最新人教版高一数学必修1第一章“集合间的基本关系”教学设计2
新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
最新人教版高中数学必修一集合间的基本关系优质教案
1.1.2集合间的基本关系教学设计(师)一、教学目标1.知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集.(2)理解子集.真子集的概念.(3)能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.3.情感、态度与价值观(1)树立数形结合的思想.(2)体会类比对发现新结论的作用.二、教学重点.难点重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.三、学法让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.四、教学过程:(一)复习回顾:(1)元素与集合之间的关系(2)集合的三性:确定性,互异性,无序性(3)集合的常用表示方法:列举法,描述法(4)常见的数集表示(二)创设情景,新课引入:问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生;欲知谁正确,让我们一起来观察.研探.(三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为我班第一组男生的全体组成的集合,B 为我班班第一组的全体组成的集合;(3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F ==.组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:归纳:①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B(或B 包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
高中数学 第一章《集合间的基本关系》教案 新人教A版必修1
课题:§教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0N ;(2)2R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B 用Venn 图表示两个集合间的“包含”关系(B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=A B B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
高中数学 第一章《集合间的基本关系》教案 新人教A版必修1
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2)2 Q ;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B 用Venn 图表示两个集合间的“包含”关系)(A B B A ⊇⊆或(二) 集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=A B B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆B A若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
【人教A版高一数学必修1教学设计】集合间的基本关系
授课教师授课时间课题集合间的基本关系教学目标知识目标(1)了解集合之间包含与相等的含义,能识别给定集合的子集。
(2)理解子集.真子集的概念。
技能目标让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.情感态度价值观树立数形结合的思想重点集合间的包含与相等关系,子集与其子集的概念.难点属于关系与包含关系的区别.教学过程及方法教学内容教学环节与活动设计(—)创设情景,揭示课题问题l:实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断。
而是继续引导学生:欲知谁正确,让我们一起来观察、研探.问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B==;(2)设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设{|},{|};C x xD x x==是两条边相等的三角形是等腰三角形(4){2,4,6},{6,4,2}E F==①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:()A B B A⊆⊇或读作:A含于B(或B包含A).②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.图一图二组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。
并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图。
如图l和图2分别是表示问题2中实例1和实例3的Venn图.BA(B)教学过程及方法教学内容教学环节与活动设计问题3:与实数中的结论“若,,a b b a a b≥≥=且则”相类比,在集合中,你能得出什么结论?教师引导学生通过类比,思考得出结论: 若,,A B B A A B⊆⊆=且则.问题4:请同学们举出几个具有包含关系.相等关系的集合实例,并用Venn图表示.(二)学生自主学习,阅读理解然后教师引导学生阅读教材第6-7页中的相关内容,并思考回答下例问题:(1)集合A是集合B的真子集的含义是什么?什么叫空集?(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?(3)0,{0}与∅三者之间有什么关系?(4)包含关系{}a A⊆与属于关系a A∈正义有什么区别?试结合实例作出解释.(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?(6)能否说任何一个集合是它本身的子集,即A A⊆?(7)对于集合A,B,C,D,如果A⊆B,B⊆C,那么集合A与C有什么关系?三)质疑答辩,排难解惑例1、写出{a,b}的所有子集,并指出其中哪些是它的真子集.学生主动发言,教师给予评价.教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法.教学过程及方法教学内容教学环节与活动设计例2、已知A={dd21,1,1++},B={2,,1qq},若A=B,则集合C={qd,}= .例3、已知},321|{},31|{-≤≤-=≤≤=axaxBxxA若AB⊆,求实数a的范围.课堂练习:1.满足条件{1,2}M⊆{1,2,3,4,5}的集合M有几个?2、课本第7页练习教学小结子集、真子集的概念教后反思。
