信号(2004-8-16)•·IGF-1受体(2004-8-16)•·共刺激信号(2004-8-16)•·Th1/Th2 细胞分化(2004-8-16)•·TGF beta 信号转导(2004-8-16)•·端粒、端粒酶与衰老(2004-8-16)•·TACI和BCMA调节B细胞免疫(2004-8-16)•·T辅助细胞的表面受体(2004-8-16)•·T细胞受体信号通路(2004-8-16)•·T细胞受体和CD3复合物(2004-8-16)•·Cardiolipin的合成(2004-8-16)•·Synaptic突触连接中的蛋白(2004-8-16)•·HSP在应激中的调节的作用(2004-8-16)•·Stat3 信号通路(2004-8-16)•·SREBP控制脂质合成(2004-8-16)•·酪氨酸激酶的调节(2004-8-16)•·Sonic Hedgehog (SHH)受体ptc1调节细胞周期(2004-8-16)•·Sonic Hedgehog (Shh) 信号(2004-8-16)•·SODD/TNFR1信号(2004-8-16)•·AKT/mTOR在骨骼肌肥大中的作用(2004-8-16)•·G蛋白信号转导(2004-8-16)•·肝细胞生长因子受体信号(2004-8-16)•·IL1受体信号转导(2004-8-16)•·acetyl从线粒体到胞浆过程(2004-8-16)•·趋化因子chemokine在T细胞极化中的选择性表(2004-8-16)•·SARS冠状病毒蛋白酶(2004-8-16)•·Parkin在泛素-蛋白酶体中的作用(2004-8-16)•·nicotinic acetylcholine受体在凋亡中的作用(2004-8-16)•·线粒体在细胞凋亡中的作用(2004-8-16)•·MEF2D在T细胞凋亡中的作用(2004-8-16)•·Erk5和神经元生存(2004-8-16)•·ERBB2信号转导(2004-8-16)•·GPCRs调节EGF受体(2004-8-16)•·BRCA1调节肿瘤敏感性(2004-8-16)•·Rho细胞运动的信号(2004-8-16)•·Leptin能逆转胰岛素抵抗(2004-8-16)•·转录因子DREAM调节疼敏感(2004-8-16)•·PML调节转录(2004-8-16)•·p27调节细胞周期(2004-8-16)•·MAPK信号调节(2004-8-16)•·细胞因子调节造血细胞分化(2004-8-16)•·eIF4e和p70 S6激酶调节(2004-8-16)•·eIF2调节(2004-8-16)•·谷氨酸受体调节ck1/cdk5 (2004-8-16)•·plk3在细胞周期中的作用(2004-8-1)•·BAD磷酸化调节(2004-8-1)•·Reelin信号通路(2004-8-1)•·RB肿瘤抑制和DNA破坏(2004-8-1)•·NK细胞介导的细胞毒作用(2004-8-1)•·Ras信号通路(2004-8-1)•·Rac 1细胞运动信号(2004-8-1)•·PTEN依赖的细胞生长抑制和细胞凋亡(2004-8-1)•·notch信号通路(2004-8-1)•·蛋白激酶A(PKA)在中心粒中的作用(2004-8-1)•·蛋白酶体Proteasome复合物(2004-8-1)•·Prion朊病毒的信号通路(2004-8-1)•·早老素Presenilin在notch和wnt信号中的作用(2004-8-1)•·mRNA的poly(A)形成(2004-8-1)•·淀粉样蛋白前体信号(2004-8-1)•·PKC抑制myosin磷酸化(2004-8-1)•·磷脂酶C(PLC)信号(2004-8-1)•·巨噬细胞Pertussis toxin不敏感的CCR5信号通(2004-8-1)•·Pelp1调节雌激素受体的活性(2004-8-1)•·PDGF信号通路(2004-8-1)•·p53信号通路(2004-8-1)•·p38MAPK信号通路(2004-8-1)•·Nrf2是氧化应激基本表达的关键基因(2004-8-1)•·OX40信号通路(2004-8-1)•·hTerc转录调节活性图(2004-8-1)•·hTert转录因子的调节作用(2004-8-1)•·AIF在细胞凋亡中的作用(2004-8-1)•·Omega氧化通路(2004-8-1)•·核受体在脂质代谢和毒性中的作用(2004-8-1)•·NK细胞中NO2依赖的IL-12信号通路(2004-8-1)•·TOR信号通路(2004-8-1)•·NO信号通路(2004-8-1)•·NF-kB信号转导通路(2004-8-1)•·NFAT与心肌肥厚的示意图(2004-8-1)•·神经营养素及其表面分子(2004-8-1)•·神经肽VIP和PACAP防止活化T细胞凋亡图(2004-8-1)•·神经生长因子信号图(2004-8-1)•·线虫和哺乳动物的MAPK信号比较(2004-7-17)•·细胞内信号总论(2004-7-17)•·细胞凋亡信号通路(2004-7-17)•·MAPK级联通路(2004-7-17)•·MAPK信号通路图(2004-7-17)•·BCR信号通路(2004-7-17)•·蛋白质乙酰化示意图(2004-7-17)•·wnt信号通路(2004-7-17)•·胰岛素受体信号通路(2004-7-17)•·细胞周期在G2/M期的调控机理图(2004-7-17)•·细胞周期G1/S检查点调控机理图(2004-7-17)•·Jak-STAT关系总表(2004-7-17)•·Jak/STAT 信号(2004-7-17)•·TGFbeta信号(2004-7-17)•·NFkappaB信号(2004-7-17)•·p38 MAPK信号通路(2004-7-17)•·SAPK/JNK 信号级联通路(2004-7-17)•·从G蛋白偶联受体到MAPK (2004-7-17)•·MAPK级联信号图(2004-7-17)•·eIF-4E和p70 S6激酶调控蛋白质翻译(2004-7-17)•·eif2蛋白质翻译(2004-7-17)•·蛋白质翻译示意图(2004-7-17)•·线粒体凋亡通路(2004-7-17)•·死亡受体信号通路(2004-7-17)•·凋亡抑制通路(2004-7-17)•·细胞凋亡综合示意图(2004-7-17)•·Akt/Pkb信号通路(2004-7-17)•·MAPK/ERK信号通路(2004-7-17)•·哺乳动物MAPK信号通路(2004-7-17)•·Pitx2多步调节基因转录(2004-7-17)•·IGF-1R导致BAD磷酸化的多个凋亡路径(2004-7-17)•·多重耐药因子(2004-7-17)•·mTOR信号通路(2004-7-17)•·Msp/Ron受体信号通路(2004-7-17)•·单核细胞和其表面分子(2004-7-17)•·线粒体的肉毒碱转移酶(CPT)系统(2004-7-17)•·METS影响巨噬细胞的分化(2004-7-17)•·Anandamide,内源性大麻醇的代谢(2004-7-17)•·黑色素细胞(Melanocyte)发育和信号(2004-7-17)•·DNA甲基化导致转录抑制的机理图(2004-7-17)•·蛋白质的核输入信号图(2004-7-17)•·PPARa调节过氧化物酶体的增殖(2004-7-17)•·对乙氨基酚(Acetaminophen)的活性和毒性机(2004-7-17)•·mCalpain在细胞运动中的作用(2004-7-17)•·MAPK信号图(2004-7-17)•·MAPK抑制SMRT活化(2004-7-17)•·苹果酸和天门冬酸间的转化(2004-7-17)•·低密度脂蛋白(LDL)在动脉粥样硬化中的作用(2004-7-17)•·LIS1基因在神经细胞的发育和迁移中的作用图(2004-7-17)•·Pyk2与Mapk相连的信号通路(2004-7-17)•·galactose代谢通路(2004-7-17)•·Lectin诱导补体的通路(2004-7-17)•·Lck和Fyn在TCR活化中的作用(2004-7-17)•·乳酸合成图(2004-7-17)•·Keratinocyte分化图(2004-7-17)•·离子通道在心血管内皮细胞中的作用(2004-7-17)•·离子通道和佛波脂(Phorbal