直线与圆的位置关系练习题[带答案解析]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线和圆的位置关系练习题
班别:____________ 姓名:_____________ 座号:_____ 成绩:_____________
一、选择题:(每小题5分,共50分,每题只有一个正确答案)
1.已知⊙O 的半径为10cm ,如果一条直线和圆心O 的距离为10cm ,那么这条直 线和这个圆的位置关系为( )
A. 相离
B. 相切
C. 相交
D. 相交或相离 2.如右图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线, ∠B=70°,则∠BAC 等于( )
A. 70°
B. 35°
C. 20°
D. 10° 3.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C , 下列结论中,错误的是( ) A. ∠1=∠2 B. PA=PB
C. AB ⊥OP
D. 2PA PC ·PO
4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC=5,则⊙O 的半径为( )
A.
3
3
5 B.
6
3
5 C. 10 D. 5
5.已知AB 是⊙O 的直径,弦AD 、BC 相交于点P ,那么CD ︰AB 等于∠BPD 的( ) A. 正弦
B. 余弦
C. 正切
D. 余切
6.A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于( )
A. 15°
B. 25°
C. 30°
D. 40°
8.内心与外心重合的三角形是( )
A. 等边三角形
B. 底与腰不相等的等腰三角形
C. 不等边三角形
D. 形状不确定的三角形
9.AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD=20,则△ABC 的周长为( )
A. 20
B. 30
C. 40
D. 2
1
35
二、填空题:(每小题5分,共30分)
11.⊙O 的两条弦AB 、CD 相交于点P ,已知AP=2cm ,BP=6cm ,CP ︰PD =1︰3,则DP=___________. 12.AB 是⊙O 的直径,弦CD⊥AB,垂足为E ,P 是BA 的延长线上的点,连结PC ,交⊙O 于F ,如果PF=7,FC=13,且PA ︰AE ︰EB = 2︰4︰1,则CD =_________.
B D
A
C E
F
3题图)
4题图)
D
C
B
A
P
13.从圆外一点P 引圆的切线PA ,点A 为切点,割线PDB 交⊙O 于点D 、B ,已知PA=12,PD=8,则=∆∆DAP ABP S S :__________.
14.⊙O 的直径AB=10cm ,C 是⊙O 上的一点,点D 平分BC ⌒,DE=2cm ,则AC=_____.
15.如图,AB 是⊙O 的直径,∠E=25°,∠DB C=50°,则∠CBE=________
. 16.点A 、B 、C 、D 在同一圆上,AD 、BC 延长线相交于点Q ,AB 、
DC 延长线相交于点P ,若∠A=50°,∠P=35°,则∠Q=________.
三、解答题:(共7小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17.如图,MN 为⊙O 的切线,A 为切点,过点A 作AP ⊥MN ,交⊙O 的弦BC 于点P. 若PA=2cm ,PB=5cm ,PC=3cm ,求⊙O 的直径.
18.如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是
⊙O 的切线.
A
P
D
B
A
B
C
D E
O
A
B
C
D
E O
A
B
C
D
Q
P
19.AB 、CD 是两条平行弦,BE//AC ,交CD 于E ,过A 点的切线交DC 的延长线于P , 求证:AC 2
=PC ·CE .
20.点P 为圆外一点,M 、N 分别为AB ⌒、CD ⌒的中点,求证: PEF 是等腰三角形.
21.ABCD 是圆内接四边形,过点C 作DB 的平行线交AB 的延长线于E 点, 求证:BE ·AD=BC ·CD .
D
22.已知∆ABC 内接于⊙O ,∠A 的平分线交⊙O 于D ,CD 的延长线交过B 点的切线于E .
求证:CE
DE BC CD 22
=.
23.如图,⊙O 1与⊙O 2交于A 、B 两点,过A 作⊙O 2的切线交⊙O 1于C ,直线CB 交⊙O 2于D ,直线DA 交⊙O 1于E ,求证:CD 2 =
CE 2
+DA ·DE .
参考答案
基础达标验收卷
一、选择题:
二、填空题:
1. 相交或相切
2. 1
3. 5
4. 35°
5.
2
5
1+ 6. 66 7. 2 8. 10 9.
3 10. 6 三、解答题:
1. 解:如右图,延长AP 交⊙O 于点D . 由相交弦定理,知PC PB PD PA ··=.
∵PA =2cm ,PB =5cm ,PC =3cm , ∴2PD =5×3. ∴PD =7.5. ∴AD =PD +PA =7.5+2=9.5. ∵MN 切⊙O 于点A ,AP ⊥MN , ∴AD 是⊙O 的直径. ∴⊙O 的直径是9.5cm.
2. 证明:如图,连结OP 、BP .
∵AB 是⊙O 的直径,∴∠APB =90°.
又∵CE =BE ,∴EP =EB . ∴∠3=∠1. ∵OP =OB ,∴∠4=∠2. ∵BC 切⊙O 于点B ,∴∠1+∠2=90°.
∠3+∠4=90°.
又∵OP 为⊙O 的半径,
∴PE 是⊙O 的切线.
3.(1)△QCP 是等边三角形.
证明:如图2,连结OQ ,则CQ ⊥OQ .
∵PQ =PO ,∠QPC =60°, ∴∠POQ =∠PQO =60°. ∴∠C =︒=︒-︒603090. ∴∠CQP =∠C =∠QPC =60°. ∴△QCP 是等边三角形. (2)等腰直角三角形. (3)等腰三角形. 4. 解:(1)PC 切⊙O 于点C ,∴∠BAC =∠PCB =30°. 又AB 为⊙O 的直径,∴∠BCA =90°. ∴∠CBA =90°.
(
2)∵PCB PCB CBA P ∠=︒=︒-︒=∠-
∠=∠303060
,∴PB =BC .
又362
1
21=⨯==AB BC ,
∴9=+=AB PB PA . 5. 解:(1)连结OC ,证∠OCP =90°即可. (2)∵∠B =30°,∴∠A =∠BGF =60°. ∴∠BCP =∠BGF =60°. ∴△CPG 是正三角形. ∴34==CP PG .
M N C A