万有引力定律-经典例题
(物理)物理万有引力定律的应用练习题含答案
(物理)物理万有引力定律的应用练习题含答案一、高中物理精讲专题测试万有引力定律的应用1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224Tπ① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin R r )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.4.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。
万有引力习题及答案
【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。
例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。
B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。
C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。
D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。
例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。
万有引力定律的练习题
四、万有引力定律的练习题一、选择题1、关于地球同步通讯卫星,下列说法中正确的是[]A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间2、设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是[]3、人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是[]A.R不变,使线速度变为 v/2B.v不变,使轨道半径变为2RD.无法实现4、两颗靠得较近天体叫双星,它们以两者重心联线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是[]A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比C.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成反比5、由于地球的自转,地球表面上各点均做匀速圆周运动,所以[]A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心6、以下说法中正确的是[]A.质量为m的物体在地球上任何地方其重力都一样B.把质量为m的物体从地面移到高空中,其重力变小C.同一物体在赤道上的重力比在两极处重力大D.同一物体在任何地方质量都是相同的7、假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pq8、假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则[]A.根据公式v=ωr,可知卫星的线速度将增大到原来的2倍9.如图为某行星绕太阳运动的轨道,下列关于太阳位置的描述正确的是 ( )A .太阳的位置在O 点B .太阳的位置一定在C .太阳的位置一定在C 1、C 2两点中的一点D .太阳的位置可以在C 1、O 、C 2任意一点 10. 地球绕太阳的运行轨道是椭圆形,因而地球与太阳之间的距离岁季节变化。
万有引力定律(精选例题)
例题11:
中子星是恒星演化过程的一种可能结果, 中子星是恒星演化过程的一种可能结果 , 它的密度很 现有一中子星, 30s 大 。现有一中子星 , 观测到它的自转周期为T=1/30s。 问该中子星的最小密度应是多少才能维持该星的稳定, 问该中子星的最小密度应是多少才能维持该星的稳定 , 不致因自转而瓦解。计算时星体可视为均匀球体。 不致因自转而瓦解 。计算时星体可视为均匀球体。(引 2 67× -11 力常数G=6.67×10 N ·m /kg2) 解析:设想中子星赤道处一小块物质,只有当它受到的 解析:设想中子星赤道处一小块物质, 万有引力大于或等于它随星体所需的向心力时, 万有引力大于或等于它随星体所需的向心力时,中子星 才不会瓦解。 才不会瓦解。
3π r= 2 GT
GT M r= 4π 2 (3)海王星发现:
2
(2)天体运动情况:
1 3
(4)证明开普勒第三定律的正确性。
四、人造卫星:基本上都是引力提供向心力
Mm v 4π 2 G 2 = m = mrω = m 2 r = 4π 2 mrf 2 = ma r r T GM 1、线速度: = 即线速度 v ∝ v r
纬度↓ ,r ↑ ,g ↓ 。
例题1:
已知下面哪组数据可以计算出地球的质量M地(引力常数G 为已知)(AD) (A)月球绕地球运行的周期T1及月球到地球中心的距离r1 (B)地球“同步卫星”离地面的高度h
小结: 小结:应用的基本思路与方法 1、天体运动的向心力来源于天体之间的万有引力,即 天体运动的向心力来源于天体之间的万有引力,
例题3:
第一宇宙速度是用r=R 地 计算出来的,实际上人造地球 卫星轨道半径都是r>R地,那么轨道上的人造卫星的线 速度都是( ) (A)等于第一宇宙速度 (C)小于第一宇宙速度 (B)大于第一宇宙速度 (D)以上三种情况都可能
高中物理万有引力定律的应用题20套(带答案)及解析
高中物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。
土星视为球体,已知土星质量为M,半径为R,万有引力常量为.G求:()1土星表面的重力加速度g;()2朱诺号的运行速度v;()3朱诺号的运行周期T 。