Esters)信号(2004-7-17)•·内源性Prothrombin激活通路(2004-7-17)•·Ribosome内化通路(2004-7-17)•·整合素(Integrin)信号通路(2004-7-17)•·胰岛素(Insulin)信号通路(2004-7-17)•·Matrix Metalloproteinases (2004-7-17)•·组氨酸去乙酰化抑制剂抑制Huntington病(2004-7-17)•·Gleevec诱导细胞增殖(2004-7-17)•·Ras和Rho在细胞周期的G1/S转换中的作用(2004-7-17)•·DR3,4,5受体诱导细胞凋亡(2004-7-17)•·AKT调控Gsk3图(2004-7-17)•·IL-7信号转导(2004-7-17)•·IL22可溶性受体信号转导图(2004-7-17)•·IL-2活化T细胞图(2004-7-17)•·IL12和Stat4依赖的TH1细胞发育信号通路(2004-7-17)•·IL-10信号通路(2004-7-17)•·IL 6信号通路(2004-7-17)•·IL 5信号通路(2004-7-17)•·IL 4信号通路(2004-7-17)•·IL 3信号通路(2004-7-17)•·IL 2 信号通路(2004-7-17)•·IL 18信号通路(2004-7-17)•·IL 17信号通路(2004-7-17)•·IGF-1信号通路(2004-7-17)•·IFN gamma信号通路(2004-7-17)•·INF信号通路(2004-7-17)•·低氧诱导因子(HIF)在心血管中的作用(2004-7-17)•·低氧和P53在心血管系统中的作用(2004-7-17)•·人类巨细胞病毒和MAP信号通路(2004-7-17)•·孕酮如何促进卵细胞成熟?(2004-7-17)•·How does salmonella hijack a cell (2004-7-17)•·Hop通路在心脏发育中的作用(2004-7-17)•·HIV-I Nef:负性调节fas和TNF (2004-7-17)•·HIV-1防止宿主细胞耐受的机理(2004-7-17)•·HIV诱导T细胞凋亡图(2004-7-17)•·血红素的伴侣分子(2004-7-17)•·g-Secretase介导ErbB4信号通路(2004-7-17)•·生物激素信号(2004-7-17)•·Granzyme A介导的凋亡信号通路(2004-7-17)•·G蛋白偶联信号需要Tubby支持(2004-7-17)•·糖酵解通路(2004-7-17)•·Ghrelin:食物吸收和能量平衡的调控者(2004-7-17)•·PS1能产生beta淀粉样蛋白导致老年性痴呆(2004-7-17)•·GATA3部分参与TH2细胞因子基因的表达(2004-7-17)•·GABA受体的代谢图(2004-7-17)•·FXR和LXR调节胆固醇代谢(2004-7-17)•·SLRP在骨骼中的作用(2004-7-17)•·自由基诱导细胞凋亡信号(2004-7-17)•·FOSB与药物成瘾(2004-7-17)•·fMLP诱导趋化因子基因表达(2004-7-17)•·Fibrinolysis通路(2004-7-17)•·糖酵解通路(2004-7-17)•·Fc Epsilon Receptor I信号(2004-7-17)•·FAS信号通路(2004-7-17)•·外源性Prothrombin激活通路(2004-7-17)•·真核细胞蛋白质翻译示意图(2004-7-17)•·雌激素反应蛋白EFP控制乳腺癌细胞的细胞周期(2004-7-17)•·EPO介导神经保护作用与NF-kB相关(2004-7-17)•·Erythrocyte分化通路(2004-7-17)•·Erk1/Erk2 Mapk 信号通路(2004-7-17)•·Erk和PI-3K在细胞外间质中的作用(2004-7-17)•·内质网相关的蛋白质降解通路示意图(2004-7-17)•·EPO售转导机制图(2004-7-17)•·血小板凝聚示意图(2004-7-17)•·NDK动力学(2004-7-17)•·线粒体的电子传递链示意图(2004-7-17)•·Eicosanoid代谢(2004-7-17)•·EGF信号通路(2004-7-17)•·calcineurin对Keratinocyte分化的影响(2004-7-17)•·E2F1信号通路(2004-7-17)•·MTA-3在雌激素不敏感性乳腺癌中下调(2004-7-17)•·双链RNA诱导基因表达示意图(2004-7-17)•·Dicer信号通路(RNAi机理)(2004-7-17)•·CDK5在老年性痴呆中的调节作用(2004-7-17)•·树突状细胞调节TH1和TH2发育示意图(2004-7-17)•·RAR和RXR被蛋白酶体降解通路(2004-7-17)•·D4-GDI信号通路示意图(2004-7-17)•·细胞因子和炎症反应示意图(2004-7-9)•·细胞因子网络调控图(2004-7-9)•·CFTR和beta 2肾上腺素受体通路(2004-7-9)•·Cyclin和细胞周期调控图(2004-7-9)•·Ran核质循环转运图(2004-7-9)•·Cyclin E降解通路图(2004-7-9)•·CXCR4信号通路图(2004-7-9)•·CTL介导的免疫反应图(2004-7-9)•·CTCF:第一个多价核因子(2004-7-9)•·皮质激素和心脏保护(2004-7-9)•·骨骼肌的成肌信号图(2004-7-9)•·VitD调控基因表达信号图(2004-7-9)•·补体信号通路(2004-7-9)•·线粒体和过氧化物酶体中β氧化的比较图(2004-7-9)•·经典的补体信号通路图(2004-7-9)•·心律失常的分子机制图(2004-7-9)•·hSWI/SNF ATP依赖的染色体重塑(2004-7-9)•·碳水化合物和cAMP调节ChREBP图(2004-7-9)•·分子伴侣调节干扰素信号图(2004-7-9)•·Ceramide信号图(2004-7-9)•·局部急性感染的细胞与分子信号(2004-7-9)•·细胞与细胞粘附信号(2004-7-9)•·细胞周期G2/M调控点信号调节(2004-7-9)•·细胞周期 G1/S调控点信号图(2004-7-9)•·CDK调节DNA复制(2004-7-9)•·cdc25和chk1在DNA破坏中的作用图(2004-7-9)•·CD40L信号通路图(2004-7-9)•·CCR3信号图(2004-7-9)•·CBL下调EGF受体的信号转导图(2004-7-9)•·一些氨基酸的代谢通路图 3 (2004-7-9)•·一些氨基酸的代谢通路图 2 (2004-7-9)•·一些氨基酸的代谢通路图(2004-7-9)•·Catabolic pathway for asparagine and asp (2004-7-9)•·Caspase 信号级联通路在细胞凋亡中的作用(2004-7-9)•·CARM1和雌激素的信号转导调控(2004-7-9)•·抗氧自由基的心脏保护作用信号转导图(2004-7-9)•·乙肝病毒中的钙信号调控(2004-7-9)•·镉诱导巨噬细胞的DNA合成和增殖(2004-7-9)•·Ca2+/CaM依赖的激活(2004-7-9)•·B细胞活化机理图(2004-6-9)•·BTG家族蛋白和细胞周期的调节(2004-6-9)•·BRCA1作用机理(2004-6-9)•·骨重塑示意图(2004-6-9)•·Botulinum