人教版高中数学必修一教案:1、1、2 集合间的基本关系
1.1.2 集合间的基本关系高一数学教材分析《集合间的基本关系》单独作为一节教学内容具有承上启下的作用,实际上,学生在小学和初中已接触过一些集合,如自然数集、有理数集、实数集、三角形集合、一元一次不等式的解集等等,只是没有这样叫而已,现在只是从集合的角度来重新审视原来所学的数与式的关系。
这节《集合间的基本关系》是对上一节所学的集合基本概念的深化、延伸,同时也是下一节集合运算的基础和前提,是用集合观点理清集合之间内在联系的桥梁和工具。
集合单元的核心是元素与集合之间的关系,集合之间的关系是通过元素与集合之间的关系来确定的,而元素与集合之间的关系就需要判断元素是否具有相应集合的特征性质,对这一部分内容的学习,能加深学生对子集概念的理解,能更好地认识到集合间关系的本质,从而学会抓住元素与集合之间的关系来研究问题。
教学时,要重视使用Venn图,这有助于学生体会直观图示对理解抽象概念的作用。
本节通过类比两个实数之间的大小关系,探究两个集合之间的关系;通过实例分析,获知两个集合间的包含与相等关系,然后给出定义;从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.课时分配本节内容用1课时的时间完成,主要讲解子集、真子集、集合相等、空集的概念,然后重点借助例题加深对以上概念的理解和灵活运用。
教学目标重难点: 1、子集、真子集的概念及它们的联系与区别;2、空集的概念以及与一般集合间的关系.知识点:(1)理解集合的包含和相等的关系.(2)了解使用Venn图表示集合及其关系.(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.能力点:熟练掌握集合之间的包含关系,已知包含关系,会求字母的取值范围。
教育点:应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.考试点:解题过程中,重视空集∅的特殊情况。
易错易混点:0,{0}与∅三者之间的关系。
高中数学第一章1.1.2集合的基本关系教学设计2新人教B版必修第一册
1.1.2集合的基本关系课本从学生最为熟悉的班级所有同学组成的集合出发,引入集合间的关系,形成子集、真子集相等概念表述.在学习此内容时要注意两点,一是学习时注意顺序性,按子集、真子集、集合相等顺序逐一探究、尝试、发现、理解;二是把握维恩图的“出场”时机,体会其丰富的数学内涵。
在没有谈及真子集前,用维恩图表述是不完整的,还可能有相等,这里会引起纠缠不清的问题。
教学目标:1. 理解集合之间包含与相等的含义;2. 能识别给定集合的子集;3. 能判断给定集合间的关系.核心素养:1.数学抽象:依据具体实例从集合的元素的角度分析集合间的关系,抽象出子集、真子集等概念;2.逻辑推理:通过子集、真子集的定义理解相关性质及集合相等概念;3.直观想象:使用Venn图合理表达集合间的关系;4.数学运算:给定集合子集个数运算及推广。
1.教学重点:理解集合间包含与相等的含义.2.教学难点:包含关系的判断与证明.(空集与任意集合的关系).探究问题一如果一个班级中,所有同学组成的集合记为,而所有女同学组成的集合记为.1.你觉得集合和之间有怎样的关系?2.你能从什么样的角度把他们的关系分析得更清楚?3.刚入学你可能对我们班的全部同学还没有熟悉,是否考虑从简单的数学问题把类似关系说清楚呢?给定两个集合,,它们之间有什么区别于联系呢?(1)集合中的元素个数有差异;(2)集合的元素都是集合的元素.针对上述(2),我们可以举出很多相同类型的例子,也能判断探究问题中集合的任意一个元素都是集合的元素。
1.子集一般地,如果集合的任意一个元素都是集合的元素,那么集合称为集合的子集.(1)记作 (或);(2)读作“包含于”(或“包含”);(3)不是的子集,记作 (或).尝试与发现尝试(1)根据子集的定义判断,如果,那么吗?根据子集的定义,;发现(1):非空集合都是它自身的子集,即成立.尝试(2):是的子集吗?根据子集的定义,是的子集.发现(2):成立尝试(3):你认为可以规定空集是任意一个集合的子集吗?为什么?因为空集不包含任何元素,不会出现“内有元素不在集合”的可能,因此,这里的也可以是空集.发现(3):空集是任意一个集合的子集.体会这两个词出现在此处有没有意义:请君入瓮、孙猴子跳不出如来佛的手心.探究问题二对于探究问题一中的集合,,如果中有男同学,还成立吗?2.真子集一般地,如果集合是集合的子集,并且中至少有一个元素不属于,那么集合称为集合的真子集,(1)记作(或);(2)读作“真包含于”(或“真包含”) .尝试与发现尝试(1):分析集合,之间的关系。
人教版高中数学必修一1、1、2集合间的基本关系教案
1、1、2集合间的基本关系
一、教学目标:.
1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系
2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系
二、教学重难点:
教学重点:理解集合间包含与相等的含义.
教学难点:理解空集的含义.
三、教学课时:1课时
四、教学过程:
课题引入:实数有相等关系,大小关系,元素与集合之间有属于与不属于关系,
那类比他们的关系,集合之间是否具备类似的关系?
思考:
例1:观察下面三个集合, 找出它们之
间的关系: A={1,2,3},B={1,2,7},C={1,2,3,4,5}
子集:一般地,对于两个集合,如果A中任意一个元素都是B的元素,称集合A 是集合B的子集,记作A B.读作“A包含于B”或“B包含A”.这时说集合A 是集
合B的子集.
注意:①区分∈;②也可用.
文氏图:
A
B
思考:A= {x | x是两条边相等的三角形} B= {x | x是等腰三角形}
有A B,B A,则A=B.
集合相等:若A B,B A,则A=B.
思考:A={1, 2, 7},B={1, 2, 3, 7},
真子集:如果A B,但存在元素x B,且x∈A,称A是B的真子
集.记作A B(或B A).读作A真包含于B,或B真包含A。
思考:指出B={x| x2+1=0,x∈R}.的元素
B没有元素.
1 / 2。
高中数学人教版(新教材)必修1:1.2 集合间的基本关系学案 导学案