【答案】()()()()21?2?3?2GM GM R h R h R R h GM π+++ 【解析】【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】(1)土星表面的重力等于万有引力:2Mm Gmg R = 可得2GM g R = (2)由万有引力提供向心力:22()Mm mv G R h R h=++ 可得:GM v R h=+ (3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:()2R h T R h GMπ+=+3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分) G ④ (3分) 联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间. 【答案】203t gR r ω=-或者202t gR r ω=- 【解析】【分析】【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有 22Mm G mr rω= 航天飞机在地面上,有2mM GR mg = 联立解得22gR rω= 若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π 所以202t gR r ω=- 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π 所以202t gR r ω=-. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.5.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.6.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度;(2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m 由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π= 得23204R M GT π= 且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T 由万有引力提供向心力2202004 r GM M M r Tπ= 根据黄金代换GM 0=gR 02得T =7.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
万有引力练习题及答案详解
万有引力练习题及答案详解单 元 自 评1.人造地球卫星环绕地球做匀速圆周运动时,以下叙述正确的是( bc ) A. 卫星的速度一定大于或等于第一宇宙速度 B.在卫星中用弹簧秤称一个物体,读数为零C.在卫星中,一个天平的两个盘上,分别放上质量不等的两个物体,天平不偏转D.在卫星中一切物体的质量都为零2.两颗靠得较近的天体组成双星,它们以两者连线上某点为圆心,做匀速圆周运动,因而不会由于相互的引力作用而被吸到一起,下面说法正确的是( )A.它们做圆周运动的角速度之比,与它们的质量之比成反比B.它们做圆周运动的线速度之比,与它们的质量之比成反比C.它们做圆周运动的向心力之比,与它们的质量之比成正比D.它们做圆周运动的半径之比,与它们的质量之比成反比3.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( ) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B.由于地球对苹果有引力,而苹果对地球无引力造成的C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都不对4.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有关数据之比正确的是( )A.周期之比T 1:T 2=3:1B.线速度之比v 1:v 2=3:1C.向心力之比为F 1:F 2=1:9D.向心加速度之比a 1:a 2=1:95.已知甲、乙两行星的半径之比为a ,它们各自的第一宇宙速度之比为b ,则下列结论不正确的是( )A.甲、乙两行星的质量之比为b 2a:1B.甲、乙两行星表面的重力加速度之比为b 2:a C.甲、乙两行星各自的卫星的最小周期之比为a:b D.甲、乙两行星各自的卫星的最大角速度之比为b:a6.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度的是( )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v =7.某一行星有一质量为m 的卫星,以半径r ,周期T 做匀速圆周运动,求: (1)行星的质量; (2)卫星的加速度;(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?8.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
万有引力定律应用例题
万有引力定律应用例题
1. 在太阳系中,行星绕太阳运动的轨道是通过万有引力定律来解释的。
根据万有引力定律,行星受到太阳的引力作用,行星沿着椭圆轨道绕太阳运动。
2. 在地球表面上,物体受到地球的引力作用,加速度约为9.8米/秒²。
这是因为根据万有引力定律,地球的质量和物体的质量以及两者之间的距离决定了引力的大小和方向。
3. 人造卫星的运行也是通过万有引力定律来解释的。
卫星受到地球的引力作用,沿着地球表面上的轨道飞行,同时还要克服大气阻力和其他外力的影响。
4. 万有引力定律也可以用来解释天体的引力束缚。
例如,引力束缚是在双星系统中观察到的现象,其中两个星体以互相围绕的方式相互吸引。
5. 万有引力定律还可以用来解释地球潮汐现象。
地球和月球之间的引力相互作用导致地球潮汐的形成,使得海洋表面上的水产生周期性的涨落。
这些是万有引力定律在物理学和天文学中的一些应用例题。
它提供了解释和预测天体运动和相互作用的基本原理。
万有引力定律计算题精粹
《万有引力定律》计算题练习1.已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g。
某同学根据以上条件,提出一种估算地球质量M的方法:同步卫星绕地球做圆周运动,由222MmG m hh Tπ⎛⎫= ⎪⎝⎭得2324hMGTπ=。
(1)请判断上面的结果是否正确,并说明理由。
如不正确,请给出正确的解法和结果;(2)请根据已知条件再提出两种估算地球质量的方法并解得结果。
2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统在银河系中很普遍。
利用双星系统中两颗恒星的运动特征可推算出它们的总质量。
已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。
(引力常量为G)3.2011年8月25日23时27分,经过77天的飞行,“嫦娥二号”在世界上首次实现从月球轨道出发,受控准确进入日地系统——拉格朗日L2点的环绕轨道,如图所示。
已知地球半径为R0,地球表面重力加速度为g。
(1)若月球绕地球运动的周期为T,月球绕地球的运动近似看作匀速圆周运动,试求出月球绕地球运动的轨道半径r;(2)日地系统——拉格朗日L2点在太阳与地球连线上的地球外侧,由于同时受到太阳和地球的引力,飞船绕太阳运动的周期与地球的公转周期相等(不考虑月球及其他因素影响)。