Toxin阻断神经递质释放示意图(2004-6-9)•·缬氨酸的生物合成图(2004-6-9)•·Tryptophan在植物和细菌内的生物合成(2004-6-9)•·苏氨酸和蛋氨酸的体内合成示意图(2004-6-9)•·sphingolipids生物合成(2004-6-9)•·spermidine和spermine生物合成(2004-6-9)•·细菌体内合成脯氨酸的示意图(2004-6-9)•·苯丙氨酸和酪氨酸的生物合成(2004-6-9)•·神经递质的合成示意图(2004-6-9)•·赖氨酸生物合成图(2004-6-9)•·亮氨酸的体内生物合成图(2004-6-9)•·异亮氨酸的生物合成图(2004-6-9)•·甘氨酸和色氨酸的生物合成(2004-6-9)•·Cysteine在哺乳动物中的合成图(2004-6-9)•·Cysteine在细菌和植物内生物合成图(2004-6-9)•·Chorismate在细菌和植物内的生物合成(2004-6-9)•·Arginine在细菌内的生物合成(2004-6-9)•·生物活性肽诱导的通路(2004-6-9)•·脂肪酸的β氧化通路(2004-6-9)•·BCR信号通路示意图(2004-6-9)•·SUMOylation基本机理(2004-6-9)•·PPAR影响基因表达的基本信号机制图(2004-6-9)•·B淋巴细胞表面分子示意图(2004-6-9)•·B细胞生存信号通路(2004-6-5)•·B细胞信号通路的复杂性(2004-6-5)•·GPCR信号的衰减的机理(2004-6-4)•·ATM信号通路(2004-6-4)•·阿斯匹林的抗凝机理(2004-6-4)•·细胞凋亡信号调节DNA片段化(2004-6-4)•·细胞凋亡DNA片段化与组织稳态的机理(2004-6-4)•·反义核酸的作用机理---RNA polymerase III (2004-6-4)•·抗原递呈与处理信号图(2004-6-4)•·Antigen依赖的B细胞激活(2004-6-4)•·Anthrax Toxin Mechanism of Action (2004-6-4)•·血管紧张素转换酶2调节心脏功能(2004-6-4)•·Angiotensin II 介导JNK信号通路的激活(2004-6-4)•·Alternative Complement Pathway (2004-6-4)•·Alpha-synuclein和Parkin在怕金森病中的作用(2004-6-4)•·ALK在心肌细胞中的功能图(2004-6-4)•·AKT信号通路(2004-6-4)•·AKAP95在有丝分裂中的作用图(2004-6-4)•·Ahr信号转导图(2004-6-4)•·Agrin突触后的功能图(2004-6-4)•·ADP-Ribosylation 因子(2004-6-4)•·淋巴细胞粘附分子信号图(2004-6-4)•·Adhesion and Diapedesis of Lymphocytes (2004-6-4)•·Adhesion and Diapedesis of Granulocytes (2004-6-4)•·急性心肌梗死信号转导图(2004-6-4)•·src蛋白质激活图(2004-6-4)•·PKC与G蛋白耦联受体的关系(2004-6-4)•·cAMP依赖的CSK抑制T细胞功能示意图(2004-6-4)•·PKA功能示意图(2004-6-4)•·一氧化氮(NO)在心脏中的功能示意图(2004-6-4)•·RelA 在细胞核内乙酰化和去乙酰化(2004-6-4)actin肌丝Mammalian cell motility requires actin polymerization in the direction of movement to change membrane shape and extend cytoplasm into lamellipodia. The polymerization of actin to drive cell movement also involves branching of actin filaments into a network oriented with the growing ends of the fibers near the cell membrane. Manipulation of this process helps bacteria like Salmonella gain entry into cells they infect. Two of the proteins involved in the formation of Y branches and in cell motility are Arp2 and Arp3, both members of a large multiprotein complex containing several other polypeptides as well. The Arp2/3 complex is localized at the Y branch junction and induces actin polymerization. Activity of this complex is regulated by multiple different cell surface receptor signaling systems, activating WASP, and Arp2/3 in turn to cause changes in cell shape and cell motility. Wasp and its cousin Wave-1 interact with the Arp2/3 complex through the p21 component of the complex. The crystal structure of the Arp2/3 complex has revealed further insights into the nature of how the complex works.Activation by Wave-1, another member of the WASP family, also induces actin alterations in response to Rac1 signals upstream. Wave-1 is held in an inactive complex in the cytosol that is activated to allow Wave-1 to associate with Arp2/3. While WASP is activated by interaction with Cdc42, Wave-1, is activated by interaction with Rac1 and Nck. Wave-1 activation by Rac1 and Nck releases Wave-1 with Hspc300 to activate actin Y branching and polymerization by Arp2/3. Different members of this gene family may produce different actin cytoskeletal architectures. The immunological defects associated with mutation of the WASP gene, theWiskott-Aldrich syndrome for which WASP was named, indicates the importance of this system for normal cellular function.Cory GO, Ridley AJ. Cell motility: braking WAVEs. Nature. 