复合函数讲义

合集下载

复合函数课件

复合函数课件

2 常见求导法则
根据复合函数中各个函数的性质和运算规则, 可以推导出常见的复合函数的求导法则。
复合函数的逆运算与逆函数的求解
逆运算
复合函数的逆运算可以通过将复合函数的内外 函数交换位要解方程f(g(x))=x,找 到使得等式成立的函数g(x)。
复合函数的性质和运算规则
结合律
复合函数满足结合律,即(f∘g)∘h = f∘(g∘h)。
分布律
复合函数满足分布律,即f∘(g+h) = (f∘g)+(f∘h)。
单位元
单位元函数是指f(x)=x,它与任何函数的复合都 不改变原函数。
逆元素
逆元函数是指f(g(x))=x,即复合函数和原函数相 互抵消。
复合函数ppt课件
本课件将详细介绍复合函数的定义、例子、性质和运算规则,以及复合函数 在实际问题中的应用。还将探索复合函数与反函数的关系,介绍复合函数的 求导法则和逆运算求解。
复合函数的定义和例子
定义
复合函数是由两个或多个函数组合而成的新函数, 其中一个函数的输出作为另一个函数的输入。
例子
例如,如果有两个函数f(x)和g(x),则它们的复合函 数为f(g(x))。
复合函数可以用来模拟经济变量之间的 相互关系,帮助经济学家预测市场走势。
工程学
复合函数可以用来优化工程设计,提高 系统的性能和效率。
复合函数与反函数的关系
反函数
反函数是指复合函数的逆运算,将一个函数的输出作为输入,返回原来的输入。
复合函数的求导法则
1 链式法则
复合函数求导的链式法则是将外函数的导数 与内函数的导数相乘。
复合函数的图像和图像变换
图像
复合函数的图像是由两个函数的图像组合而成的。

第13讲 复合函数

第13讲  复合函数

第13讲 复合函数知识回顾】1.复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.u=g(x)叫做y=f [g(x)]的内层函数,y=f(u)叫做y=f [g(x)]的外层函数.如:①23log (1)y x =+ 外层函数是 ,内层函数是 ;②22414x x y --+=外层函数是 ,内层函数是 。

2. 复合函数定义域问题:(1)已知f x ()的定义域,求[]f g x ()的定义域;设函数f x ()的定义域为D ,即x D∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。

如:设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。

(2)已知[]f g x ()的定义域,求f x ()的定义域;设[]f g x ()的定义域为D ,即x D ∈,由此得gx E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。

如:①已知f x x x ()l g 22248-=-,则函数f x ()的定义域为______________。

②已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_________。

(3)已知[]f g x ()的定义域,求[]f h x ()的定义域;设[]f g x ()的定义域为D ,即x D ∈,由此得gx E ()∈,f 的作用范围为E ,又f 对h x ()作用,作用范围不变,所以h x E ()∈,解得x F ∈,F 为[]f h x ()的定义域。

如:①若函数f x ()2的定义域为[]-11,,则f x (l o g )2的定义域为____________。

01复合函数--学生讲义

01复合函数--学生讲义

数学很难怎么办?两横一竖就是干!
【变式练习】 2-1.求函数������ =
1 −������ 2 +2������+1
的值域
数学很难怎么办?两横一竖就是干!
【变式练习】 2-2.求函数������ = ������ + ������ − 3 的值域
数学很难怎么办?两横一竖就是干!
复合函数求单调区间
数学很难怎么办?两横一竖就是干!
【经典例题】 3.函数y = 5 − 4������ − ������ 2 的单调递增区间
数学很难怎么办?两横一竖就是干!
【变式练习】 3-1.函数������ =
1 3x−������ 2
的单调递增区间
数学很难怎么办?两横一竖就是干!
来不及解释了,快上车!! QQ:511990076
复 合 函 数 模 型 求 解
数学很难怎么办?两横一竖就是干!
复合函数的概念 若������是������ 的一个函数������ = ������ ������ ,而������ 又是������ 的一个函数������ = ������ ������ ,则������也是������ 的一
个函数,即������ = ������ ������ ������ ,称复合函数,当������ = ������时,函数������的值记作������ ������ ������ .
数学很难怎么办?两横一竖就是干!
复合函数常考题型
解析式
复合函

单调性 值域
数学很难怎么办?两横一竖就是干!
复合函数求解析式
数学很难怎么办?两横一竖就是干!
【经典例题】 1.已知函数������ 2������ + 1 = 3������ + 2,则������ ������ = ________.