若地球轨道半径为R,公转周期为T0,试写出计算日地系统——拉格朗日L2点到地球的距离L的表达式(只要求写出用已知量表示的关系式)。
4.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ,石油密度远小于ρ,可将上述球形区域视为空腔。
如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向,当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏高。
万有引力经典题型总汇 超全
万有引力练习一、单项选择题1.人造卫星绕地球做匀速圆周运动,其轨道半径为R ,线速度为V ,周期为T 。
若要使卫星的周期变为2T ,可以采取的办法是:( )A 、R 不变,使线速度变为V/2;B 、V 不变,使轨道半径变为2R ;C 、使轨道半径变为R 34;D 、使卫星的高度增加R 。
2.关于“亚洲一号”地球同步卫星,下说法正确的是( )A .已知该卫星的质量为1.24t ,若它的质量增加到2.48t ,则其同步轨道半径将变为原来的21。
B .它的运行速度一定小于7.9km/s 。
C .它可以经过北京的正上空,所以我国可以利用他进行电视转播。
D .它距离地面的高度约为地球半径的5.6倍,所以它的向心加速度约为其下方地面上的物体重力加速度的26.51。
3.下列说法正确的有( )A .人造地球卫星运行的速率可能等于8km/s 。
B .一航天飞机绕地球做匀速圆周运动,在飞机内一机械手将物体相对航天飞机无初速地释放于机外,则此物体将做自由落体运动。
C .由于人造地球卫星长期受微小阻力的作用,因此其运行的速度会逐渐变大。
D .我国2003年10月“神州”5号飞船在落向内蒙古地面的过程中,一直处于失重状态。
4.2003年10月15日,我国成功地发射了“神舟五号”载人飞船,经过21小时的太 空飞行,返回舱于次日安全着陆。
已知飞船在太空中运行的轨道是一个椭圆,椭圆的一个焦点是地球的球心,如图4所示,飞船在飞行中是无动力飞行,只受到地球的万有引力作用,在飞船从轨道的A 点沿箭头方向运行到B 点的过程中,有以下说法:①飞船的速度逐渐增大 ②飞船的速度逐渐减小 ③飞船的机械能守恒④飞船的机械能逐渐增大。
上述说法中正确的是( )A .①③B .①④C .②③D .②④ 5、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图20所示。
高考物理万有引力定律的应用题20套(带答案)及解析
高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GT π+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R Tπ+ ③(4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:v=gR =2324()R h RTπ+. 【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.4.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
万有引力经典例题全
万 有 引 力一.开普勒三定律1.开普勒第一定律:所有行星绕太阳运行的轨道都是_______,太阳处在所有椭圆的_______上.2.开普勒第二定律:对于每一个行星,太阳和行星的连线在相等的时间内扫过的_______相等.如图1所示:设行星在A 处的速度为V A ,距太阳的距离为r A ,在B 处的速度为V B ,距太阳的距离为r B ,则由____________________得_________。
3.开普勒第三定律:所有行星的半长轴的_____次方跟公转周期的______的比值都相等。
即_____________.注意:对同一星系中的所有行星,k 值____等;对不同星系间的两颗行星,k 值____等.比如: 对太阳系中的所有行星,有:R 地3 / T 地2 = R 金3 / T 金2 = R 木3 / T 木2 = R 水3 / T 水2 =……= k 1;对地球系中的所有行星,有:R 月3 / T 月2 = R 人造卫星3 / T 人造卫星2 = ……= k 2;注意这里k 1_____k 2.例1:已知某地球卫星的运行轨道为椭圆,近地点与远地点的距离之比为1:9,则对应的速度之比为______.例2:把火星和地球绕太阳运行的轨道视为圆周。
由火星和地球绕太阳的周期之比可求得( )A .火星和地球的质量之比 B.火星和太阳的质量之比C. 火星和地球到太阳的距离之比D.火星和地球绕太阳运行速度大小之比二.万有引力定律及应用1.万有引力定律: 表达式:F 引=_________,其中引力常量G =_____________.由英国物理学家________测出,适用条件:两物体的大小与两者之间的距离相比可以忽略不计.常见规律:当两物间的距离增大为原来的2倍时,其作用力将变为原来的_____倍;当两物间的作用力变为原来的2倍时,其距离应变为原来的______倍.2.万有引力定律在地(星)球表面的应用:对地球表面上静止的物体m: 由mg = ________,有:(1)地(星)球表面物体的重力加速度:g = __ _;(2)地(星)球的质量:M =___________;据此人们称卡文迪许为“ 能称出地球质量的人”.(3)一个重要的关系式:GM = gR 2.3.重力的产生:考虑到地球的自转影响,地球表面物体的重力实际上并不等于万有引力,而只是万有引力的一个分力(另一个分力为物体绕地球转动所需的向心力),如图2-1所示,由此可见:同一物体在赤道处所受的重力____(大、小)于在两极处所受的重力.例1:地球表面的重力加速度为g ,地球半径为R ,若高空中某处的重力加速度为g/2,则该 处 距地球表面的高度为________.例2:A 、B 两颗行星,质量之比为M A :M B =p,半径之比R A :R B =q,则两行星表面的重力加速度之比为______.例3: 2007年10月29日18时01分,嫦娥一号卫星成功实施入轨后的第 三 次变轨。
万有引力定律应用典型题型(全)
万有引力定律应用的典型题型【题型1】天体的质量与密度的估算(1)测天体的质量及密度:(万有引力全部提供向心力)由r T m r Mm G 222⎪⎭⎫ ⎝⎛=π 得2324GT r M π= 又ρπ⋅=334R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。
现有一中子星,观测到它的自转周期为T =301s 。
