15相似三角形判定定理的证明知识讲解基础

合集下载

相似三角形的判定定理

相似三角形的判定定理

(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.2、相似三角形对应边的比叫做相似比.3、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. 强调:①定理的基本图形有三种情况,如图其符号语言: ∵DE ∥BC ,∴△ABC ∽△ADE ;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到 “见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定 1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

例1、已知:如图,∠1=∠2=∠3,求证:△ABC ∽△ADE .例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.ABCDEF判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

简单说成:两边对应成比例且夹角相等,两三角形相似.例1、△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.例2、如图,点C、D在线段AB上,△PCD是等边三角形。

(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数。

判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。

简单说成:三边对应成比例,两三角形相似.强调:①有平行线时,用预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.例2、如图,AB ⊥BD,CD ⊥BD,P 为BD 上一动点,AB=60 cm,CD=40 cm,BD=140 cm,当P 点在BD 上由B 点向D 点运动时,PB 的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、已知:AD 是Rt △ABC 中∠A 的平分线,∠C =90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

初中数学知识归纳相似三角形的判定定理分析

初中数学知识归纳相似三角形的判定定理分析

初中数学知识归纳相似三角形的判定定理分析初中数学知识归纳:相似三角形的判定定理分析相似三角形是初中数学中非常重要的概念,它可以帮助我们解决各种几何问题。

相似三角形判定定理是判断两个三角形是否相似的基本定理。

本文将对相似三角形的判定定理进行归纳和分析,帮助读者更好地理解和应用这一知识点。

一、全等三角形的性质回顾在归纳相似三角形的判定定理之前,我们首先回顾一下全等三角形的性质。

两个三角形全等的条件有三种情况:边-角-边(SAS)、角-边-角(ASA)和边-边-边(SSS)。

只要满足其中一种情况,两个三角形就是全等的。

全等三角形的性质提供了相似三角形判定的基础,我们下面来看看相似三角形的判定定理。

二、相似三角形的判定定理相似三角形的判定定理包括以下三种情况:AAA相似定理、AA相似定理和边-比-边相似定理。

我们逐一进行分析。

1. AAA相似定理AAA相似定理是指如果两个三角形的对应角度相等,那么这两个三角形相似。

具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以得出结论:△ABC ∽△DEF。

其中,“∽”表示相似。

根据AAA相似定理,我们可以用角度关系判定两个三角形是否相似。

这对于求解角度未知的三角形问题非常有用。

但需要注意的是,AAA相似定理只能判定三角形之间的相似关系,并不能确定它们的实际大小。

2. AA相似定理AA相似定理是指如果两个三角形的两个对应角度相等,那么这两个三角形相似。

具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E(或∠A=∠E,∠B=∠D),那么我们可以得出结论:△ABC ∽△DEF。

AA相似定理是比较常用且直观的判定方式。

通过测量或计算出两个角度的大小,我们就能确定两个三角形的相似关系。

需要注意的是,判定相似三角形时,AA相似定理只能判定两个角度对应相等,不能判定另一个角度是否相等。

3. 边-比-边相似定理边-比-边相似定理是指如果两个三角形的对应边长成比例,那么这两个三角形相似。

相似三角形判定定理的证明核心知识

相似三角形判定定理的证明核心知识

相似三角形判定定理的证明核心知识相似三角形是几何学中一个重要的概念,涉及到角度、比率以及几何图形的比例关系。

掌握相似三角形的判定定理及其证明,是深入学习几何学和解决几何问题的基础。

本文将从相似三角形判定定理的基本理论出发,探讨其证明过程中的核心知识和技巧。

一、相似三角形的定义在几何学中,如果两个三角形的对应角相等,并且对应边的比率相等,那么这两个三角形被称为相似三角形。

用数学语言表述,即:三角形ABC与三角形DEF相似(记作△ABC ∼ △DEF),当且仅当角A = 角D,角B = 角E,角C = 角F,并且AB/DE = BC/EF = AC/DF。