1.2 集合间的基本关系学习目标 1.理解子集、真子集、集合相等、空集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一子集、真子集、集合相等1.子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的任意一个元素都是集合B中的元素,就称集合A是集合B的子集A⊆B(或B⊇A)真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等A=B2.Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.3.子集的性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.知识点二空集1.定义:不含任何元素的集合叫做空集,记为∅.2.规定:空集是任何集合的子集.思考{0}与∅相等吗?答案不相等.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.1.空集中不含任何元素,所以∅不是集合.(×)2.任何一个集合都有子集.(√)3.若A=B,则A⊆B且B⊆A.(√)4.空集是任何集合的真子集.(×)一、集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅{0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4答案 C解析对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序实数对(0,1)为元素的单点集,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③④是正确的.(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.反思感悟判断集合间关系的方法(1)用定义判断①任意x∈A时,x∈B,则A⊆B.②当A⊆B时,存在x∈B,且x∉A,则A B.③若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合,直观地进行判断,但要注意端点值的取舍.跟踪训练1能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()答案 B解析x2-x=0得x=1或x=0,故N={0,1},易得N M,其对应的V enn图如选项B所示.二、子集、真子集的个数问题例2已知集合M满足{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.解由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.反思感悟公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含n个元素的集合有(2n-2)个非空真子集.跟踪训练2已知集合A={x|0≤x<5,且x∈N},则集合A的子集的个数为()A.15B.16C.31D.32答案 D解析A={0,1,2,3,4},含有5个元素的集合的子集的个数为25=32.三、集合间关系的应用例3已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B A,求实数m的取值范围.解(1)当B≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎪⎨⎪⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3. (2)当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}. 延伸探究1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.解 (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎪⎨⎪⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. 解 当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎪⎨⎪⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m >2,m ≤-3,m ≥3,∴m不存在.即不存在实数m使A⊆B.反思感悟(1)利用数轴处理不等式表示的集合间的关系问题时,可化抽象为直观,要注意端点值的取舍,“含”用实心点表示,“不含”用空心点表示.(2)涉及到“A⊆B”或“A B且B≠∅”的问题,一定要分A=∅和A≠∅两种情况讨论,不要忽视空集的情况.跟踪训练3若集合A={x|1<x<2},B={x|x>a},满足A B,则实数a的取值范围是() A.{a|a≥2} B.{a|a≤1}C.{a|a≥1} D.{a|a≤2}答案 B解析如图所示,A B,所以a≤1.1.下列四个集合中,是空集的是()A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}答案 B解析选项A,C,D都含有元素,而选项B中无元素,故选B.2.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A答案 D解析集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,∅⊆A,D正确.3.已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆CC.A B⊆C D.A=B⊆C答案 B解析集合A,B,C关系如图.4.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.答案 4解析∵B⊆A,∴元素3,4必为A中元素,∴m=4.5.已知集合A={x|x≥1或x≤-2},B={x|x≥a},若B A,则实数a的取值范围是________.答案a≥1解析∵B A,∴a≥1.1.知识清单:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.。
集合间的基本关系教学设计(新教材)
第一章集合与常用逻辑用语第2节集合间的基本关系教学设计教材分析本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。
集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。
高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。
本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过V enn图理解抽象概念,培养学生数形结合思想。
教学目标与核心素养教学重难点1.教学重点:集合间的包含与相等关系,子集与其子集的概念;2.教学难点:属于关系与包含关系的区别.教学过程中,你能得出什么结论? 探究二 集合相等1.观察下列两个集合,并指出它们元素间的关系 (1)A ={x |x 是两条边相等的三角形}, B ={x |x 是等腰三角形}.(1)中集合A 中的元素和集合B 中的元素相同.2.定义:如果集合A的任何一个元素都是集合B的元素,同时集合B任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B⎧⎨⎩A ⊆BA =B ⇔B ⊆A 牛刀小试3:()(){}{}12012A x x x B A B =++==--,,。