问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。
计算时星体可视为均匀球体。
(引力常数G =6.67⨯1011-m 3/kg.s 2)解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。
设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有R m R GMm 22ω= T πω2= ρπ334R M =由以上各式得23GT πρ=,代入数据解得:314/1027.1m kg ⨯=ρ。
点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。
变式训练:数据能够估算出地球的质量的是( ) A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。
月球也是地球的一颗卫星。
设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r根据万有引力定律:r T4m r Mm G 222π=……①得:232G T r 4M π=……②可见A 正确而Tr2v π=……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3R 4M3π=ρ……⑤结合②④⑤得:G3T 2π=ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力由2RMmG mg =得:G g R M 2=可见B 正确【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。
(物理)物理万有引力定律的应用练习题20篇及解析
(物理)物理万有引力定律的应用练习题20篇及解析一、高中物理精讲专题测试万有引力定律的应用1.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .【答案】(1)2202R v M hG =;(2)2018v g h'=;(3)v v =【解析】 【分析】 【详解】(1)岩块做竖直上抛运动有2002v gh -=-,解得22v g h=忽略艾奥的自转有2GMm mg R =,解得222R v M hG= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h=(3)某卫星在艾奥表面绕其做圆周运动时2v mg m R=,解得v v =【点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算2.某宇航员驾驶宇宙飞船到达某未知星球表面,他将一个物体以010m/s v =的速度从10m h =的高度水平抛出,测得落到星球表面A 时速度与水平地面的夹角为60θ=︒。
已知该星球半径是地球半径的2倍,地球表面重力加速度210m/s g =。
则: (1)该星球表面的重力加速度'g 是多少? (2)该星球的质量是地球的几倍?【答案】(1)215m/s g '=(2)星球质量是地球质量的6倍 【解析】 【详解】(1)星球表面平拋物体,水平方向匀速运动:010m/s x v v ==竖直方向自由落体'2y v g h =2'(2)y v g h =(或y v g t =',21'2h g t =) 因为tan 3y xv v θ==解得215m/s g '=(2)对地球表面的物体m ,其重力等于万有引力:2M mmg GR =地地 对星球表面的物体m ,其重力等于万有引力:2M mmg G R '=星星6M M =星地所以星球质量是地球质量的6倍3.人类对未知事物的好奇和科学家们的不懈努力,使人类对宇宙的认识越来越丰富。
万有引力定律练习题(含答案)
万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。
只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。
2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。
3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。
4.假设地球是一半径为R,质量分布均匀的球体。
已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。
则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。
当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。
之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。
万有引力定律应用例题
万有引力定律应用例题
1. 一个天体的质量是地球的5倍,距离地球的位置上空1兆米的地方有一颗小行星。
求小行星受到的引力与在地球表面受到的引力之比。
解答:根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比。
设地球质量为M,小行星质量为m,地球半径为R,小行星与地球的距离为r。
在地球表面受到的引力为F1=GMm/R²,其中G为万有引力常数。
在位置上空1兆米的地方,小行星与地球的距离为R+r,利用万有引力定律得到小行星受到的引力为F2=GMm/(R+r)²。
所以,小行星受到的引力与在地球表面受到的引力之比为
F2/F1=(GMm/(R+r)²)/(GMm/R²)=(R/R+r)²。
代入已知条件,得到比值为(6400km/6400000000m)
²=2.5×10^-19。
2. 一个地球上的物体质量为5千克,距离地球表面2米的地方有一只1千克的小鸟。
求小鸟受到的引力大小和方向。
解答:根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比。
小鸟受到的引力大小为F=GMm/r²,其中G为万有引力常数,M为地球质量,m为小鸟质量,r为小鸟与地球的距离。
代入已知条件,得到引力大小为F=(6.67×10^-11 N·m²/kg²)×(5 kg)×(1 kg)/(2 m)²。
计算得到引力大小为F≈3.34×10^-9牛顿。