2002 Aug 15;418(6899):732-3. No abstract available.Eden, S., et al. (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418(6899), 790-3Falet H, Hoffmeister KM, Neujahr R, Hartwig JH. Normal Arp2/3 complex activation in platelets lacking WASp. Blood. 2002 Sep 15;100(6):2113-22.Kreishman-Deitrick M, Rosen MK, Kreishman-Deltrick M. Ignition of a cellular machine. Nat Cell Biol. 2002 Feb;4(2):E31-3. No abstract available.Machesky, L.M., Insall, R.H. (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8(25), 1347-56Robinson, R.C. et al. (2001) Crystal structure of Arp2/3 complex. Science 294(5547), 1679-84Weeds A, Yeoh S. Structure. Action at the Y-branch. Science. 2001 Nov 23;294(5547):1660-1. No abstract available.Wnt/LRP6 信号Wnt glycoproteins play a role in diverse processes during embryonic patterning in metazoa through interaction with frizzled-type seven-transmembrane-domain receptors (Frz) to stabilize b-catenin. LDL-receptor-related protein 6 (LRP6), a Wnt co-receptor, is required for this interaction. Dikkopf (dkk) proteins are both positive and negative modulators of this signalingWNT信号转导West Nile 西尼罗河病毒West Nile virus (WNV) is a member of the Flaviviridae, a plus-stranded virus family that includes St. Louis encephalitis virus, Kunjin virus, yellow fever virus, Dengue virus, and Japanese encephalitis virus. WNV was initially isolated in 1937 in the West Nile region of Uganda and has become prevalent in Africa, Asia, and Europe. WNV has rapidly spread across the United States through its insect host and causes neurological symptoms and encephalitis, which can result in paralysis or death. Since 1999 about 3700 cases of West Nile virus (WNV) infection and 200 deaths have been recorded in United States. The viral capsid protein likely contributes to the WNV-associated deadly inflammation via apoptosis induced through the mitochondrial pathway.WNV particles (50 nm in diameter) consist of a dense core (viral protein C encapsidated virus RNA genome)surrounded by a membrane envelope (viral E and M proteins embedded in a lipid bilayer). The virus binds to a specific cell surface protein (not yet identified), an interaction thought to involve E protein with highly sulfated neperan sulfate (HSHS) residues that are present on the surfaces of many cells and enters the cell by a process similar to that of endocytosis. Once inside the cell, the genome RNA is released into the cytoplasm via endosomal release, a fusion process involving acidic pH induced conformation change in the E protein. The RNA genome serves as mRNA and is translated by ribosomes into ten mature viral proteins are produced via proteolytic cleavage, which include three structural components and seven different nonstructural components of the virus. These proteins assemble and transcribe complimentary minus strand RNAs from the genomic RNA. The complimentary minus strand RNA in turns serves as template for the synthesis of positive-stranded genomic RNAs. Once viral E, preM and C proteins have accumulated to sufficient level, they assemble with the genomic RNA to form progeny virions, which migrate to the cell surface where they are surrounded with lipid envelop and released.Vitamin C 维生素C在大脑中的作用Vitamin C (ascorbic acid) was first identified by virtue of the essential role it plays in collagen modification, preventing the nutritional deficiency scurvy. Vitamin C acts as a cofactor for hydroxylase enzymes