集合与什么关系?【答案】A=B 。
探究三 真子集1.观察以下几组集合,并指出它们元素间的关系: (1) A={1,3,5}, B={1,2,3,4,5,6}; (2)A={四边形}, B={多边形}。
2.定义:如果集合A ⊆B,但存在元素x ∈B,且x ∉A ,并且A≠B,称集合A 是集合B 的真子集. 记作: A B (或B A ) 读作:“A 真含于B ”(或B 真包含A )。
人教课标版高中数学必修一《集合间的基本关系》教案-新版
1.1.2 集合间的基本关系一、教学目标 (一)核心素养本节课是集合的含义与表示的延续,核心是集合与集合间的“包含”、“真包含”、“相等”关系,通过对集合间关系的探究,感受数学抽象、直观想象、逻辑推理,提高分析与解决数学问题的能力,熟悉数学探究基本特点.通过实例,了解子集、真子集、空集等概念,区分一些容易混淆的关系和符号,规范数学表达. (二)学习目标1.在应用类比思想探究两个集合的包含和相等关系的过程中,体会辨证思想,能用数学的思维方式去认识世界,提高分析、解决问题的能力.2.理解集合之间包含与相等的含义,在具体情境中,了解空集的含义,掌握并能使用Venn 图表达集合的关系,加强从具体到抽象的思维能力,体会数形结合的思想.3.能识别给定集合的子集,能判断给定集合间的关系,能区别元素与集合间的属于关系和集合间的包含关系. (三)学习重点 1.子集、真子集、空集的概念.2.集合间包含关系与相等关系的含义.(四)学习难点 1.对子集、真子集、空集概念的正确理解. 2.对新学的数学符号的正确使用.3.属于与包含之间的区别.二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第6页至第7页,填空:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作)(或A B B A ⊇⊆,读作“A 包含于B ”(或“B 包含A ”).如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时,集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A =B .如果B A ⊆,但存在元素,B x ∈且,A x ∉我们称集合A 是集合B 的真子集,记作AB (或B ⫌A ).我们把不含任何元素的集合叫空集,记作∅,并规定:空集是任何集合的子集. (2)写一写:写出集合},{b a 的所有子集. 0个元素的:∅;1个元素的:}{},{b a ; 2个元素的:},{b a .(3)想一想:包含关系⊆与属于关系∈有什么区别?“∈”与“⊆”的区别:“∈”表示元素与集合之间的关系,如N N ∉-∈1,1;“⊆”表示集合与集合之间的关系,如R N ⊆,R ⊆∅.2.预习自测(1)数0与集合 ∅的关系是( )A .0∈∅B .0=∅C .{0}=∅D .0 ∉∅【答案】D .(2)集合{1,2,3}的子集的个数是( ) A .7B .4C .8D .6【答案】C .(3)下列六个关系式中正确的个数为( )①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤0∈{0}. A .2 B .5 C .4 D .3 【答案】D . (二)课堂设计 1.知识回顾(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.(2)如果a 是集合A 中的元素,就说a 属于集合A ,记作A a ∈;如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A .(3)除了用自然语言表示集合,还能用列举法、描述法表示集合.2.问题探究探究一 回顾旧知,提出新问 ●活动① 回顾旧知问题:元素与集合之间的关系应如何表示?(可举例进行说明) 元素与集合间是“∈”或“∉”的关系,如1∈{1,2,3};0∉{1,2,3}等.【设计意图】检验学生上节课所学知识掌握情况,并为后续探究集合间的关系做好铺垫. ●活动② 创设情境,提出问题对两个数b a 、,应有,b a b a b a =<>或或对于两个集合A 、B ,它们之间有什么关系? 【设计意图】结合学生已有知识经验,通过类比启发学生思考并积极探索集合间的关系.探究二 探究集合间的关系、集合的子集以及集合的性质★▲ ●活动① 归纳提炼子集的概念观察下面4个例子,指出给定两个集合中的元素有什么关系?每个例子中的两个集合又有什么关系呢?(1)}3,2,1{=A ,}6,5,4,3,2,1{=B ;(2)}2{)班全体女生新华中学高一(=C ,}2{)班全体学生新华中学高一(=C ; (3)E ={x ︱x 是等边三角形},F ={x ︱x 是三角形};(4)G ={x ︱x >2},H ={x ︱2x -1≥3}.我们可以看到,(1)中的集合A 中的任何元素都是集合B 的元素,(2)中的集合C 中的元素都是集合D 中的元素,(3)中的集合E 的任何元素都是集合F 的元素,(4)中的集合G 中的任何元素都是集合H 中的元素.一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集(subset ),记作)(A B B A ⊇⊆或,读作“A 包含于B ”(或“B 包含A ”).在数学中,除了用列举法、描述法来表示集合之外,我们还有一种更简洁、直观的方法——用平面上的封闭曲线的内部来表示集合Venn (韦恩)图.那么,集合A 是集合B 的子集用图形表示如下:B A ⊆【设计意图】通过实例的共性探究,感知子集的概念,并通过图形更加深入体会子集的含义及数形结合的思想.●活动② 归纳提炼集合相等的概念观察下面4个例子,各对集合中,有没有包含关系? (1){}{}1,3,5,5,1,3A B ==; (2)};01|{},1{=-==x x D C(3)E ={x ︱x 是等腰三角形},F ={x ︱x 是两条边相等的三角形}; (4)G ={x ︱x >2},H ={x ︱2x -1≥3}.显然,A 是B 的子集,C 是D 的子集,E 是F 的子集,G 是H 的子集.反过来,B 是A 的子集,D 是C 的子集,F 是E 的子集,H 是G 的子集.一般地,如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时,集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作B A =.【设计意图】通过实例的共性探究,感知集合相等的概念.在上一节课用元素完全相同表示集合相等的基础上 ,从子集的角度提升对集合相等的理解.●活动③ 归纳提炼真子集的概念问题1:若B A ⊆,则集合A 与B 一定相等吗? 不一定,比如活动②中的四个例子.问题2:若B A ⊆,则可能有B A =,也可能B A ≠.当 B A ⊆,且B A ≠时,我们如何进行数学解释?如果B A ⊆,但存在元素,B x ∈且,A x ∉我们称集合A 是集合B 的真子集,记作AB (或B ⫌A ).