引力的方向与两个物体之间的连线方向相反,所以小鸟受到的引力方向指向地球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.天体运动的分析方法2.中心天体质量和密度的估算(1)已知天体表面的重力加速度g 和天体半径R G MmR2=mg ⇒⎩⎨⎧天体质量:M =gR 2G天体密度:ρ=3g 4πGR(2)已知卫星绕天体做圆周运动的周期T 和轨道半径r⎩⎪⎨⎪⎧①G Mm r 2=m 4π2T 2r ⇒M =4π2r 3GT2②ρ=M 43πR 3=3πr3GT 2R3③卫星在天体表面附近飞行时,r =R ,则ρ=3πGT21.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( ) A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B 错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C 正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D 错误.答案:C2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( )A .g ′∶g =4∶1B .g ′∶g =10∶7C .v ′∶v =528D .v ′∶v =514解析:在天体表面附近,重力与万有引力近似相等,由GMm R 2=mg ,M =ρ43πR 3,解两式得g =43G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力充当向心力,由G Mm R 2=m v 2R ,M =ρ43πR 3,解两式得v =2RG πρ3,所以v ′∶v =528,C 项正确,D 项错.答案:C3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( )A .求出“嫦娥三号”探月卫星的质量B .求出地球与月球之间的万有引力C .求出地球的密度 D.r 13T 12=r 23T 22 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2T 12得T 1=4π2r 13GM=4π2r 13Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22=mr 24π2T 22,T 2=4π2r 23GM ′,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所有的卫星在万有引力提供向心力的运动学公式中卫星质量都约掉了,无法求出卫星质量,因此探月卫星质量无法求出,A 错误;已经求出地球和月球质量,而且知道月球绕地球做圆周运动的半径r 1,根据F =GMM ′r 12可求出地球和月球之间的引力,B 正确;由开普勒第三定律即半长轴三次方与公转周期二次方成正比,前提是对同一中心天体而言,但是两个圆周运动的中心天体一个是地球一个是月球,D 错误.答案:B估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 人造卫星的运行 授课提示:对应学生用书第57页1.人造卫星的a 、ω、v 、T 与r 的关系GMmr 2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ma ―→a =GM r 2―→a ∝1r2m v 2r ―→v=GM r ―→v ∝1r mω2r ―→ω=GM r 3―→ω∝1r3m 4π2T 2r ―→T =4π2r 3GM―→T ∝r 32.近地时mg =GMmR2―→GM =gR 2.1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:根据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.23×104 km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)绕行方向一定:与地球自转的方向一致. 2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.1.(2015·高考福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则( )A.v 1v 2=r 2r 1B.v 1v 2=r 1r 2C.v 1v 2=⎝⎛⎭⎫r 2r 12D.v 1v 2=⎝⎛⎭⎫r 1r 22 解析:根据万有引力定律可得G Mmr 2=m v 2r ,即v =GMr ,所以有v 1v 2=r 2r 1,所以A 项正确,B 、C 、D 项错误.答案:A2.2015年3月30号晚上9点52分,我国在西昌卫星发射中心用长征三号丙运载火箭,将我国首颗新一代北斗导航卫星发射升空,于31号凌晨3点34分顺利进入预定轨道.这次发射的新一代北斗导航卫星,是我国发射的第17颗北斗导航卫星.北斗卫星导航系统空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星.中地球轨道卫星和静止轨道卫星都绕地球球心做圆周运动,中地球轨道卫星离地面高度低,则中地球轨道卫星与静止轨道卫星相比,做圆周运动的( )A .周期大B .线速度小C .角速度小D .向心加速度大解析:卫星离地面的高度越低,则运动半径越小.根据万有引力提供圆周运动向心力得G Mm r 2=m v 2r =mω2r =m 4π2r T 2=ma ,则周期T =4π2r 3GM,知半径r 越小,周期越小,故A 错误;线速度v =GMr,知半径r 越小,线速度越大,故B 错误;角速度ω=GMr 3,知半径r 越小,角速度越大,故C 错误;向心加速度a =GMr 2,知半径r 越小,向心加速度越大,故D 正确.答案:D3.“空间站”是科学家进行天文探测和科学试验的特殊而又重要的场所.假设“空间站”正在地球赤道平面内的圆周轨道上运行,其离地球表面的高度为同步卫星离地球表面高度的十分之一,且运行方向与地球自转方向一致.下列说法正确的有( )A .“空间站”运行时的加速度小于同步卫星运行的加速度B .“空间站”运行时的速度等于同步卫星运行速度的10倍C .站在地球赤道上的人观察到“空间站”向东运动D .在“空间站”工作的宇航员因不受重力而可在舱中悬浮解析:根据G Mm r 2=ma 得a =Gmr 2,知“空间站”运行的加速度大于同步卫星运行的加速度,故A 错误;根据G Mmr 2=m v 2r得v =GMr,离地球表面的高度不是其运动半径,所以线速度之比不是10∶1,故B 错误;轨道半径越大,角速度越小,同步卫星和地球自转的角速度相同,所以空间站的角速度大于地球自转的角速度,所以站在地球赤道上的人观察到空间站向东运动,故C 正确;在“空间站”工作的宇航员处于完全失重状态,重力充当向心力和空间站一起做圆周运动,故D 错误.