thatpost-translationally modify collagen to increase the strength and elasticity of tissues. Vitamin C reduces the metal ion prosthetic groups of many enzymes, maintaining activity of enzymes, also acts as an anti-oxidant. Although the prevention of scurvy through modification of collagen may be the most obvious role for vitamin C, it is not necessarily the only role of vitamin C. Svct1 and Svct2 are ascorbate transporters for vitamin C import into tissues and into cells. Both of these transporters specifically transport reduced L-ascorbic acid against a concentration gradient using the intracellular sodium gradient to drive ascorbate transport. Svct1 is expressed in epithelial cells in the intestine, upregulated in cellular models for intestinal epithelium and appears to be responsible for the import of dietary vitamin C from the intestinal lumen. The vitamin C imported from the intestine is present in plasma at approximately 50 uM, almost exclusively in the reduced form, and is transported to tissues to play a variety of roles. Svct2 imports reduced ascorbate from the plasma into veryactive tissues like the brain. Deletion in mice of the gene for Svct2 revealed that ascorbate is required for normal development of the lungs and brain during pregnancy. A high concentration of vitamin C in neurons of the developing brain may help protect the developing brain from free radical damage. The oxidized form of ascorbate, dehydroascorbic acid, is transported into a variety of cells by the glucose transporter Glut-1. Glut-1, Glut-3 and Glut-4 can transport dehydroascorbate, but may not transport significant quantities of ascorbic acid in vivo.视觉信号转导信息来源:本站原创生物谷网站The signal transduction cascade responsible for sensing light in vertebrates is one of the best studied signal transduction processes, and is initiated by rhodopsin in rod cells, a member of the G-protein coupled receptor gene family. Rhodopsin remains the only GPCR whose structure has been resolved at high resolution. Rhodopsinin the discs of rod cells contains a bound 11-cis retinal chromophore, a small molecule derived from Vitamin A that acts as the light sensitive portion of the receptor molecule, absorbing light to initiate the signal transduction cascade. When light strikes 11-cis retinal and is absorbed, it isomerizes to all-trans retinal, changing the shape of the molecule and the receptor it is bound to. This change in rhodopsin抯shape alters its interaction with transducin, the member of the G-protein gene family that is specific in its role in visual signal transduction. Activation of transducin causes its alpha subunit to dissociate from the trimer and exchange bound GDP for GTP, activating in turn a membrane-bound cyclic-GMP specific phosphodiesterase that hydrolyzes cGMP. In the resting rod cell, high levels of cGMP associate with a cyclic-GMP gated sodium channel in the plasma membrane, keeping the channels open and the membrane of the resting rod cells depolarized. This is distinct from synaptic generation of action potentials, in which stimulation induces opening of sodium channels and depolarization. When cGMP gated channels in rod cells open, both sodium and calcium ions enter the cell, hyperpolarizing the membrane and initiating the electrochemical impulse responsible for conveying the signal from the sensory neuron to the CNS. The rod cell in the resting state releases