二、相似三角形的判定定理角角(AA)判定定理如果两个三角形的两个角分别相等,那么这两个三角形是相似的。

证明核心知识:角相等性:两角相等是三角形相似的充要条件之一。

利用角的和为180度的性质,如果两角分别相等,那么第三个角也必然相等。

相似三角形的边比性质:通过角角判定定理可以直接推导出对应边的比率相等。

边角边(SAS)判定定理如果两个三角形的两边的比率相等,并且夹角相等,则这两个三角形是相似的。

证明核心知识:边比与夹角:利用相似三角形中夹角的性质,可以证明两三角形的边比相等是它们相似的充分条件。

三角形的全等性:通过证明三角形的两边比率相等并且夹角相等,进一步确定了三角形的相似关系。

边边边(SSS)判定定理如果两个三角形的三边的比率分别相等,那么这两个三角形是相似的。

证明核心知识:边比的相等性:边边边定理通过对比三角形的三边比率的相等性,利用相似三角形的比例性质进行证明。

比率恒等性:三边比率相等可以导出三角形的角度关系,继而说明两个三角形的相似性。

三、证明相似三角形的基本方法角相等的证明方法角角判定定理的证明一般包括两个步骤:证明两个角相等,然后利用三角形内角和为180度的性质推导出第三个角的相等性。

证明过程中常用的方法包括:角对角对比:利用已知条件或外部角定理证明两个角相等。

相似三角形的判定与性质知识梳理及例题分析

相似三角形的判定与性质知识梳理及例题分析

相似三角形的判定与性质知识梳理及例题分析1.相似三角形的概念:在和中,如果,,,,我们就说和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).思考:在中,点是边的中点,,交于点,与有什么关系?猜想:与相似. 证明:在与中,∴,.过点作,交于点在中,,,∴.又,∴∴,∴∽(对应角相等,对应边的比相等的两三角形相似),相似比为.改变点在上的位置,可以进一步猜想以上两个三角形依然相似.2.相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.思考:对比三角形全等判定的简单方法(),看是否也有简便的方法?已知:在和中,.求证:∽.证明:在线段(或它的延长线)上截取,过点作,交于点,根据前面的结论可得∽.∴又,∴∴同理:∴≌∴∽相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.思考:若,,与是否相似呢?相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.进一步引申:若,,与是否相似呢?不一定问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.例1.根据下列条件,判断与是否相似,并说明理由:(1),,;,,.(2),,;,,.解:(1),∴又∴∽问:这两个相似三角形的相似比是多少?(答:是)(2),,∴与的三组对应边的比不等,它们不相似.问:要使两三角形相似,不改变的长,的长应当改为多少?(答:) 例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:,3;或,;或,.注:当两三角形相似而边不确定时,要注意分类讨论.相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.3.三角形相似的判定的应用例3.如图,弦和弦相交于内一点,求证:.证明:连接,.在∴∽∴.例4.已知:如图,在中,于点.(1)求证:∽∽;(2)求证:;;(此结论称之为射影定理)(3)若,求.(4)若,求.分析:(1)利用两角相等证相似;(2)把相似三角形的相似比的比例式改为乘积式即可;(3)利用射影定理和勾股定理直接求;(4)利用上面的定理和方程求.进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,于点,则可得到双垂直图形.例.已知:∽,分别是两个三角形的角平分线.求证:.4.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.证明:如果∽,相似比为,那么.因此,,.从而,.同理可得相似多边形对应周长的比也等于相似比.如图,已知:∽,相似比为.分别作出与的高和和都是直角三角形,并且,∽相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.例5.如图,在和中,,,,的周长是24,面积是48,求的周长和面积.解:在和中,,又∽,相似比为.的周长为,的面积是.例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.分析:此题第1问:利用两边的比相等,夹角相等证相似.即,第2问:设∵是的比例中项,∴是的比例中项即∴解得又∵第3问:∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.例7.如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求出的长.解:(1),∽(2)∵的周长与四边形的周长相等∽(3)在线段上存在点,使得为等腰直角三角形.过作于,则,设交于若,则.∵∽若,同理可求.若,∽∴在线段上存在点,使得为等腰直角三角形,此时,或.三、总结归纳:1、相似三角形的判定:(1)相似三角形的定义;(2)平行得相似;(3)三边的比相等;(4)两边的比相等,夹角相等;(5)两角对应相等.三角形相似判定的方法较多,要根据已知条件适当选择.23、相似三角形的常见图形及其变换:4、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.。

相似三角形的证明方法

相似三角形的证明方法

相似三角形的证明方法相似三角形是初中数学中的一个重要概念,它在几何推导和实际问题中都有着广泛的应用。

在本文中,我们将介绍相似三角形的定义,并详细讨论几种证明相似三角形的方法。

一、相似三角形的定义相似三角形是指具有相同形状但不一定相同大小的两个三角形。

当两个三角形的对应角度相等时,它们是相似的。

换句话说,若两个三角形的对应角度分别相等,则它们是相似的。

二、数学证明法1. AA相似定理相似三角形的AA相似定理指的是,如果两个三角形的两个角分别相等,则它们是相似的。

具体而言,当两个三角形的两个对应角相等时,它们一定是相似的。

证明方法:首先,我们选取两个相似三角形的两个对应角,设为∠A1和∠A2,∠B1和∠B2。

然后,利用已知信息,通过角度相等的性质进行证明。

最后,根据相似三角形的定义,我们得出结论:∠A1 = ∠A2,∠B1 = ∠B2,所以两个三角形是相似的。

2. AAA相似定理AAA相似定理是指如果两个三角形的三个内角分别相等,则它们是相似的。

具体来说,当两个三角形的三个对应角都相等时,它们是相似的。

证明方法:假设有两个相似三角形,其三个对应角分别为∠A1、∠B1、∠C1,∠A2、∠B2、∠C2。

根据已知信息,我们进行角度的对应比较。

通过比较∠A1和∠A2、∠B1和∠B2、∠C1和∠C2,我们可以得出结论:两个三角形的三个对应角分别相等,因此它们是相似的。

三、几何证明法1. 边长比较法边长比较法是指通过比较两个三角形的对应边长之间的比值来证明相似。

具体而言,当两个三角形的三个对应边长比值相等时,它们是相似的。

证明方法:假设有两个相似三角形,分别为△ABC和△DEF。

我们可以比较边长AB与DE、BC与EF、AC与DF之间的比值。

如果这三组比值相等,即AB/DE = BC/EF = AC/DF,那么我们可以得出结论:两个三角形是相似的。

2. 三角函数关系法三角函数关系法是通过利用正弦定理、余弦定理等三角函数的性质来证明相似三角形。

知识讲解—相似三角形的判定及有关性质

知识讲解—相似三角形的判定及有关性质

相似三角形的判定及有关性质【学习目标】1. 了解平行线截割定理,会证明并应用直角三角形射影定理.2. 理解并掌握相似三角形的判定及性质。

【要点梳理】要点一、平行截割定理 1。

平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他与这组平行线相交的直线上截得的线段也相等。

推论1:经过三角形一边的中点与另一边平行的直线必平分第三边. 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. 2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如右图:l 1∥l 2∥l 3,则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.要点诠释:由上述定理可知:在证明有关比例线段时,辅助线往往作平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.要点二、相似三角形 1.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比值叫做相似比(或相似系数).相似用符号“∽”表示,读作“相似于”。

要点诠释:关于相似三角形要注意以下几点:① 对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.② 顺序性:相似三角形的相似比是有顺序的. ③ 两个三角形形状一样,但大小不一定一样.④ 全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.2.相似三角形的判定定理①两角对应相等的两个三角形相似。

②两边对应成比例且夹角相等的两个三角形相似。

③三边对应成比例的两个三角形相似。

④平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 3.相似直角三角形的判定定理①如果两个直角三角形有一个锐角对应相等,那么它们相似. ②如果两个直角三角形的两条直角边对应成比例,那么它们相似.③如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)知识讲解【学习目标】(1)了解比例的基本性质,了解线段的比、成比例线段的概念;(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,周长的比等于对应边的比,面积的比等于对应边比的平方;(3)了解两个三角形相似的概念,探索两个三角形相似的条件;(4)通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题( 如利用相似测量旗杆的高度);(5)理解实数与向量相乘的定义及向量数乘的运算律。

【知识网络】【要点梳理】要点一、比例线段及比例的性质1。

比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.要点诠释:通常四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一2。

比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3。

平行线分线段成比例定理(1)三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

相似三角形判定定理的证明

相似三角形判定定理的证明
D.两边成比例且有一角相等的三角形都相似
2.如图,在平行四边形ABCD中,点E在AD边上,连接CE
并延长,与BA的延长线交于点F,若AE=2ED,CD=3
B
cm,则AF的长为(
A.5 cm
)
B.6 cm
C.7 cm
D.8 cm
3.已知:如图,∠ABD=∠C,AD=2,AC=8,求AB.
解:∵ ∠ A= ∠ A,∠ABD=∠C,
∴ △ABC ∽△A'B'C' .
C′
A
D
B
E
C
总结
A
D
A
B
E
B
C
“A”型
C
B
C
“x”型
“A”型
A
A
D
E
B
C
“共角”型
A
E
D
E
B
D
B
D
E
D
A
C
C
“共角共边”型
“蝴蝶”型
随堂训练
1.下列命题中是真命题的是( C)
A.有一个角相等的直角三角形都相似
B.有一个角相等的等腰三角形都相似
C.有一个角是120°的等腰三角形都相似
AB AC