答案:C人造卫星问题的解题技巧(1)利用万有引力提供向心力的不同表达式 GMm r 2=m v 2r =mrω2=m 4π2r T2=ma n (2)解决力与运动关系的思想还是动力学思想,解决力与运动的关系的桥梁还是牛顿 第二定律.①卫星的a n 、v 、ω、T 是相互联系的,其中一个量发生变化,其他各量也随之发生 变化.②a n 、v 、ω、T 均与卫星的质量无关,只由轨道半径r 和中心天体质量共同决定. (3)要熟记经常用到的常数,如地球自转一周为一天,绕太阳公转一周为一年,月球 绕地球公转一周为一月(27.3天)等.考点三 卫星的发射和变轨问题 授课提示:对应学生用书第57页1.第一宇宙速度(环绕速度)v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度,还是绕地面附近环绕地球做匀速圆周运动时具有的速度.2.第二宇宙速度(脱离速度)v 2=11.2 km/s ,使卫星挣脱地球引力束缚的最小发射速度. 3.第三宇宙速度(逃逸速度)v 3=16.7 km/s ,使卫星挣脱太阳引力束缚的最小发射速度.1.第一宇宙速度的两种计算方法 (1)由G MmR 2=m v 2R 得v =GMR. (2)由mg =m v 2R 得v =gR .2.卫星变轨的分析(1)变轨原因:当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力不再等于向心力,卫星将变轨运行.(2)变轨分析:卫星在圆轨道上稳定时,G Mmr 2=m v 2r=mω2r =m ⎝⎛⎭⎫2πT 2r . ①当卫星的速度突然增大时,G Mmr 2<m v 2r ,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大.当卫星进入新的轨道稳定运行时,由v = GMr可知其运行速度比原轨道时减小,但重力势能、机械能均增加; ②当卫星的速度突然减小时,G Mmr 2>m v 2r ,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小.当卫星进入新的轨道稳定运行时,由v =GMr可知其运行速度比原轨道时增大,但重力势能、机械能均减小.1.(多选)(2015·高考广东卷)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v 时,可摆脱星球引力束缚脱离该星球.已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1.下列说法正确的有( )A .探测器的质量越大,脱离星球所需要的发射速度越大B .探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D .探测器脱离星球的过程中,势能逐渐增大 解析:由G MmR 2=m v 2R得,v =GMR,2v =2GMR,可知探测器脱离星球所需要的发射速度与探测器的质量无关,A 项错误;由F =G MmR 2及地球、火星的质量、半径之比可知,探测器在地球表面受到的引力比在火星表面的大,B 项正确;由2v =2GMR可知,探测器脱离两星球所需的发射速度不同,C 项错误;探测器在脱离两星球的过程中,引力做负功,引力势能增大,D 项正确.答案:BD2.(多选)2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,地面发射后奔向月球,在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是( )A .发射速度一定大于7.9 km/sB .在轨道Ⅱ上从P 到Q 的过程中速率不断增大C .在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度D .在轨道Ⅱ上经过P 的加速度小于在轨道Ⅰ上经过P 的加速度解析:“嫦娥三号”探测器的发射速度一定大于7.9 km/s ,A 正确.在轨道Ⅱ上从P 到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度,选项C 正确.在轨道Ⅱ上经过P 的加速度等于在轨道Ⅰ上经过P 的加速度,D 错.答案:ABC3.(2016·成都石室中学二诊)如图所示,在同一轨道平面上的三个人造地球卫星A 、B 、C ,在某一时刻恰好在同一条直线上.它们的轨道半径之比为1∶2∶3,质量相等,则下列说法中正确的是( )A .三颗卫星的加速度之比为9∶4∶1B .三颗卫星具有机械能的大小关系为E A <E B <EC C .B 卫星加速后可与A 卫星相遇D .A 卫星运动27周后,C 卫星也恰回到原地点解析:根据万有引力提供向心力G Mm r 2=ma ,得a =GM r 2,故a A ∶a B ∶a C =1r A 2∶1r B 2∶1r C2=112∶122∶132=36∶9∶4,故A 错误;卫星发射的越高,需要克服地球引力做功越多,故机械能越大,故E A <E B <E C ,故B 正确;B 卫星加速后做离心运动,轨道半径要变大,不可能与A 卫星相遇,故C 错误;根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,得T =2πr 3GM,所以T AT C=r A 3r C 3=127,即T C =27T A .若A 卫星运动27周后,C 卫星也恰回到原地点,则C 的周期应为A 的周期的27倍,故D 错误.答案:B航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新轨判断.道上的运行速度变化由v=GMr(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.(3)航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度.考点四天体运动中的双星或多星模型授课提示:对应学生用书第58页1.模型构建绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.2.模型条件(1)两颗星彼此相距较近.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.3.模型特点(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1=F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.(2)“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等.