high levels of the inhibitory neurotransmitter glutamate, while the release of glutamate is repressed by the hyperpolarization in the presence of light to trigger a downstream action potential by ganglion cells that convey signals to the brain. The calcium which enters the cell also activates GCAP, which activates guanylate cyclase (GC-1 and GC-2) to rapidly produce more cGMP, ending the hyperpolarization and returning the cell to its resting depolarized state. A protein called recoverin helps mediate the inactivation of the signal transduction cascade, returning rhodopsin to its preactivated state, along with the rhodopsin kinase Grk1. Phosphorylation of rhodopsin by Grkl causes arrestin to bind, helping to terminate the receptor activation signal. Dissociation and reassociation of retinal, dephosphorylation of rhodopsin and release of arrestin all return rhodopsin to its ready state, prepared once again to respond to light.VEGF,低氧信息来源:本站原创生物谷网站Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. The increase in secreted biologically active VEGF protein from cells exposed to hypoxia is partly because of an increased transcription rate, mediated by binding of hypoxia-inducible factor-1 (HIF1) to a hypoxia responsive element in the 5'-flanking region of the VEGF gene. bHLH-PAS transcription factor that interacts with the Ah receptor nuclear translocator (Arnt), and its predicted amino acid sequence exhibits significant similarity to the hypoxia-inducible factor 1alpha (HIF1a) product. HLF mRNA expression is closely correlated with that of VEGF mRNA.. The high expression level of HLF mRNA in the O2 delivery system of developing embryos and adult organs suggests that in a normoxic state, HLF regulates gene expression of VEGF, various glycolytic enzymes, and others driven by the HRE sequence, and may be involved in development of blood vessels and the tubularsystem of lung. VEGF expression is dramatically induced by hypoxia due in large part to an increase in the stability of its mRNA. HuR binds with high affinity and specificity to the VRS element that regulates VEGF mRNA stability by hypoxia. In addition, an internal ribosome entry site (IRES) ensures efficient translation of VEGF mRNA even under hypoxia. The VHL tumor suppressor (von Hippel-Lindau) regulates also VEGF expression at a post-transcriptional level. The secreted VEGF is a major angiogenic factor that regulates multiple endothelial cell functions, including mitogenesis. Cellular and circulating levels of VEGF are elevated in hematologic malignancies and are adversely associated with prognosis. Angiogenesis is a very complex, tightly regulated, multistep process, the targeting of which may well prove useful in the creation of novel therapeutic agents. Current approaches being investigated include the inhibition of angiogenesis stimulants (e.g., VEGF), or their receptors, blockade of endothelial cell activation, inhibition of matrix metalloproteinases, and inhibition of tumor vasculature. Preclinical, phase I, and phase II studies of both monoclonal antibodies to VEGF and blockers of the VEGF receptor tyrosine kinase pathway indicate that these agents are safe and offer potential clinical utility in patients with hematologic malignancies.TSP-1诱导细胞凋亡信息来源:本站原创生物谷网站As tissues grow they require angiogenesis to occur if they are to be supplied with blood vessels and survive. Factors