【设计意图】在理解子集、集合相等的含义基础上,进一步提炼真子集的概念.BA●活动④ 归纳提炼空集的概念观察下面2个集合,它们有何共同特点? (1)}01|{2=+∈=x x A R ; (2)}02|{<+∈=x x B R . 显然,这两个集合中都没有元素.我们把不含任何元素的集合叫空集,记作∅. 规定:空集是任何集合的子集,即∅A ⊆. 空集是任何非空集合的真子集,即∅.A【设计意图】通过实例的共性探究,感知空集这个比较难理解的抽象的概念. ●活动⑤ 类比实数大小关系,归纳子集基本性质实数集合对于实数a ,有a a ≤;对于集合A ,有A A ⊆.对于实数,,,c b a 如果;,,c a c b b a ≤≤≤那么且 那么且如果对于集合,,,,,C B B A C B A ⊆⊆.C A ⊆【设计意图】通过类比数的大小关系的结论,引导学生推导集合的两个性质. 探究三 识别给定集合的子集,判断给定集合间的关系★▲●活动① 基础型例题 填写下表,并回答问题原集合子集 子集的个数 ∅________ ________ }{a ________ ________ },{b a ________ ________ },,{c b a________________空真子集个数呢?【知识点】子集与真子集、集合中元素个数的最值. 【数学思想】分类讨论思想.【解题过程】∅的子集只有它本身,子集有1个.}{a 的子集为:∅,}{a ;子集共2个.},{b a 的子集为:∅,}{a ,}{b ,},{b a ;子集共4个.},,{c b a 的子集为:∅,}{a ,}{b ,}{c ,},{b a ,},{c a ,},{c b ,},,{c b a ;子集共8个. 【思路点拨】按子集元素个数为标准进行分类. 【答案】有n 个元素的集合,含有2n 个子集,2n -1个真子集,2n -1个非空子集,n 个元素的非空真子集有2n -2个.同类训练 已知集合M 满足}5,4,3,2,1{}2,1{⊆⊆M ,写出集合M . 【知识点】子集与真子集、集合中元素个数的最值. 【数学思想】分类讨论思想.【解题过程】因为M ⊆}2,1{,则1、2一定在M 中.又因为}5,4,3,2,1{⊆M ,则M 中的元素一定在}5,4,3,2,1{中,即M 中的元素不包含1、2、3、4、5以外的元素. 若M 含有2个元素,则}2,1{=M ;若M 含有3个元素,则{1,2,5}{1,2,4}}3,2,1{或或=M ; 若M 含有4个元素,则{1,2,4,5}{1,2,3,5}}4,3,2,1{或或=M ; 若M 含有5个元素,则}5,4,3,2,1{=M .【思路点拨】通过集合间包含关系的含义按元素个数分类罗列.【答案】}.5,4,3,2,1{},5,4,2,1{},5,3,2,1{},4,3,2,1{},5,2,1{},4,2,1{},3,2,1{},2,1{=M【设计意图】从简单到复杂,从特殊到一般,归纳总结出集合子集个数与元素个数的关系,更加深入理解子集的含义.例2 判断下列关系是否正确.(1)}2,1{}3,2,1{; (2)}3,2,1{⊆}4,2,1{; (3)}{}{a a ⊆; (4)}0{=∅; (5)}0{⊆∅; (6)∅⊆∅. 【知识点】集合的包含关系判断及应用、集合相等. 【数学思想】【解题过程】(1)集合}2,1{中的元素1、2都是集合}3,2,1{的元素,而集合}3,2,1{中的元素3不是集合}2,1{的元素,故}2,1{}3,2,1{正确; (2)因为}4,2,1{3∉,所以}3,2,1{⊆}4,2,1{错误;(3)任何一个集合是它本身的子集,因此}{}{a a ⊆正确;(4)∅中没有任何元素,而{0}中有一个元素,两者不相等,故∅={0}错误; (5)空集是任何非空集合的真子集,因此∅{0}正确; (6)空集是任何集合的子集,因此∅⊆∅正确.【思路点拨】通过子集、真子集、集合相等的含义及集合性质做出正确判断. 【答案】(1)、(3)、(5)、(6)正确,(2)、(4)错误. 同类训练 下列各式中错误的个数为( )(1){}10,1,2∈ (2){}{}10,1,2∈ (3){}{}0,1,20,1,2⊆ (4){}{}0,1,22,0,1= A .1 B .2 C .3 D .4【知识点】元素与集合关系的判断、集合的包含关系判断及应用、集合相等. 【数学思想】【解题过程】(1)显然正确;(2)“∈”是表示元素与集合间的关系,不能表示集合与集合之间的关系,因此{}{}10,1,2∈错误;(3)因为任何一个集合是它本身的子集,则}2,1,0{}2,1,0{⊆正确;(4)因为集合}1,0,2{}2,1,0{⊆,且}2,1,0{}1,0,2{⊆,则}1,0,2{}2,1,0{=正确.【思路点拨】通过子集、真子集、集合相等的集合间的关系及元素与集合的关系做出正确判断. 【答案】C .【设计意图】巩固检查集合间的关系、元素与集合的关系.●活动② 提升型例题 例 3 已知集合},21|{Z ∈+==k k x x A ,},21|{Z ∈==k k x x B ,则A 与B 的关系为________.【知识点】集合关系中的参数取值问题. 【数学思想】化归与转化思想. 【解题过程】方法一:(列举法)对于集合A ,取k =…,0,1,2,3,…,得A ={…,12,32,52,72,…}.对于集合B ,取k =…,0,1,2,3,4,5,…,得B ={…,0,12,1,32,2,52,…}. 故A B .方法二:(特征性质法) 集合A :)(212Z ∈+=k k x ,分子为奇数. 集合B :)(2Z ∈=k kx ,分子为整数. 则A B .【思路点拨】通过列举法和特征性质法两种不同的方法进行分析,均可得到集合A 、B 之间的关系. 【答案】A B .同类训练 设集合},12|{*N ∈+==k k x x M ,},12|{*N ∈-==k k x x N 则M ,N 之间的关系为( ) A .M N B .M ⫌N C .M ⊇N D .M =N【知识点】集合关系中的参数取值问题. 【数学思想】化归与转化思想.【解题过程】}13,11,9,7,5,3{ =M ,}13,11,9,7,5,3,1{ =N ,则MN .【思路点拨】将两个用描述法表示的集合转化成列举法表示的集合. 【答案】A .【设计意图】巩固检查集合的表示法,提高转化的思维能力.例 4 设集合}23|{≤≤-=x x A ,}112|{+≤≤-=k x k x B 且A B ⊆,求实数k 的取值范围.【知识点】集合的包含关系判断及应用、集合关系中的参数取值问题. 【数学思想】数形结合思想.【解题过程】因为A B ⊆,所以B =∅或B ≠∅. 当B =∅时,有112+>-k k ,解得2>k .当B ≠∅时,有⎪⎩⎪⎨⎧≤+-≥-+≤-,21,312,112k k k k 解得11≤≤-k .综上,11≤≤-k 或2>k .【思路点拨】关注真子集的含义,结合图形解决. 【答案】11≤≤-k 或2>k .同类训练 已知集合}41|{<≤=x x A ,}|{a x x B <=,且A B ,求实数a 的取值集合. 【知识点】集合的包含关系判断及应用、集合关系中的参数取值问题. 【数学思想】数形结合思想.