(3)“半径反比”——圆心在两颗行星的连线上,且r1+r2=L,两颗行星做匀速圆周运动的半径与行星的质量成反比.1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2T B.n 3k T C.n 2kT D.n kT 解析:设两颗双星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,根据万有引力提供向心力可得G m 1m 2(r 1+r 2)2=m 1r 14π2T 2,G m 1m 2(r 1+r 2)2=m 2r 24π2T 2,联立两式解得m 1+m 2=4π2(r 1+r 2)3GT 2,即T 2=4π2(r 1+r 2)3G (m 1+m 2),因此,当两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍时,两星圆周运动的周期为T ′=n 3kT ,B 正确,A 、C 、D 错误. 答案:B2.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于四星系统,下列说法正确的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为a 2C .四颗星表面的重力加速度均为GmR 2D .四颗星的周期均为2πa2a(4+2)Gm解析:其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为22a ,故A 正确,B 错误;在星体表面,根据万有引力等于重力,可得G mm ′R 2=m ′g ,解得g =GmR 2,故C正确;由万有引力定律和向心力公式得Gm 2(2a )2+2Gm 2a 2=m 4π2T 2·2a2,T =2πa2a(4+2)Gm,故D 正确.答案:ACD3.如图所示,双星系统中的星球A 、B 都可视为质点.A 、B 绕两者连线上的O 点做匀速圆周运动,A 、B 之间距离不变,引力常量为G ,观测到A 的速率为v 、运行周期为T ,A 、B 的质量分别为m 1、m 2.(1)求B 的周期和速率.(2)A 受B 的引力F A 可等效为位于O 点处质量为m ′的星体对它的引力,试求m ′.(用m 1、m 2表示)解析:(1)设A 、B 的轨道半径分别为r 1、r 2,它们做圆周运动的周期T 、角速度ω都相同,根据牛顿第二定律有F A =m 1ω2r 1,F B =m 2ω2r 2,即r 1r 2=m 2m 1.故B 的周期和速率分别为:T B =T A =T ,v B =ωr 2=ωm 1r 1m 2=m 1vm 2.(2)A 、B 之间的距离r =r 1+r 2=m 1+m 2m 2r 1,根据万有引力定律有F A =Gm 1m 2r 2=Gm 1m ′r 12,所以m ′=m 23(m 1+m 2)2.答案:(1)T m 1v m 2 (2)m 23(m 1+m 2)2解答双星问题应注意“两等”“两不等”(1)双星问题的“两等” ①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力 大小总是相等的. (2)双星问题的“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半 径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m 1ω2r 1=m 2ω2r 2知,由于m 1与m 2一般不相等,故r 1与r 2一般也不相等.[随堂反馈]授课提示:对应学生用书第59页1.(2015·高考重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0 B.GM (R +h )2 C.GMm (R +h )2D.GM h2 解析:由GMm (R +h )2=mg ′得g ′=GM(R +h )2,B 项正确.答案:B2.(2015·高考北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的公转周期B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度 解析:地球的公转半径比火星的公转半径小,由GMm r 2=m ⎝⎛⎭⎫2πT 2r ,可知地球的周期比火星的周期小,故A 项错误;由GMmr 2=m v 2r ,可知地球公转的线速度大,故B 项错误;由GMm r 2=ma ,可知地球公转的加速度大,故C 项错误;由GMmr 2=mω2r ,可知地球公转的角速度大,故D 项正确.答案:D3.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( )A .卫星距离地面的高度为GMRB .卫星的运行速度等于第一宇宙速度C .卫星运行时受到的向心力大小为G MmR2D .卫星运行的向心加速度小于地球表面的重力加速度解析:由GMm (R +h )2=m (R +h )⎝⎛⎭⎫2πT 2得h =3GMT 24π2-R ,A 项错误;近地卫星的运行速度等于第一宇宙速度,同步卫星的运行速度小于第一宇宙速度,B 错误;同步卫星运行时的向心力大小为F 向=GMm (R +h )2,C 错误;由G Mm R 2=mg 得地球表面的重力加速度g =G MR 2,而同步卫星所在处的向心加速度g ′=GM(R +h )2,D 正确.答案:D4.(2015·成都七中二诊)2013年12月2日,嫦娥三号探测器由长征三号乙运载火箭从西昌卫星发射中心发射,首次实现月球软着陆和月面巡视勘察.假设嫦娥三号在环月圆轨道和椭圆轨道上运动时,只受到月球的万有引力.则( )A .若已知嫦娥三号环月圆轨道的半径、运动周期和引力常量,则可以计算出月球的密度B .嫦娥三号由环月圆轨道变轨进入环月椭圆轨道时,应让发动机点火使其加速C .嫦娥三号在环月椭圆轨道上P 点的速度大于Q 点的速度D .嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小解析:根据万有引力提供向心力G Mm r 2=m 4π2T 2r ,可以解出月球的质量M =4π2r 3GT 2,由于不知道月球的半径,无法知道月球的体积,故无法计算月球的密度,故A 错误;嫦娥三号在环月段圆轨道上P 点减速,使万有引力大于向心力做近心运动,才能进入环月段椭圆轨道,故B 错误;嫦娥三号从环月椭圆轨道上P 点向Q 点运动过程中,距离月球越来越近,月球对其引力做正功,故速度增大,即嫦娥三号在环月段椭圆轨道上P 点的速度小于Q 点的速度,故C 错误;卫星越高越慢,第一宇宙速度是星球表面近地卫星的环绕速度,故嫦娥三号在环月圆轨道上的运行速率比月球的第一宇宙速度小,故D 正确.答案:D5.