that inhibit angiogenesis might act as cancer therapeutics by blocking vessel formation in tumors and starving cancer cells. Thrombospondin-1 (TSP-1) is a protein that inhibits angiogenesis and slows tumor growth, apparently by inducing apoptosis of microvascular endothelial cells that line blood vessels. TSP-1 appears to produce this response by activating a signaling pathway that begins with its receptor CD36 at the cell surface of the microvascular endothelial cell. The non-receptor tyrosine kinase fyn is activated by TSP-1 through CD36, activating the apoptosis inducing proteases like caspase-3 and p38 protein kinases. p38 is a mitogen-activated kinase that also induces apoptosis in some conditions, perhaps through AP-1 activation and the activation of genes that lead to apoptosis.Trka信号转导信息来源:本站原创生物谷网站Nerve growth factor (NGF) is a neurotrophic factor that stimulates neuronal survival and growth through TrkA, a member of the trk family of tyrosine kinase receptors that also includes TrkB and TrkC. Some NGF responses are also mediated or modified by p75LNTR, a low affinity neurotrophin receptor. Binding of NGF to TrkA stimulates neuronal survival, and also proliferation. Pathways coupled to these responses are linked to TrkAthrough association of signaling factors with specific amino acids in the TrkA cytoplasmic domain. Cell survival through inhibition of apoptosis is signaled through activation of PI3-kinase and AKT. Ras-mediated signaling and phospholipase C both activate the MAP kinase pathway to stimulate proliferation.dbpb调节mRNA信息来源:本站原创生物谷网站Endothelial cells respond to treatment with the protease thrombin with increased secretion of the PDGF B-chain. This activation occurs at the transcriptional level and a thrombin response element was identified in the promoter of the PDGF B-chain gene. A transcription factor called the DNA-binding protein B (dbpB) mediates the activation of PDGF B-chain transcription in response to thrombin treatment. DbpB is a member of the Y box family of transcription factors and binds to both RNA and DNA. In the absence of thrombin, endothelial cells contain a 50 kD form of dbpB that binds RNA in the cytoplasm and may play a role as a chaperone for mRNA. The 50 kD version of dbpB also binds DNA to regulate genes containing Y box elements in their promoters. Thrombin activation results in the cleavage of dbpB to a 30 kD form. The proteolytic cleavage releases dbpB from RNA in the nucleus, allowing it to enter the nucleus and binds to a regulatory element distinct from the site recognized by the full length 50 kD dbpB. The genes activated by cleaved dbpB include the PDGF B chain. Dephosphorylation of dbpB also regulates nuclear entry and transcriptional activation.RNA digestion in vitro can release dbpB in its active form, suggesting that the protease responsible for dbpB may be closely associated in a complex. Identification of the protease that cleaves dbpB, the mechanisms of phosphorylation and dephosphorylation, and elucidation of the signaling path by which thrombin induces dbpB will provide greater understanding of this novel signaling pathway.CARM1甲基化信息来源:本站原创生物谷网站Several forms of post-translational modification regulate protein activities. Recently, protein methylation by CARM1 (coactivator-associated arginine methyltransferase 1) has been observed to play a key role in transcriptional