.
AD AE
AB
AC
∵ ' ' ' ' ,AD = A'B',
A B AC
AB AC
AC AC

' ' ,∴
' ' , ∴ AE =A'C'.
AD A C
AE A C
∵ ∠ A=∠ A',

相似三角形判定定理

相似三角形判定定理

探讨相似三角形判定定理的逆命题
9字
两三角形如果对应边成比例, 那么这两个三角形是否一定 相似?
9字
两三角形如果面积比等于相 似比的平方,那么这两个三 角形是否一定相似?
9字
回答是肯定的。如果两个三 角形的对应边成比例,那么 它们的对应角必然相等,因 此这两个三角形一定相似。
9字
回答也是肯定的。如果两个 三角形的面积比等于相似比 的平方,那么它们的对应边 必然成比例,因此这两个三 角形一定相似。
该定理是相似三角形判定的基础,也是 应用最广泛的判定方法之一。
判定定理二:两边对应成比例且夹角相等
如果一个三角形的两条边与另一个三角形的两条边对应成比例, 并且夹角相等,则这两个三角形相似。
该定理是相似三角形判定的另一种方法,适用于已知两边和夹 角的情况。
判定定理三:三边对应成比例
如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相 似。
该定理是相似三角形判定的另一种方法,适用于已知三边长度的情况。
以上三个判定定理是相似三角形判定的主要方法,它们在实际应用中具有广泛的适 用性和实用性。同时,这些定理也是学习相似三角形知识的基础和关键。
03
相似三角形证明方法
综合法证明
综合运用相似三角形的性质
01
通过已知条件,结合相似三角形的对应角相等、对应边成比例
飞机的位置。
建筑设计中的应用
比例缩放
在建筑设计中,相似三角形可以帮助 设计师按比例缩放模型,使得不同大 小的建筑保持相同的比例和美感。
透视绘图
在绘制建筑透视图时,相似三角形原 理可以帮助准确表现物体的远近关系 和立体感。
结构分析
在建筑结构分析中,相似三角形可以 帮助工程师理解和计算结构的稳定性 和承重能力。

相似三角形判定定理的证明核心知识

相似三角形判定定理的证明核心知识

相似三角形判定定理的证明核心知识嘿,朋友们!今天咱们要来好好聊聊相似三角形判定定理的证明,这可真是超级有趣又超级重要的知识啊!
你看哈,比如说在建筑工地上,工人师傅们要搭建一个和旁边那栋楼形状相似的小楼,那他们怎么知道自己搭的对不对呢?这就用到咱们的相似三角形啦!
先来说说“两角分别相等的两个三角形相似”这条定理。

想象一下,就像你有两个三角形,它们的两个角就像两个好朋友,长得一模一样,那这两个三角形不就很可能相似嘛!比如说,一个三角形的两个角是 30 度和 60 度,另一个三角形也有 30 度和 60 度的角,这不就是明摆着它们很像嘛!
再讲讲“两边成比例且夹角相等的两个三角形相似”。

这就好像你和你的朋友,身高比例差不多,而且性格也一样(就像那个夹角),那你们不就有很多相似的地方啦?比如说有两个三角形,一条边是 2,另一条边是 4,夹角是 45 度,另一个三角形对应的边是 3 和 6,夹角也是 45 度,那它们肯定相似呀!
还有“三边成比例的两个三角形相似”。

哎呀呀,这就像是你有三堆糖果,比例都一模一样,那这三堆糖果不就很像嘛!比如一个三角形三边分别是 3、4、5,另一个三角形三边是 6、8、10,这不是明摆着相似嘛!
总之啊,这些相似三角形判定定理可太重要啦!它们就像是我们探索几何世界的秘密钥匙,能帮我们解决好多好多实际的问题呢!你不好好掌握,那可就太可惜啦!所以,一定要把这些定理牢记于心,在遇到问题的时候就能轻松应对啦!相信我,学会了这些,你的几何世界会变得超级精彩!。

相似三角形及其判定(知识点串讲)(解析版)

相似三角形及其判定(知识点串讲)(解析版)

专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。

《相似三角形判定定理的证明》知识讲解(提高)

《相似三角形判定定理的证明》知识讲解(提高)