【解题过程】将数集A 表示在数轴上(如下图),要满足A B ,表示数a 的点必须在表示4的点处或在表示4的点的右边,所以所求a 的集合为}4|{≥a a .【思路点拨】关注真子集的含义,结合图形解决. 【答案】}4|{≥a a .【设计意图】巩固检查真子集的含义,体会数形结合的思想. ●活动③ 探究型例题例5 已知集合},3,1{2x A =,}2,1{+=x B ,是否存在实数x ,使得集合B 是A 的子集?若存在,求出A ,B ,若不存在,说明理由.【知识点】集合的包含关系判断及应用、集合关系中的参数取值问题、集合的确定性、互异性、无序性.【数学思想】分类讨论思想.【解题过程】因为B ⊆A ,所以x +2=3或2x . 当x +2=3,即x =1时,A ={1,3,1}不满足互异性. 当22x x =+,即x =2或x =-1.若x =2时,A ={1,3,4},B ={1,4},满足B ⊆A . 若x =-1时,A ={1,3,1}不满足互异性. 综上,存在x =2使得B ⊆A . 此时,A ={1,3,4},B ={1,4}.【思路点拨】结合集合的确定性、互异性、无序性分清况讨论x 的值和集合A 、B . 【答案】存在x =2使得B ⊆A .此时,A ={1,3,4},B ={1,4}.同类训练 若集合}06|{2=-+=x x x A ,}01|{=+=mx x B ,且A B ⊆.求由m 的可取值组成的集合.【知识点】集合的包含关系判断及应用,集合关系中的参数取值问题,集合的确定性、互异性、无序性.【数学思想】分类讨论思想.【解题过程】易得}2,3{-=A ,当0=m 时,=B ∅,有A B ⊆. 当0≠m 时,方程01=+mx 的解为mx 1-=, 又因为A B ⊆,则31-=-m 或21=-m ,即31-=m 或21-=m . 故所求集合为}21,31,0{-.【思路点拨】先确定集合A 的元素,再结合集合的确定性、互异性、无序性分清况讨论m 的值和集合B .【答案】}21,31,0{-.【设计意图】巩固检查子集的含义,锻炼分类讨论问题的能力. 3.课堂总结知识梳理(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集(subset ),记作)(A B B A ⊇⊆或,读作“A 包含于B ”(或“B 包含A ”).(2)如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时,集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A =B .(3)如果B A ⊆,但存在元素,B x ∈且,A x ∉我们称集合A 是集合B 的真子集,记作A B (或B A ).(4)不含任何元素的集合叫空集,记作∅.(5)空集是任何集合的子集,即A ∅⊆;空集是任何集合的真子集,即∅A ;任何一个集合都是它自己的子集,即A A ⊆;那么且如果对于集合,,,,,C B B A C B A ⊆⊆.C A ⊆重难点归纳(1)元素与集合间的关系用“∈”、“∉”来表示,集合与集合间的关系用“⊆”、“”、“=”来表示.(2)集合与集合间的关系涉及到含参数问题时,要注意分类讨论,并能用元素的互异性进行检验.(三)课后作业基础型 自主突破1.下列集合中表示空集的是( )A .}55|{=+∈x R xB .}55|{>+∈x R xC .}0|{2=∈x R xD .}01|{2=++∈x x R x【知识点】空集的定义、性质及运算.【数学思想】【解题过程】因为C B A ,,中分别表示的集合为}0{,}0|{>x x ,}0{,则都不是空集;又因为012=++x x 无解,则}01|{2=++∈x x R x 表示空集.【思路点拨】根据空集的含义进行判断.【答案】D .2.集合{1,2,3}的子集的个数是( )A .7B .4C .6D .8【知识点】子集与真子集、集合中元素个数的最值.【数学思想】分类讨论思想.【解题过程】根据探究结论得该集合的子集个数为823=.【思路点拨】根据集合子集的个数与集合元素的个数关系求得. 【答案】D .3.已知集合}4,3,2,1{=P ,},1|{P x x y y Q ∈+==,那么集合}5,4,3{=M 与Q 的关系是( )A .Q M ⊆B .Q M ⊇C .M QD .Q M =【知识点】集合的表示法、子集与真子集.【数学思想】【解题过程】因为},1|{P x x y y Q ∈+==,}4,3,2,1{=P ,则Q ={2,3,4,5}.因此,M Q .【思路点拨】先求出集合Q ,再判断集合M 与集合Q 的关系. 【答案】C . 4.设R b a ∈,,集合},,0{},,1{b ab a b a =+,则a b -等于( ) A .1 B .-1 C .2 D .-2【知识点】集合的相等.【数学思想】【解题过程】因为0≠a ,所以1,0-==+ab b a ,即.1,1-==a b 因此,2=-a b ,选C . 【思路点拨】结合集合的确定性、互异性、无序性分清况讨论b a 、的值.【答案】C .5.已知集合},3,1{m A -=,集合}4,3{=B ,若A B ⊆,则实数=m ________.【知识点】子集与真子集、集合关系中的参数取值问题.【数学思想】【解题过程】因为A B ⊆,}4,3{=B ,},3,1{m A -=,所以4=m .【思路点拨】根据集合的包含关系确定两集合元素间的关系.【答案】4.6.已知},12|{2R x x x y y M ∈--==,}42{≤≤-=x N ,则集合M 与N 之间的关系是________.【知识点】集合的包含关系判断及应用.【数学思想】【解题过程】因为22)1(1222-≥--=--=x x x y ,则}2|{-≥=y y M .又因为}42{≤≤-=x N ,则N M .【思路点拨】先用配方法求解集合M ,再判断集合M 和集合N 的关系.【答案】NM .能力型 师生共研7.已知集合A }3,2,1{,且A 中至少含有一个奇数,则这样的集合A 的个数为( )A .6B .5C .4D .3【知识点】集合的包含关系判断及应用.【数学思想】分类讨论思想. 【解题过程】因为A 中至少含有一个奇数,所以A 可能含有1个奇数,也可能含有2个奇数.若A 只含有1个奇数,则}1{=A 或}3{;若A 含有2个奇数,则}3,1{=A .因此,满足条件的A 有4个.【思路点拨】对集合A 中奇数元素按个数分类讨论. 【答案】D .8.设集合},3,1{a A =,}1,1{2+-=a a B ,A B ⊆,求a 的值.【知识点】元素与集合的关系、集合的包含关系判断及应用.【数学思想】【解题过程】因为A B ⊆,所以B 中元素1,12+-a a 都是A 中的元素,故分两种情况.(1)312=+-a a ,解得=a -1或2,经检验满足条件.(2)a a a =+-12,解得=a 1,此时A 中元素重复,舍去.综上所述,=a -1或=a 2.【思路点拨】利用元素与集合关系、集合的包含关系构造方程组或数量关系求解.【答案】=a -1或=a 2.探究型 多维突破9. 