regulation. CARM1 associates with the p160 class of transcriptional coactivators involved in gene activation by steroid hormone family receptors. CARM1 also interacts with CBP/p300 transcriptional coactivators involved in gene activation by a large variety of transcription factors, including steroid hormone receptors and CEBP. One target of CARM1 is the core histones H3 and H4, which are also targets of the histone acetylase activity of CBP/p300 coactivators. Recruitment of CARM1 to the promoter region by binding to coactivators increases histone methylation and makes promoter regions more accessible for transcription. Another target of CARM1 methylation is a coactivator it interacts with, CBP. Methylation of CBP by CARM1 blocks。
5分钟看懂自噬信号通路
![5分钟看懂自噬信号通路](https://img.taocdn.com/s3/m/9f9764122e60ddccda38376baf1ffc4ffe47e2a6.png)
5分钟看懂自噬信号通路- 自噬,实际上就是细胞自己吃掉自己,废物再利用的代谢过程;- 在正常情况下,自噬维持细胞内稳态;- 在外界压力、饥饿、缺氧和内质网应激等特殊情况下,自噬则是一种自我生存机制;- 自噬机制的受损与肿瘤、神经退行性疾病、代谢相关疾病、免疫性疾病等)发病过程密切相关。
解析信号通路按图索骥,找找看,让大隅良典教授获得诺奖的Atg13 蛋白靶点在信号通路中吗?接下来,让我们深入浅出,5 分钟看懂这个信号通路。
mTOR 激酶是自体吞噬诱导过程中关键的分子,激活 mTOR 的通路如 Akt 和 MAPK 信号通路抑制自体吞噬,负调控 mTOR 的通路如AMPK 和 p53 信号通路促进自体吞噬。
ULK 是自噬信号通路唯一一个具有丝氨酸/苏氨酸激酶活性的核心蛋白。
在自噬溶酶体组装前自噬信号是通过由ULK1 或ULK2、FIP200 和 mATG13 组成的 ULK 复合物的活化介导的。
ULK1 复合物在体内是连接上游营养或能量感受器mTOR 和AMPK 与下游自噬体形成的桥梁。
磷酸化的ULK1 一直以来都被认为是自噬的一个关键调控因子,目前发现AMPK 和mTOR 这两个激酶可催化 ULK1 的磷酸化,这在自噬中起着十分重要的作用。
在饥饿条件下AMPK 活化,mTOR 失活,活化的AMPK 催化ULK1 第 317、467、555、574、637 和 777 位丝氨酸发生磷酸化从而促进自噬。
在营养充足的情况下 AMPK 失活,mTOR 可与 ULK1 第 757 位丝氨酸结合抑制 ULK1-AMPK 的相互作用,导致 ULK1 的失活,最终关闭自噬信号。
III 级 PI3K 复合体,包括了 hVps34,Beclin-1 (酵母 Atg6 的哺乳动物同源物),p150 (酵母 Vps15 的哺乳动物同源物)和 Atg14-like 蛋白(Atg14L 或Barkor)或抗紫外线照射相关基因(UVRAG),都是自体吞噬诱导所需要的。
mTOR信号通路与学习记忆
![mTOR信号通路与学习记忆](https://img.taocdn.com/s3/m/127bcc6d48d7c1c708a1452f.png)
STAT3
糖体合成等一系列生理和病理过程,可在多种因素 的活化下参与基因转录、蛋白质翻译起始、核糖体生
物合成、细胞凋亡等多种生物学功能【3 J。
l 1.1
Ser727位点,使之达到最大转录活化状态,促
进其对靶基因的转录。此外,mTOR可通过细胞周期 蛋白D和细胞周期调控因子p27Kipl来影响成视网 膜母细胞瘤蛋白的活性,进而调控RNA聚合酶,参 与基因表达的转录水平调控。Majumder等p o还证 实,roTOR调控抗凋亡基因Bel-2和缺氧诱导因子1仅 的表达与功能。
通路是记忆巩固和再巩固的关键部位,推测它可能
是通过・nTOR控制的蛋白转录在突触可塑性和记忆
通路㈣。
在大脑与记忆相关的不同区域,如杏仁核、海马 和皮质等部位,局部抑制mTOR通路,可明显损害听 觉、空间、恐惧和识别记忆的巩固过程。长期记忆的 形成包括多巴胺系统的激活、mTOR的激活和蛋白的 合成。在使用听觉刺激观察土沙鼠的记忆巩固过程 中,发现在听皮质浸注Dl受体激动剂SKF-38393,可 以明显提高土沙鼠对调频音调的辨别能力,但同时 给予mTOR抑制剂雷帕霉素可完全阻断SKF-38393
min
杂的信号网络系统,各通路之间相互联系并且具有
汇聚或发散的特点,mTOR信号通路的研究也充分证 明了这些特点。mTOR汇聚了来自氨基酸和能量的 信号刺激,生长因子信号通过Ras一细胞外信号调节 激酶和PI,K/Akt激活mTORCl,同时低营养状态至 少部分地通过磷酸腺苷激活的蛋白激酶TSC2抑制
2
mTOR的信号转导通路
roTOR上游信号通路分别为PI,K/Akt通路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mTOR信号通路图
mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。
它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。
正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP 酶Rheb(Ras-homolog enriched in brain)的抑制剂,而Rheb是mTOR活化所必需的刺激蛋白,因此TSC-1/TSC-2在正常情况下抑制mTOR的功能。
当Akt活化后,它可磷酸化TSC-2的Ser939和Thr1462,抑制了TSC-1/TSC-2复合物的形成,从而解除了对Rheb 的抑制作用,使得mTOR被激活。
活化的mTOR通过磷酸化蛋白翻译过程中的某些因子来参与多项细胞功能,其中最主要的是4EBP1和P70S6K。
在整个PI3K/Akt/mTOR信号通路中,有一条十分重要的负反馈调节剂就是10号染色体上缺失与张力蛋白同源的磷酸酶基因(phosphatase and tensin homology deleted on chromosome 10, PTEN)。
PTEN是一个肿瘤抑制基因,位于人染色体10q23。
它有一个蛋白酪氨酸磷酸酶结构域,在这条通路中可以将PI-3,4-P2与PI-3,4,5-P3去磷酸化,从而负调节PI3K下游AKt/mTOR信号通路的活性。
本信号转导涉及的信号分子主要包括
IRS-1,PI3K,PIP2,PIP3,PDK1,PTEN,Akt,TSC1,TSC2,Rheb,mTOR,Raptor,DEPTOR,GβL,p70S6K,ATG13,4E-BP1,HIF-1,PGC-1α,PPARγ,Sin1,PRR5,Rictor,PKCα,SGK1,PRAS40,FKBP12,Wnt,LRP,Frizzled,Gαq/o,Dvl,Erk,RSK,GSK-3,REDD1,REDD2,AMPK,LKB1,RagA/B,RagC/D等。