相似三角形判定定理的证明(提高)【学习目标】1.熟记三个判定定理的内容.2.三个判定定理的证明过程.3.学选会用适当的方法证明结论的成立性. 【要点梳理】要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′.求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A ′D ′,过点D 作BC 的平行线,交AC 于点E,则∠ADE=∠B ,∠AED=∠C,(.AD AEAB AC=平行于三角形一边的直线与其他两边相交,截得的对应线段成比例) 过点D 作AC 的平行线,交BC 与点F,则(AD CFAB CB =平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴AE CFAC CB=∵DE ∥BC,DF ∥AC,∴四边形DFCE 是平行四边形. ∴DE=CF. ∴AD AE DEAB AC BC==. 而∠ADE=∠B,∠DAE=∠BAC,∠AED==∠C, ∴△ADE ∽△ABC.∵∠A=∠A ′,∠ADE=∠B=∠B ′,AD=A ′B ′, ∴△ADE ∽△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时 辅助线的做法.要点二、两边成比例且夹角相等的两个三角形相似已知,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,''''AB ACA B A C =,求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB (或它的延长线)上截取AD=A ′B ′,过点D 作BC 的平行线,交AC 于点E,则∠B=∠ADE,∠C=∠AED,∴△ABC ∽△ADE(两个分别相等的两个三角形相似).∴AB ACAD AE =. ∵''''AB AC A B A C =,AD=A ′B ′, ∴''AB AC AD A C =∴''AC AC AE A C =∴AE=A ′C ′ 而∠A=∠A ′∴△ADE ≌△A ′B ′C ′. ∴△ABC ∽△A ′B ′C ′.要点诠释:利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为已知两组角对应相等推得相似或已知平行推得相似的. 要点三、三边成比例的两个三角形相似已知:在在△ABC 和△A ′B ′C ′中,∠A=∠A ′, ''''''AB BC ACA B B C A C ==. 求证:△ABC ∽△A ′B ′C ′.证明:在△ABC 的边AB ,AC (或它们的延长线)上截取AD=A ′B ′,AD=A ′B ′,连接DE.∵''''AB ACA B A C =,AD=A ′B ′,AE=A ′C ′, ∴AB AC AD AE= 而∠BAC=∠DAE,∴△ABC ∽△ADE(两边成比例且夹角相等的两个三角形相似). ∴AB BCAD DE =又''''AB BC A B B C =,AD= A ′B ′, ∴ ''AB BC AD B C =∴''BC BC DE B C =∴DE=B ′C ′,∴△ADE ≌△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′.【典型例题】类型一、两角分别相等的两个三角形相似1、(2015•合肥校级四模)如图,己知:Rt △ABC 中,∠BAC=9O °,AD ⊥BC 于D ,E 是AC 的中点,ED 交AB 延长线于F ,求证: ①△ABD ∽△CAD ; ②AB :AC=DF :AF .【思路点拨】(1)由Rt △ABC 中,∠BAC=9O °,AD ⊥BC ,易得∠BAD=∠ACD ,又由∠ADB=∠ADC ,即可证得△ABD ∽△CAD ; (2)由△ABD ∽△CAD ,即可得,易证得△AFD ∽△DFB ,可得,继而证得结论.【答案与解析】 证明:(1)∵AD ⊥BC , ∴∠ADB=∠ADC=90°,∴∠BAD+∠DAC=90°,∠DAC+∠ACD=90°, ∴∠BAD=∠ACD , ∵∠ADB=∠ADC ,∴△ABD∽△CAD;(2)∵△ABD∽△CAD,∴,∵E是AC中点,∠ADC=90°,∴ED=EC,∴∠ACD=∠EDC,∵∠EDC=∠BDF,∠ACD=∠BAD,∴∠BAD=∠BDF,∵∠AFD=∠DFB,∴△AFD∽△DFB,∴,∴,∴AB:AC=DF:AF.【总结升华】此题考查了相似三角形的判定与性质以及直角三角形的性质,难度适中.类型二、两边成比例且夹角相等的两个三角形相似2、如图,在△ABC中,M、N分别为AB、AC边上的中点.D、E为BC边上的两点,且DE=BD+EC,ME与ND交于点O,请你写出图中一对全等的三角形,并加以证明.【思路点拨】因为M、N分别为AB、AC边上的中点,∠A=∠A,可证明△AMN∽△ABC,则MN∥BC,又因为DE=BD+EC,所以有△MON≌△EOD.【答案与解析】解:△MON≌△EOD.证明:∵M、N分别为AB、AC边上的中点,∴AM:AB=1:2,AN:AC=1:2.∵∠A=∠A,∴△AMN∽△ABC.∴∠AMN=∠ABC,MN=BC.∴MN∥BC.∴∠OMN=∠OED,∠ONM=∠ODE.∵DE=BD+EC,∴DE=BC.∴MN=DE.∴△MON≌△DOE.【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.举一反三【变式】如图,点O是△ABC的垂心(垂心即三角形三条高所在直线的交点),连接AO交CB 的延长线于点D,连接CO交AB的延长线于点E,连接DE.求证:△ODE∽△OCA.【答案】证明:∵O是垂心,∴AO⊥CD,∴∠CDO=90°,同理∠AEO=90°,∴∠AEO=∠CDO,在△AEO和△CDO中,∴△AEO∽△CDO,∴,∴,在△ODE和△OCA中,∴△ODE∽△OCA.3、(2015•大庆模拟)如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE的长是多少?【答案与解析】解:∵D为AB的中点,∴BD=AB=,∵∠DBE=∠ABC,∴当∠DEB=∠ACB时,△BDE∽△BAC时,如图1,则=,即=,解得DE=2;当∠BDE=∠ACB时,如图2,DE交AC于F,∵∠DAF=∠CAB,∴△ADF∽△ACB,∴△BDE∽△BCA,∴=,即=,解得DE=,综上所述,若直线DE截△ABC所得的三角形与△ABC相似,则DE=2或.【总结升华】本题考查了相似三角形判定和性质,其次要注意分类讨论思想的运用.举一反三【变式】如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是B.请在射线BF上找一点M,使以点B、M、C为顶点的三角形与△ABP相似.(请注意:全等图形是相似图形的特例)【答案】解:在射线BF上截取线段,连接M1C,⇒,⇒∠ABP=∠CBM 1,∴△M 1BC∽△ABP.在射线BF 上截取线段BM 2=BP=3,连接M 2C ,⇒△CBM 2≌△ABP.(全等必相似)∴在射线BF 上取或BM 2=3时,M 1,M 2都为符合条件的M .类型三、三边成比例的两个三角形相似4、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )BC D然后根据三组对应边的比相等的两个三角形相似,即可求得答案. 【答案与解析】 解:如图:AB==,AC==,BC=2,A 、∵DE==,DF==,EF=1,∴,∴△DEF∽△BAC, 故A 选项正确;B、∵MN==,MK==,NK=3,∴,=1,,∴△MNK与△ABC不相似,故B选项错误;C、∵PQ==2,PR==,QR=1,∴==,=,=,∴△PQR与△ABC不相似,故C选项错误;D、∵GH==,GL==,HL=2,∴=,=,=,∴△GHL与△ABC不相似,故D选项错误.故选:A.【总结升华】此题考查了相似三角形的判定.此题难度适中,三组对应边的比相等的两个三角形相似定理的应用是解此题的关键.5、如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF 相似,则点F应是甲、乙、丙、丁四点中的()【思路点拨】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【答案与解析】解:根据题意,△ABC的三边之比为 1::,要使△ABC∽△DEF,则△DEF的三边之比也应为1::,经计算只有甲点合适,故选A.【总结升华】本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.举一反三【变式】如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M【答案】C.或N时,其各边是6、2。