一物体在距某一行星表面某一高度处由静止开始做自由落体运动,依次通过A 、B 、C 三点,已知AB 段与BC 段的距离均为0.06 m ,通过AB 段与BC 段的时间分为0.2 s 与0.1 s ,求:(1)该星球表面重力加速度值;(2)若该星球的半径为180 km ,则环绕该行星的卫星做圆周运动的最小周期为多少? 解析:(1)根据运动学公式,由题意可得⎩⎨⎧x =v 1t 1+12gt 122x =v 1(t 1+t 2)+12g (t 1+t 2)2代入数值可求得g =2 m/s 2.(2)对质量为m 的卫星有G Mmr 2=m ⎝⎛⎭⎫2πT 2r 星球表面有G Mm ′R2=m ′g可知当R =r 时卫星做圆周运动的最小周期为 T =2πR g代入数据解得T 最小=600π s. 答案:(1)2 m/s 2 (2)600π s[课时作业]授课提示:对应学生用书第243页一、单项选择题1.(2016·成都市石室中学一诊)下列说法正确的是( ) A .洗衣机脱水桶脱水时利用了离心运动 B .牛顿、千克、秒为力学单位制中的基本单位C .牛顿提出了万有引力定律,并通过实验测出了万有引力常量D .理想实验是把实验的情况外推到一种理想状态,所以是不可靠的解析:洗衣机脱水时利用离心运动将附着在衣服上的水分甩掉,水做离心运动.故A 正确;米、千克、秒为力学单位制中的基本单位,而牛顿不是基本单位,故B 错误;牛顿提出了万有引力定律,卡文迪许通过实验测出了万有引力常量,故C 错误;理想实验是把实验的情况外推到一种理想状态,是可靠的,故D 错误.答案:A2.欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”.该行星的质量是地球的5倍,直径是地球的1.5倍.设想在该行星表面附近绕行星圆轨道运行的人造卫星的动能为E k1,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为E k2,则E k1E k2为( )A .0.13B .0.3C .3.33D .7.5解析:在行星表面运行的卫星其做圆周运动的向心力由万有引力提供 故有G Mmr 2=m v 2r,所以卫星的动能为E k =12m v 2=GMm2r故在地球表面运行的卫星的动能E k2=GM 地m2R 地在“格利斯”行星表面运行的卫星的动能E k1=GM 行m2R 行所以有E k1E k2=GM 行m2R 行GM 地m 2R 地=M 行M 地·R 地R 行=51×11.5=103=3.33.答案:C3.(2015·高考天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( )A .旋转舱的半径越大,转动的角速度就应越大B .旋转舱的半径越大,转动的角速度就应越小C .宇航员质量越大,旋转舱的角速度就应越大D .宇航员质量越大,旋转舱的角速度就应越小解析:宇航员站在旋转舱内圆柱形侧壁上,受到的侧壁对他的支持力等于他站在地球表面时的支持力,则mg =mrω2,ω=gr,因此角速度与质量无关,C 、D 项错误;半径越大,需要的角速度越小,A 项错误,B 项正确.答案:B4.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度大小减小为原来的12,则变轨前后卫星的( )A .轨道半径之比为1∶2B .向心加速度大小之比为4∶1C .角速度大小之比为2∶1D .周期之比为1∶8解析:卫星绕地球做圆周运动过程中,万有引力充当向心力,G Mmr 2=m v 2r ⇒v =GMr,v 1v 2=r 2r 1=2⇒r 1r 2=14,A 项错;G Mm r 2=ma ⇒a =GM r 2,所以a 1a 2=16,B 项错;由开普勒第三定律T 12T 22=r 13r 23=143⇒T 1T 2=18,D 项正确;因为T =2πω,角速度与周期成反比,故ω1ω2=8,C 项错.答案:D5.美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星“开普勒-226”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离地球约600光年,体积是地球的 2.4倍.已知万有引力常量和地球表面的重力加速度.根据以上信息,下列推理中正确的是( )A .若能观测到该行星的轨道半径,可求出该行星所受的万有引力B .若该行星的密度与地球的密度相等,可求出该行星表面的重力加速度C .根据地球的公转周期与轨道半径,可求出该行星的轨道半径D .若已知该行星的密度和半径,可求出该行星的轨道半径解析:根据万有引力公式F =G Mmr 2,由于不知道中心天体的质量,无法算出向心力,故A 错误;根据万有引力提供向心力公式G Mm r 2=mg ,有g =G Mr2,若该行星的密度与地球的密度相等,体积是地球的2.4倍,则有M 行M 地=V 行V 地=2.4,r 行r 地=3V行V 地=32.4,根据g 行g =M 行r 地2M 地r 行2,可以求出该行星表面的重力加速度,故B 正确;由于地球与行星不是围绕同一个中心天体做匀速圆周运动,故根据地球的公转周期与轨道半径,无法求出该行星的轨道半径,故C 错误;由于不知道中心天体的质量,已知该行星的密度和半径,无法求出该行星的轨道半径,故D 错误.答案:B6.如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( )A .小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值B .小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值C .太阳对各小行星的引力相同D .各小行星绕太阳运动的周期均小于一年解析:小行星绕太阳做匀速圆周运动,万有引力提供圆周运动向心力,有G Mmr 2=mv 2r =ma =m 4π2T 2r ,小行星的加速度a =GMr 2,小行星内侧轨道半径小于外侧轨道半径,故内侧向心加速度大于外侧的向心加速度,故A 正确;线速度v =GMr知,小行星的轨道半径大于地球的轨道半径,故小行星的公转线速度小于地球公转的线速度,故B 错误;太阳对小行星的引力F =G Mmr 2,由于各小行星的轨道半径、质量均未知,故不能得出太阳对小行星的引力相同的结论,故C 错误;由周期T =2πr 3GM知,由于小行星轨道半径大于地球公转半径,故小行星的运动周期均大于地球公转周期,即大于一年,故D 错误.答案:A7.由于火星表面的特征非常接近地球,人类对火星的探索一直不断,可以想象,在不久的将来,地球的宇航员一定能登上火星.已知火星半径是地球半径的12,火星质量是地球质量的19,地球表面重力加速度为g ,假若宇航员在地面上能向上跳起的最大高度为h ,在。