已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.【知识点】集合的确定性、互异性、无序性、集合的相等.【数学思想】分类讨论思想.【解题过程】因为{}{}22,,,2,2,A x y B x y A B ===且,则⎩⎨⎧==22y y x x ,或⎩⎨⎧==x y y x 22;即⎩⎨⎧==00y x (舍去),或⎩⎨⎧==10y x ,或⎪⎪⎩⎪⎪⎨⎧==2141y x . 【思路点拨】利用元素与集合关系、集合的相等关系构造方程组或数量关系求解. 【答案】⎩⎨⎧==10y x ,或⎪⎪⎩⎪⎪⎨⎧==2141y x . 10.b a ,是实数,集合}1,,{ab a A =,}0,,{2b a a B +=,若B A =,求20162015b a +. 【知识点】集合的相等、集合关系中的参数取值问题.【数学思想】分类讨论思想.【解题过程】因为B A =,所以0=b ,}1,0,{a A =,}0,,{2a a B =,即12=a ,得1±=a .若1=a ,则}1,0,1{=A 不满足互异性,舍去;若1-=a ,}1,0,1{-=A 满足题意.因此,120162015-=+b a .【思路点拨】利用元素与集合关系、集合的相等关系构造方程组或数量关系求解.【答案】120162015-=+b a .自助餐1.集合{1,2,3}的所有真子集的个数为( )A .3B .6C .7D .8【知识点】子集与真子集.【数学思想】【解题过程】该集合的真子集个数为7123=-.【思路点拨】利用元素个数与真子集个数的关系求得.【答案】C .2.已知集合}8,7,4{⊆M ,且M 中至多有一个偶数,则这样的集合共有( )A .5个B .6个C .7个D .8个【知识点】集合的含义、元素与集合的关系.【数学思想】【解题过程】M 可能为∅,}7{,}4{,}8{,}4,7{,}8,7{共6个.【思路点拨】根据集合元素满足的要求得,注意空集不能漏掉.【答案】B .3.下列命题正确的是( )A .无限集的真子集是有限集B .任何一个集合必定有两个子集C .自然数集是整数集的真子集D .{1}是质数集的真子集【知识点】子集与真子集.【数学思想】【解题过程】无限集的真子集有可能是无限集,如N 是R 的真子集,A 错误;由于∅只有一个子集,即它本身,B 错误;由于1不是质数,D 错误.显然自然数集是整数集的真子集,C 正确.【思路点拨】逐一通过集合间的关系进行检验,注意子集、真子集的概念.【答案】C .4.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若BA ,则实数a 的值为__. 【知识点】子集与真子集. 【数学思想】【解题过程】易知}2,1{=A .如果0=a ,则=B ∅,B 满足A .如果0≠a ,则}1{a B =.又因为B A ,则211或=a ,即211或=a .综上,211,0或=a . 【思路点拨】先求出集合A ,再根据真子集对a 分情况讨论.【答案】0,1或12 . 5.写出满足{},a b A ⊆{},,,a b c d 的所有集合A .【知识点】子集与真子集.【数学思想】【解题过程】因为{},a b A ⊆,则A 中必须有元素.b a 、又因为A {},,,a b c d},,{},,,{},,{d b a c b a b a A =则.【思路点拨】利用集合间的包含关系和真包含关系求解.【答案】},,{},,,{},,{d b a c b a b a A =. 6.已知{}{}|25,|121A x x B x a x a =-≤≤=+≤≤-,B A ⊆,求实数a 的取值范围.【知识点】子集与真子集.【数学思想】转化与化归思想.【解题过程】若=B ∅,.2,121<->+a a a 即若≠B ∅,.32,21512112≤≤⎪⎩⎪⎨⎧-≥+≤-+≥-a a a a a 即综上,.3≤a【思路点拨】根据集合间的包含关系构造方程组或数量关系求解.【答案】.3≤a。
2 集合间的基本关系》优秀教案教学设计
2 集合间的基本关系》优秀教案教学设计2集合间的基本关系:优秀教案教学设计1. 引言教学中,让学生理解和掌握集合间的基本关系是非常重要的。
本教案教学设计旨在帮助学生通过活动和练加深对集合间基本关系的理解。
2. 教学目标通过本次教学,学生将能够:- 掌握并描述集合的基本概念- 理解并应用集合的并、交、差等基本操作- 运用集合的基本关系解决实际问题3. 教学内容3.1 集合的基本概念- 定义集合的概念- 表示集合的方法和符号3.2 集合的基本操作- 集合的并操作- 集合的交操作- 集合的差操作3.3 应用实例- 解决集合应用问题4. 教学流程4.1 导入环节通过例子或问题导入,引发学生对集合的兴趣与思考。
4.2 知识讲解介绍集合的基本概念和符号表示,示范并解释集合的并、交、差等基本操作。
4.3 讨论与练鼓励学生互动,通过小组讨论和个人练,巩固学生对基本概念及操作的理解和掌握。
4.4 拓展应用提供一些实际问题,引导学生应用集合的基本关系进行解决。
4.5 总结与反思对本节课学到的内容进行总结,并引导学生思考研究过程中遇到的困难和解决方法。
5. 教学评价与反馈通过教学中的讨论、练和应用环节,收集学生的表现和回答情况,进行评价和反馈。
6. 扩展练布置一些扩展练题,让学生在课后巩固和拓展所学知识。
7. 教学资源准备相关练题、实例和课堂活动所需的教学资源和材料。
8. 学生作业规定学生完成相关作业,以检验他们对集合间基本关系的理解和运用能力。
9. 参考资料列出使用的参考资料和教辅书籍。
以上是2集合间的基本关系优秀教案教学设计的大纲。
通过本次课程的学习,相信学生们能够更好地理解和应用集合的基本关系。
人教版高中数学必修1第1章1.1.2 集合间的基本关系教案
1.1.2 集合间的基本关系教学目标分析:知识目标:1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情景中,了解空集的含义。
过程与方法:从类比两个实数之间的关系入手,联想两个集合之间的关系,从中学会观察、类比、概括和思维方法。
情感目标:通过直观感知、类比联想和抽象概括,让学生体会数学上的规定要讲逻辑顺序,培养学生有条理地思考的习惯和积极探索创新的意识。
重难点分析:重点:理解子集、真子集、集合相等等。
难点:子集、空集、集合间的关系及应用。
互动探究:一、课堂探究:1、情境引入——类比引入思考:实数有相等关系、大小关系,如55,57,53=<>,等等,类比实数之间的关系,可否拓展到集合之间的关系?任给两个集合,你能否发现每组的前后两个集合的相同元素或不同元素吗?这两个集合有什么关系?注意:这里可关系两个数学思想,分别是特殊到一般的思想,类比思想探究一、观察下面几个例子,你能发现两个集合之间的关系吗?(1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为新华中学高一(2)班全体女生组成的集合,B 为这个班全体学生组成的集合;(3)设{|}={|}C x x D x x =是两条边相等的三角形,是等腰三角形。
可以发现,在(1)中,集合A 中的任何一个元素都是集合B 的元素。