相似三角形的判定条件及证明

相似三角形的判定条件及证明

相似三角形的判定条件及证明相似三角形是几何学中重要的概念,它们具有相似的形状但可能具有不同的大小。

在实际问题中,我们经常需要确定两个三角形是否相似。

本文将介绍判定相似三角形的条件及其证明方法。

1. AA相似定理如果两个三角形的两个角分别相等(其中一个角必须是对应角),那么这两个三角形是相似的。

证明:设三角形ABC和三角形DEF满足条件,即∠A = ∠D,∠B = ∠E 或∠C = ∠F。

我们需要证明它们是相似的。

根据AA相似定理,我们只需证明另外一个对应角也相等。

假设∠A = ∠D,∠B = ∠E。

根据三角形内角和为180°,我们可以得到∠C = 180° - ∠A - ∠B = 180° - ∠D - ∠E = ∠F。

因此,三角形ABC和三角形DEF的对应角都相等,根据AA相似定理,它们是相似的。

2. 三边比值相等定理如果两个三角形的三边对应成比例,那么这两个三角形是相似的。

证明:设三角形ABC和三角形DEF满足条件,即AB/DE = BC/EF =AC/DF。

我们需要证明它们是相似的。

假设AB/DE = BC/EF,我们可以得到AB/BC = DE/EF。

根据三角形的角边比例定理,如果三角形的两边之间的比值相等,那么这两个三角形的对应角也相等。

因此,∠A = ∠D,而根据AA相似定理,我们可以得出三角形ABC和三角形DEF是相似的。

3. SAS相似定理如果两个三角形的一对对应边成比例,并且两个对应角分别相等,那么这两个三角形是相似的。

证明:设三角形ABC和三角形DEF满足条件,即AB/DE = AC/DF,并且∠A = ∠D。

我们需要证明它们是相似的。

我们已经得知∠A = ∠D,因此,我们只需证明另外两对对应边之间的比值相等。

设x = AB/DE = AC/DF,我们可以得到DE = AB/x,DF = AC/x。

由此可得:DE/DF = (AB/x)/(AC/x) = AB/AC。

相似三角形的判定和性质-备战2023年中考数学考点微专题

相似三角形的判定和性质-备战2023年中考数学考点微专题

考向5.6 相似三角形的判定和性质【知识要点】1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。

说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。

2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。

3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。

4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。

(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。

(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。

第一:顶角(或底角)相等的两个等腰三角形相似。

第二:腰和底对应成比例的两个等腰三角形相似。

第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。

5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

相似三角形判定定理的证明核心知识

相似三角形判定定理的证明核心知识

相似三角形判定定理的证明核心知识首先,我们来看一下相似三角形的定义。

两个三角形ABC和DEF是相似的,当且仅当它们的对应角度相等,并且对应边的比值相等。

数学符号表示为:∠A=∠D,∠B=∠E,∠C=∠F,且AB/DE=BC/EF=AC/DF。

现在,我们来证明相似三角形的判定定理。

相似三角形判定定理分为三种情况,即AAA(角-角-角)判定定理、AA(角-角)判定定理和SSS(边-边-边)判定定理。

接下来,我们将分别对这三种情况进行证明。

首先,我们证明AAA判定定理。

假设有两个三角形ABC和DEF,它们的对应角度分别为∠A、∠B、∠C和∠D、∠E、∠F。

我们假设∠A=∠D,∠B=∠E,∠C=∠F,要证明这两个三角形是相似的,我们需要证明它们的对应边的比值相等。

根据正弦定理和余弦定理,我们可以得到三角形的边长与角度的关系。

通过计算可以得到AB/DE=BC/EF=AC/DF,因此,根据对应角度相等和对应边的比值相等的条件,我们可以得出相似三角形判定定理中的AAA判定定理。

接下来,我们证明AA判定定理。

假设有两个三角形ABC和DEF,它们的对应角度分别为∠A、∠B、∠C和∠D、∠E、∠F。

我们假设∠A=∠D,∠B=∠E,要证明这两个三角形是相似的,我们需要证明它们的对应边的比值相等。

首先,我们可以得到∠C=180°-∠A-∠B,∠F=180°-∠D-∠E。

然后,根据正弦定理和余弦定理,我们可以得到三角形的边长与角度的关系。

通过计算可以得到AB/DE=BC/EF,因此,根据对应角度相等和对应边的比值相等的条件,我们可以得出相似三角形判定定理中的AA判定定理。

最后,我们证明SSS判定定理。

假设有两个三角形ABC和DEF,它们的对应边分别为AB、BC、AC和DE、EF、DF。

我们假设AB/DE=BC/EF=AC/DF,要证明这两个三角形是相似的,我们需要证明它们的对应角度相等。

根据余弦定理和正弦定理,我们可以得到三角形的角度与边长的关系。

相似三角形判定定理

相似三角形判定定理

相似三角形判定定理三角形是几何学中最基本的几何图形之一,而相似三角形是几何学中常见且重要的概念之一。

在数学中,两个三角形被称为相似三角形,如果它们的对应角相等,并且对应边的比例相等。

相似三角形有着许多有趣的性质和定理,其中最基本也是最重要的之一就是相似三角形判定定理。

相似三角形判定定理对于两个三角形ABC和DEF,如果它们满足以下条件之一,则这两个三角形是相似的:1.三个对应角相等:∠A = ∠D,∠B = ∠E,∠C = ∠F2.两个角相等且夹在两个相等的边之间:∠A = ∠D,∠B = ∠E,且AB/DE = BC/EF相似三角形判定定理的证明方法主要基于几何学中的基本原理和引理。

其中重要的一点是对应角相等的性质,即如果两个角相等,则它们的对应边的比例也相等,这是相似三角形判定定理的关键。

相似三角形的应用相似三角形在解决实际问题中有着广泛的应用。

例如在测量高楼的高度时,可以利用相似三角形来计算。

另外,在地图绘制和图像处理中,也常常需要利用相似三角形的性质来实现缩放和变换。

常见的相似三角形相关题目1.已知两个三角形的三个顶点坐标,判定它们是否相似。

2.已知三角形的三个顶点,求出相似三角形的比例。

3.已知两个三角形的某一条边,以及与该边夹的两个角度,判定它们是否相似。

在解决这些问题时,相似三角形判定定理往往是一个非常有用的工具,并且可以帮助我们简化计算过程,快速得出结论。

总之,相似三角形判定定理是几何学中一个基础而重要的定理,它在几何学的研究和实际应用中都有着广泛的应用价值。

通过理解和掌握这一定理,我们可以更好地理解和运用相似三角形的性质,从而解决各种与相似三角形相关的问题。

相似三角形的判定·基础讲解与巩固练习

相似三角形的判定·基础讲解与巩固练习

相似三角形的判定·基础讲解与巩固练习【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A 的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似. 要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.举一反三:【变式】给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有(填序号).【答案】①②④⑤.类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数.【答案与解析】∵四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;当△CDF∽△AED时,相似比.【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细识图,灵活应用数形结合思想.举一反三:【变式】如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°, 又∵∠AFE=∠CFE,∴△AEF∽△CDF.∴AF EFCF FD, 即AF·FD=CF·FE.3.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【思路点拨】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD 的度数.【答案与解析】解:(1)∵AD=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【总结升华】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF 于F .求证:BP 2=PE ·PF .【思路点拨】从求证可以判断是运用相似,再根据BP 2=PE ·PF ,可以判定所给的线段不能组成相似三角形,这就需要考虑线段的等量转移了. 【答案与解析】连接, ,,是的中垂线,,,, .,.又,∽,,.【总结升华】根据求证确定相似三角形,是解决此类题型的捷径. 举一反三:【变式】如图,F 是△ABC 的AC 边上一点,D 为CB 延长线一点,且AF=BD,连接DF,交AB 于 E. 求证:DE ACEF BC=.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE △AGF ∽△ABC∵DE DBEF GF=, 又∵AF=BD,∴.DE AFEF GF=∵△AGF∽△ABC∴AF AC GF BC=,即DE AC EF BC=.【巩固练习】一、选择题1. 下列判断中正确的是( ).A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ).A. B. C. D.3.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.4. 如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE∽ΔECF D.ΔAEF∽ΔABF6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ).A. B.8 C.10 D.16二、填空题7.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)8如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有_________对.三.解答题13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15.如图,在△ABC中,已知∠BAC=90°,AD⊥BC于D,E是AB上一点,AF⊥CE于F,AD交CE于G点,(1)求证:AC2=CE•CF;(2)若∠B=38°,求∠CFD的度数.【答案与解析】一.选择题1.【答案】C.2.【答案】A.【解析】根据三边对应成比例,可以确定3==226第三边,所以第三边是3.【答案】B.【解析】已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选B.4.【答案】C.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.5.【答案】C.【解析】∵∠AEF=90°, ∴∠1+∠2=90°,又∵∠D=∠C=90°,∴∠3+∠2=90°,即∠1=∠3,∴△ADE∽△ECF.6.【答案】C.【解析】∵ EF∥AB,∴,∵,∴,,∴ CD=10,故选C.二. 填空题7.【答案】AB∥DE.【解析】∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.8.【答案】 3 .【解析】∵∠C=∠E,∠CAB=∠EAD,∴△ACB∽△AED,∴,BC=4,在Rt△ABC中,.9.【答案】;.10.【答案】4.【解析】∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,又∵AC⊥CE,∴∠BCA+∠DCE=90°,∴∠BCA=∠E,∴△ABC∽△CDE.∵C是线段BD的中点,ED=1,BD=4 ∴BC=CD=2∴AB CDCD DE,即AB=4.11.【答案】△OAB,△OCD.12.【答案】3.【解析】∵平行四边形ABCD,∴AD∥BE.AB∥CD∴△EFC∽△EAB; △EFC∽△AFD; △AFD∽△EAB.三综合题13.【解析】∵DE∥BC,∴△ADE∽△ABC,∵,,∴,∴AC=,∴EC=AC-AE=.14.【解析】∵AD∥BC,∴∠ADB=∠DBC,又∵,∴△ABD∽△DCB,∴∠A=∠BDC,∵∠A=90°,∴∠BDC=90°,∴BD⊥CD .15.【解析】解:(1)∵AD⊥BC,∴∠CFA=90°,∵∠BAC=90°,∴∠CFA=∠BAC,∵∠ACF=∠FCA,∴△CAF∽△CEA,∴=,∴CA2=CE•CF;(2)∵∠CAB=∠CDA,∠ACD=∠BCA,∴△CAD∽△CBA,∴=,∴CA2=CB×CD,同理可得:CA2=CF×CE,∴CD•BC=CF•CE,∴=,∵∠DCF=∠ECB,∴△CDF∽△CEB,∴∠CFD=∠B,∵∠B=38°,∴∠CFD=38°.。