高中数学讲义: 复合函数零点问题

高中数学讲义: 复合函数零点问题

复合函数零点问题一、基础知识:1、复合函数定义:设()y f t =,()t g x =,且函数()g x 的值域为()f t 定义域的子集,那么y 通过t 的联系而得到自变量x 的函数,称y 是x 的复合函数,记为()y f g x =éùëû2、复合函数函数值计算的步骤:求()y g f x =éùëû函数值遵循“由内到外”的顺序,一层层求出函数值。

例如:已知()()22,x f x g x x x ==-,计算()2g f éùëû解:()2224f ==()()2412g f g \==éùëû3、已知函数值求自变量的步骤:若已知函数值求x 的解,则遵循“由外到内”的顺序,一层层拆解直到求出x 的值。

例如:已知()2x f x =,()22g x x x =-,若()0g f x =éùëû,求x 解:令()t f x =,则()2020g t t t =Þ-=解得0,2t t ==当()0020xt f x =Þ=Þ=,则x ÎÆ当()2222x t f x =Þ=Þ=,则1x =综上所述:1x =由上例可得,要想求出()0g f x =éùëû的根,则需要先将()f x 视为整体,先求出()f x 的值,再求对应x 的解,这种思路也用来解决复合函数零点问题,先回顾零点的定义:4、函数的零点:设()f x 的定义域为D ,若存在0x D Î,使得()00f x =,则称0x x =为()f x 的一个零点5、复合函数零点问题的特点:考虑关于x 的方程()0g f x =éùëû根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =éùëû的根的个数6、求解复合函数()y g f x =éùëû零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出()(),f x g x 的图像(2)若已知零点个数求参数的范围,则先估计关于()f x 的方程()0g f x =éùëû中()f x 解的个数,再根据个数与()f x 的图像特点,分配每个函数值()i f x 被几个x 所对应,从而确定()i f x 的取值范围,进而决定参数的范围复合函数:二、典型例题例1:设定义域为R 的函数()1,111,1x x f x x ì¹ï-=íï=î,若关于x 的方程()()20f x bf x c ++=由3个不同的解123,,x x x ,则222123x x x ++=______思路:先作出()f x 的图像如图:观察可发现对于任意的0y ,满足()0y f x =的x 的个数分别为2个(000,1y y >¹)和3个(01y =),已知有3个解,从而可得()1f x =必为()()20f x bf x c ++=的根,而另一根为1或者是负数。

复合函数单调性课件

复合函数单调性课件

复合函数单调性与极值的关系
总结词
复合函数的单调性与极值之间存在密切关系。
详细描述
当一个复合函数在某区间内单调递增或递减时,该函数在该区间内可能存在极值点。极值点是函数值发生变化的点, 它们对于确定函数的整体性质具有重要意义。
举例
设 $f(x) = x^3$,这是一个关于 $x$ 的单调递增的复合函数。在 $x = 0$ 处,该函数取得极小值点;而 在 $x < 0$ 或 $x > 0$ 的区间内,该函数是单调递增的。
复合函数的表示方法
设$y = f(u)$,$u = g(x)$,则复合 函数为$y = f(g(x))$。
复合函数的性质
连续性
复合函数在定义域内连续,即若 $f(u)$和$g(x)$在各自的定义域
内连续,则复合函数$y = f(g(x))$在定义域内也连续。
可导性
若$f(u)$和$g(x)$在各自的定义域 内可导,则复合函数$y = f(g(x))$ 在定义域内也可导。
导数的几何意义
表示曲线在某点的切线斜率。
03
导数的应用
判断函数的单调性、求极值、求拐点等。
02
单调性的概念与性质
单调性的定义
定义
如果对于任意$x_{1} < x_{2}$,都有$f(x_{1}) leq f(x_{2})$(或$f(x_{1}) geq f(x_{2})$),则称函数$f(x)$在区间$I$上单调递增(或单调递减)。
举例
设 $f(x) = x^2$,$g(x) = frac{1}{x}$,$h(x) = log_2(x)$ ,考虑复合函数 $f(g(h(x))) = (log_2x)^2$。在 $x > 1$ 的区 间内,该复合函数是单调递增的 ,而在 $0 < x < 1$ 的区间内, 该复合函数是单调递减的。