这时,我们就说集合A 与集合B 有包含关系。
(2)中集合A ,B 也有类似关系。
2、子集的概念:集合A 中任意一个元素都是集合B 的元素,记作B A ⊆或A B ⊇。
图示如下符号语言:任意x A ∈,都有x B ∈。
读作:A 包含于B ,或B 包含A.当集合A 不包含于集合B 时,记作:A B ⊄注意:强调子集的记法和读法;3、关于Venn 图:在数学中,我们经常用平面上封闭的曲线的内部代表集合,这种图称为Venn 图.这样,上述集合A 与B 的包含关系可以用右图表示自然语言:集合A 是集合B 的子集集合语言(符号语言):A B ⊆图像语言:上图所示Venn 图注意:强调自然语言、符号语言、图形语言三者之间的转化;探究二、对于第(3)个例子,我们已经知道集合C 是集合D 的子集,那么集合D 是集合C 的子集吗?思考:与实数中的结论“,,a b b a a b ≥≥=且则”相类比,你有什么体会?类比:实数:b a ≥且b a b a =⇒≤集合:B A ⊆且B A A B =⇒⊇4、集合相等:如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作:A B =。
高中数学必修一集合间的基本关系教案
高中数学必修一集合间的基本关系教案高中数学必修一集合间的基本关系教案1教学准备教学目标1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学重难点1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学过程一、知识归纳1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;二、例题讨论一)利用方向角构造三角形四)测量角度问题例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域。
点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。
高一数学教案集合间的基本关系教学设计2021文案3教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
数学必修一人教新课标1-1-2集合间的基本关系教案
如果集合A不包含于集合B,或集合B不包含集合A,就记作A⊈B(或B⊉A),即:若存在x A,有x B,则A⊈B(或B⊉A)
说明:A B与B A是同义的,而A B与B A是互逆的。
规定:空集 是任何集合的子集,即对于任意一个集合A都有 A。
例1.判断下列集合的关系.
问题3:观察(7)和(8),集合A与集合B的元素,有何关系?
集合A与集合B的元素完全相同,从而有:
2.集合相等
定义:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素(即A B),同时集合B的任何一个元素都是集合A的元素(即B A),则称集合A等于集合B,记作A=B。如:A={x|x=2m+1,m Z},B={x|x=2n-1,n Z},此时有A=B。
1.1.2集合间的基本关系(共1课时)
教学过程:
(I)复习回顾
问题1:元素与集合之间的关系是什么?
问题2:集合有哪些表示方法?集合的分类如何?
(Ⅱ)讲授新课
观察下面几组集合,集合A与集合B具有什么关系?
(1)A={1,2,3},B={1,2,3,4,5}.
(2) A={x|x>3},B={x|3x-6>0}.
(3)对于集合A,B,C,若A⊆B,B⊆C,即可得出A⊆C;对A⊂≠B,B⊂≠C,同样有A⊂≠C, 即:包含关系具有“传递性”。
4.证明集合相等的方法:
(1)证明集合A,B中的元素完全相同;(具体数据)
(2)分别证明A B和B A即可。(抽象情况)
对于集合A,B,若A B而且B A,则A=B。
(III)例题分析:
问题4:(1)集合A是否是其本身的子集?(由定义可知,是)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.2集合间的基本关系教学设计2
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课 型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn 图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;
教学过程:
一、引入课题
1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:
(1)0 N ;(2)2 Q ;(3)-1.5 R
2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)
二、新课教学
(一) 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;
如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或
读作:A 包含于(is contained in )B ,或B 包含(contains )A
当集合A 不包含于集合B 时,记作A B 用Venn 图表示两个集合间的“包含”关系
)(A B B A ⊇⊆或
(二) 集合与集合之间的 “相等”关系;
A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =
即 ⎩
⎨⎧⊆⊆⇔=A B B A B A 练习
结论:
任何一个集合是它本身的子集
(三) 真子集的概念
若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper
⊆
B A
subset )。
记作:A B (或B A )
读作:A 真包含于B (或B 真包含A )
举例(由学生举例,共同辨析)
(四) 空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set ),记作:∅
规定:
空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:
○
1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题
(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x ≥5},并表示A 、B 的关系;
(七) 课堂练习
(八) 归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
(九) 作业布置
1、 书面作业:习题1.1 第5题
2、 提高作业:
○
1 已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围。
○2 设集合}{}{}{矩形平行四边形四边形===,C ,B A ,
}{正方形=D ,试用Venn 图表示它们之间的关系。
板书设计(略)。