相似三角形的性质及判定知识点总结+经典题型总结

相似三角形的性质及判定知识点总结+经典题型总结

一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质知识点睛 中考要求 相似三角形的性质及判定1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D====''''''''(k 为相似比).图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C++====''''''''''''++. 图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法 欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

相似三角形的定义及其判定定理

相似三角形的定义及其判定定理

相似三角形的定义及其判定定理本周重点和难点:相似三角形的判定定理 一、知识点回顾1、相似三角形的定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2、定理:平行于三角形的一边的直线和和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

3、相似三角形的传递性:如果△ABC ∽ △A 1B 1C 1,△A 1B 1C 1 ∽ △A 2B 2C 2,那么△ABC ∽ △A 2B 2C 2。

4、相似三角形的判定方法:(1)根据定义:对应角相等,对应边成比例的三角形相似。

(2)根据平行线:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

(3)判定定理1:两角对应相等的两个三角形相似。

(4)判定定理2:两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:三边对应成比例,两三角形相似。

(6)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

二、例题:例1、如图,在△ABC 中,DE ∥BC ,AD=EC ,DB=1cm ,AE=4cm ,BC=5cm ,求DE 的长。

解:∵DE ∥BC∴EC AEDB AD =(平行于三角形一边的直线截其他两边,所得的对应线段成比例。

) ∴AD×EC=DB×AE 又∵AD=EC ,AE=4cm ,DB=1cm ∴AD=EC=DB AE ⋅=2cm又∵DE ∥BC ∴BC DEAB AD =(平行于三角形一边的直线和其他两边相交所构成的三角形与原三角形相似。

)∴DE=310例2、如图,在Rt △ABC 中,∠ABC=90°,AE 平分∠CAB ,BD ⊥AC 于D ,交AE 于F ,那么图中相似三角形共有多少对?解:∵BD ⊥AC ,∠ABC=90°∴△ADB ∽ △BDC ∽ △ABC 。

又∵AF 平分∠BAC ∴∠DAF=∠BAE∴Rt △ABE ∽ Rt △ADF∴图中共有4对相似三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形判定定理的证明(基础)【学习目标】1.熟记三个判定定理的内容.2.三个判定定理的证明过程.3.学选会用适当的方法证明结论的成立性.【要点梳理】要点一、两角分别相等的两个三角形相似已知:如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC∽△A′B′C′.证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作BC的平行线,交AC于点E,则∠ADE=∠B,∠AED=∠C,ADAE?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例).ABAC过点D作AC的平行线,交BC与点F,则ADCF?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABCBAECF?∴ACCB∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形.∴DE=CF.∴AE:AC=DE:CBADAEDE??. ∴ABACBC而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C,∴△ADE∽△ABC.∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′,∴△ADE∽△A′B′C′.∴△ABC∽△A′B′C′.要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时辅助线的做法.【典型例题】类型一、两角分别相等的两个三角形相似,求证:△ADE∽△ABC.D,CE⊥AB,垂足为E1、在△ABC中,∠A=60°,BD⊥AC,垂足为断可判∠AEC=∠ADB=90°,利用∠EAC=∠DAB路点拨】由BD⊥AC,CE⊥AB得到【思,加上∠EAD=∠CAB,根据三角形相似的==,利用比例性质得△AEC∽△ADB,则判定方法即可得到结论.【答案与解析】证明:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,而∠EAC=∠DAB,∴△AEC∽△ADB,∴,=∴,= ∵∠EAD=∠CAB,∴△ADE∽△ABC.有两组有两组角对应相等的两三角形相似;【总结升华】考查了相似三角形的判定与性质:对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等.举一反三°,ADE=60,且∠在BC、AC上,点是等边三角形D,E分别ABC【变式】如图,△CE.CD=AC?证求:BD?【答案】证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE,,DCE△∽ABD△∴.ABBDCC BCD=ACBCD=AC2、已知,Rt△ABC中,∠ACB=90°,点H在AC上,且线段HD⊥AB于D,BC的延长线与DH的延长线交于点E,求证:△AHD∽△EBD.【思路点拨】首先利用三角形的内角和定理证明:∠A=∠E,再有垂直得到90°的角,∠ADH=∠ACB=90°,从而证明:△AHD∽△EBD.【答案与解析】证明:∵HD⊥AB于D,∴∠ADH=90°,∴∠A+∠AHD=90°,∵∠ACB=90°,∴∠E+∠AHD=90°,∴∠A=∠E,∵∠ADH=∠ACB=90°,∴△AHD∽△EBD.【总结升华】考查了垂直定义、三角形内角和定理以及相似三角形的判定方法:两角法:有两组角对应相等的两个三角形相似.要点二、两边成比例且夹角相等的两个三角形相似ABAC . C′A′B′,A=′BC′中,∠∠A′∽△,求证:△ABC′和△在△已知,ABCA A'B'A'C'的平行线,BC作D过点,′B′AD=A(或它的延长线)上截取AB的边ABC证明:在△.E,则交AC于点AED,C=∠B=∠ADE,∠∠).ADE(两角分别相等的两个三角形相似∴△ABC∽△ACAB?∴. AEADACAB?, ′B′∵ ,AD=A'''ACA'BACAB?∴'A'CADACAC?∴'A'CAE′AE=A′C∴′∠A而∠A=. ′′CADE≌△A′B∴△.′′C∽△A′B∴△ABC要点诠释:利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为已知两组角对应相等推得相似或已知平行推得相似的.类型二、两边成比例且夹角相等的两个三角形相似3、如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接 G.EF并延长交BC的延长线于点 1)求证:△ABE∽△DEF;(的长.4,求BG(2)若正方形的边长为【思路点拨】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;BG的长.2)根据平行线分线段成比例定理,可得CG的长,即可求得(【答案与解析】为正方形,1)证明:∵ABCD(∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,,∴∵DF=DC,,∴.∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【总结升华】考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用.举一反三【变式】(2015?随州)如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()=D.C .= B A.∠AED=∠B .∠ADE=∠C【答案】D;提示:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;=时,△ABC∽△AED当.D .故选4、(2014秋?揭西县校级期末)如图,F为平行四边形ABCD的边AD的延长线上的一点,BF 分别交于CD、AC于G、E,若EF=32,GE=8,求BE.,BE=x解:设【答案与解析】.∵EF=32,GE=8,∴FG=32﹣8=24,∵AD∥BC,∴△AFE∽△CBE,=,∴==+1①∴则∵DG∥AB,∴△DFG∽△CBG,= 代入①∴+1,=解得:x=±16(负数舍去),故BE=16.【总结升华】此题主要考查了相似三角形的判定、平行四边形的性质,得出△DFG∽△CBG 是解题关键.举一反三【变式】如图,在4×3的正方形方格中,△ABC和△DEC的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC=;)∠ABC=135°,【答案】解:(1 )相似;(2=,;∵BC=EC=;∴,∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.要点三、三边成比例的两个三角形相似ABBCAC??. 和△A′B′C′中,已知:在△ABC A'B'B'C'A'C'. A′BC′′求证:△ABC∽△证明:在△ABC的边AB,AC(或它们的延长线)上截取AD=A′B′,AE=A′C′,连接DE. ABAC?, ′′C′B′∵,AE=A,AD=A A'B'A'C'ABAC?∴ADAE而∠BAC=∠DAE,∴△ABC∽△ADE(两边成比例且夹角相等的两个三角形相似).ABBC?∴DEADBCAB?, ′B′又,AD= A'C'B'A'BBCAB?∴'CB'ADBCBC ∴''CDEB∴DE=B′C′,∴△ADE≌△A′B′C′,∴△ABC∽△A′B′C′.类型三、三边成比例的两个三角形相似5、已知:正方形的边长为1(1)如图①,可以算出正方形的对角线为,求两个正方形并排拼成的矩形的对角线长,n个呢?)根据图②,求证△BCE∽△BED;2(.(3)由图③,在下列所给的三个结论中,通过合情推理选出一个正确的结论加以证明,1.∠BEC+∠BDE=45°;⒉∠BEC+∠BED=45°;⒊∠BEC+∠DFE=45°【思路点拨】(1)主要是根据勾股定理寻找规律,容易在数据中找到正确结论;(2)在每个三角形中,根据勾股定理易求出每条边的长度,可利用三组边对应成比例,两三角形相似来判定;(3)欲证∠BEC+∠DFE=45°,在本题中等于45°的角有两个,即∠AEB和∠BEF,所以在证明第三个结论时,需把这两个角想法转移到已知的一个角中去,利用等腰梯形的性质求解即可.【答案与解析】=,)由勾股定理知,在第一个图形中,对角线长 =1解:(,第二个图形中,对角线长== =,第三个图形中,对角线长个图形中,对角线长=;所以第n EC=BE=,,中,(2)在△BCEBC=1,,,BE=BD=2,ED=在△BED中,所以,∴△BCE∽△BED;(3)选取③,∵CD∥EF,且CE=DF,∴四边形CEFD为等腰梯形,∴∠DFE=∠CEF,∴∠BEC+∠DFE=∠BEC+∠CEF=45°.【总结升华】此题主要运用三边对应成比例的两个三角形相似的判定定理、勾股定理的运用、等腰梯形的性质来解决问题的.【巩固练习】一、选择题1. 如图,已知∠C=∠E,则不一定能使△ABC∽△ADE的条件是()BCACABAC CD B A ∠BAD=∠CAE∠B=∠D AEADAEDE.2.在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是()A.一定相似 B.当E是AC中点时相似 C.不一定相似 D.无法判断FC=BC上,且.图中相似三角形CD的中点,点F在BC3.如图,在正方形ABCD中,E是共有()A. 1对 B. 2对 C. 3对 D. 4对4. (2015?荆州)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()=. = ..∠ABP=∠C A B.∠APB=∠ABC CD5.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()DA C B)1有下列条件:()与△A′B′C′中,;6.2;(在△ABC(3)∠A=∠A′;(4)∠C=∠C′.如果从中任取两个条件组成一组,那么能判断)△ABC∽△A′B′C′的共有多少组(.A. 1 B. 2 C. 3 D. 4二、填空题7.(2015春?工业园区期中)如图,在△ABC中,P为AB上一点,则下列四个条件中2 4)AB?CP=AP?CB,)AC=AP?AB;(((1)∠ACP=∠B;2)∠APC=∠ACB;(3 (填序号).和△ACB 相似的条件有其中能满足△APC8.如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)9.如图,△ABC与△DEF的顶点均在方格纸中的小正方形方格(边长为一个单位长)的顶点处,则△ABC △DEF(在横线上方填写“一定相似”或“不一定相似”或“一定不相似”).中,已知,又因为,在△OAOB和△DOC,与10.如图,ACBD相交于点 DOC.∽△可证明△AOB11.如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中:①BE=DC;②∠BOD=60°;③△BOD∽△COE.正确的序号是.12.如图,D是△ABC的边BC上的一点,∠BAD=∠C,∠ABC的平分线分别与AC、AD相交于点E、F,则图形中共有对相似三角形.(不添加任何辅助线)三、解答题13.(2014秋?射阳县校级月考)如图,在△ABC中,已知∠BAC=90°,AD⊥BC于D,E是AB上一点,AF⊥CE于F,AD交CE于G点,2AC=CE?CF;(1)求证:的度数.(2)若∠B=38°,求∠CFD在同一条直线上.,EAC,点B,A.如图,14AB=3AC,BD=3AE,又BD∥ CAE;1)求证:△ABD ∽△(的长.BD=a,求BC2)如果AC=BD,,设AD=2BD(.交于点MBFCE=DFCD分别是边、DA上的点,且,AE与FEABCD15.已知:正方形中,、;ABF)求证:△≌△DAE1(.相似的所有三角形(不添加任何辅助线)ABM)找出图中与△2(.【答案与解析】一、选择题1.【答案】D;【解析】由题意得,∠C=∠E,A、若添加∠BAD=∠CAE,则可得∠BAC=∠DAE,利用两角法可判断△ABC∽△ADE,故本选项错误;B、若添加∠B=∠D,利用两角法可判断△ABC∽△ADE,故本选项错误;=,利用两边及其夹角法可判断△ABC∽△ADE,故本选项错误;C 、若添加,不能判定△ABC∽△ADE,故本选项正确;、若添加D=故选D.2.【答案】A.【解析】连结OC,,∵∠C=90°,AC=BC ∴∠B=45°,的中点,O为AB∵点∠BCO=45°,OC=OB,∠ACO=∴∠BOF=90°,∠COF+∵∠EOC+∠COF= ,∠BOF∴∠EOC= BOF中,在△COE和△),BOF(ASA∴△COE≌△,∴OE=OF 是等腰直角三角形,∴△OEF ∠B=45°,∠A=∴∠OEF=∠OFE= CAB.∴△OEF∽△△.故选A;【答案】C3. 3对.理由如下:【解析】图中相似三角形共有是正方形,∵四边形ABCD ,AD=DC=CB ∠C=90°,D=∴∠.FC=BC,∵DE=CE,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,CEF∠,:EC,∠DAE=∴AE:EF=AD DE,AE:EF=AD:∴ EF,AD:AE=DE:即 DAE+∠AED=90°,∵∠ CEF+∠AED=90°,∴∠∴∠AEF=90°, AEF,∴∠D=∠ AEF,∴△ADE∽△ ECF,∽△ADE ∽△∴△AEF ECF.,△AEF∽△∽△ECF,△ADE∽△AEF即△ADE .C故选D.【答案】4. 时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;【解析】A、当∠ABP=∠C 时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC、当时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C= 、无法得到△ABP∽△ACB,故此选项正确.D .故选:D ;5.【答案】B =2【解析】根据勾股定理,,AB= BC=,=,AC==的三边之比为2所以△ABC:=1:2 ::,,三角形的三边分别为,2A==3,三边之比为2、:: 3,故本选项错误;:3:=,4B,、三角形的三边分别为2,三边之比为2:4:2=1:2,:=2 故本选项正确;,故本32::C、三角形的三边分别为2,3,=,三边之比为选项错误;:=三边之比为4=,,D、三角形的三边分别为:,,故本选项错误.4 C;6.【答案】,)4()3(,)4()2(,)2()1(∽△A′B′C′的有:ABC【解析】能判断△.∴能判断△ABC∽△A′B′C′的共有3组.故选C.二、填空题7.【答案】(1)、(2)、(3).【解析】∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△APC,所以(1)正确;当∠APC=∠ACB时,△ACP∽△APC,所以(2)正确;24)错误.3)正确,当(=,即AC=AP?AB时,△ACP∽△APC,所以(故答案为:(1),(2)(3).或;∠1 【答案】∠C=∠2或∠B=8. 9.【答案】一定相似;【解析】根据图示知: AC=;AB=2,BC=1, DF=5,DE=2,,EF= ===∴,=∴△ABC∽△DEF.故答案是:一定相似.10.【答案】∠AOB=∠DOC;=,∠AOB=∠DOC,【解析】∵∴△AOB∽△DOC(两边对应成比例,夹角相等,两三角形相似).故答案为:∠AOB=∠DOC.11.【答案】①②;【解析】∵△ABD、△AEC都是等边三角形,∴AD=AB,AE=AC,∠DAB=∠CAE=60°,∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°,∴∠DAC=∠BAE,∴△DAC≌△BAE,∴BE=DC.∴∠ADC=∠ABE,∵∠BOD+∠BDO+∠DBO=180°,∴∠BOD=180°﹣∠BDO﹣∠DBO=180°﹣(60°﹣∠ADC)﹣(60°+∠ABE)=60°,∵△DAC≌△BAE,∴∠ADC=∠ABE,∠AEB=∠ACD,∵∠DBO=∠ABD+∠ABE=60°+∠ABE,∠OCE=∠ACE+∠ACO=60°+∠ACD,∵∠ABE≠∠ACD,∴∠DBO≠∠OCE,∴两个三角形的最大角不相等,∴△BOD不相似于△COE;故答案为:①②.12.【答案】3【解析】在△ABC与△DBA中,∵∠ABD=∠ABD,∠BAD=∠C,∴△ABC∽△DBA,中,与△CBE 在△ABF ABC 平分∠,∵BF CBE ,∴∠ABF=∠ BCE ,又∠BAF=∠ CBE .∴△ABF ∽△ DBF ,同理可证得:△ABE ∽△ 3对相似三角形.所以图形中共有 .3故答案为: 三、解答题 )∵AD ⊥BC ,【解析】解:(113. ∴∠CFA=90°, ∵∠BAC=90°,∴∠CFA=∠BAC , ∵∠ACF=∠FCA , ∴△CAF ∽△CEA ,=∴,2=CE?CF ;∴CA )∵∠CAB=∠CDA ,∠ACD=∠BCA ,2( ∴△CAD ∽△CBA , ∴,=2 ∴CA=CB ×CD ,2 同理可得:CA=CF ×CE , ∴CD?BC=CF?CE ,=,∴ ∵∠DCF=∠ECB , ∴△CDF ∽△CEB , ∴∠CFD=∠B , ∵∠B=38°, ∴∠CFD=38°.【解析】14. ,AE 在同一条直线上,,,点∥)证明:∵(1BDACB DBA=∴∠∠CAE ,==3,又∵∴△ABD ∽△CAE ; (2)连接BC , AD=2BD ,AB=3AC=3BD , ∵222222∴AD+BD=8BD+BD=9BD=AB ,∴∠D=90°,由(1)得△ABD ∽△CAE ∴∠E=∠D=90°,AD=BD ,,AB=3BDEC=, ∵AE=BD 222∴在Rt △BCE 中,BC=(AB+AE )+EC2222,)+BD (=12aBD )==(BD3BD+ aBC=2∴.15.【解析】(1)证明:∵ABCD 是正方形, ∴AB=AD=CD ,∠BAD=∠ADC=90°. ∵CE=DF ,∴AD ﹣DF=CD ﹣CE .∴AF=DE .中,DAE 在△ABF与△∴△ABF≌△DAE(SAS).(2)解:与△ABM相似的三角形有:△FAM;△FBA;△EAD,∵△ABF≌△DAE,∴∠FBA=∠EAD.∵∠FBA+∠AFM=90°,∠EAF+∠BAM=90°,∴∠BAM=∠AFM.∴△ABM∽△FAM.同理:△ABM∽△FBA;△ABM∽△EAD.。

相关文档
最新文档