4.1复合函数的导数讲义

4.1复合函数的导数讲义

复合函数的导数讲义知识要点:一、复合函数: 由几个函数复合而成的函数,叫复合函数.由函数)(u f y =与)(x u ϕ=复合而成的函数一般形式是)]([x f y ϕ=,其中u 称为中间变量.二、复合函数的导数:设函数u=ϕ(x)在点x 处有导数u ′x =ϕ′(x),函数y=f(u)在点x 的对应点u 处有导数y ′u =f ′(u),则复合函数y=f(ϕ (x))在点x 处也有导数,且x u x u y y '''⋅= 或f ′x(ϕ (x))=f ′(u) ϕ′(x).三、复合函数的求导法则复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 四、复合函数求导的基本步骤是:分解——求导——相乘——回代.题型讲解:例1 试说明下列函数是怎样复合而成的?(1)32)2(x y -=; (2)2sin x y =;(3))4cos(x y -=π; (4))13sin(ln -=x y .解:(1)函数32)2(x y -=由函数3u y =和22x u -=复合而成;(2)函数2sin x y =由函数u y sin =和2x u =复合而成; (3)函数)4cos(x y -=π由函数u y cos =和x u -=4π复合而成;(4)函数)13sin(ln -=x y 由函数u y ln =、v u sin =和13-=x v 复合而成.说明:讨论复合函数的构成时,“内层”、“外层”函数一般应是基本初等函数,如一次函数、二次函数、指数函数、对数函数、三角函数等. 例2 写出由下列函数复合而成的函数:(1)u y cos =,21x u +=; (2)u y ln =,x u ln =. 解:⑴)1cos(2x y +=; ⑵)ln(ln x y =. 例3 求5)12(+=x y 的导数.解:设5u y =,12+=x u ,则x u x u y y '''⋅=)'12()'(5+⋅=x u x 2)12(52534⋅+=⋅=x u 4)12(10+=x . 例4 求y=sin 2(2x+3π)的导数. 解:令y=u 2,u=sin(2x+3π),再令u=sinv ,v=2x+3π∴x u x u y y '''⋅==y ′u (u ′v ·v ′x )∴y ′x =y ′u ·u ′v ·v ′x =(u 2)′u ·(sinv)′v ·(2x+3π)′x =2u ·cosv ·2=2sin(2x+3π)cos(2x+3π)·2=4sin(2x+3π)cos(2x+3π)=2sin(4x+32π)即y ′x =2sin(4x+32π) 例5 求32c bx ax y ++=的导数.解:令y=3u ,u=ax 2+bx+c∴x u x u y y '''⋅==(3u )′u ·(ax 2+bx+c)′x =3231-u ·(2ax+b)=31(ax 2+bx+c)32-(2ax+b)=322)(32c bx ax b ax +++ 即y ′x =322)(32c bx ax b ax +++例6 求y=51xx-的导数. 解:令xxu u y -==1,5 ∴x u x u y y '''⋅==(5u )′u ·(xx -1)′x 4455221(1)(1)11(1)()55x x x x x x x u x x x --''-------=⋅=⋅21x -=== 即y ′x =-542)(51x x x - 例7 求函数y=(2x 2-3)21x +的导数.解:令y=uv ,u=2x 2-3,v=21x +, 令v=ω,ω=1+x 2x x v v ωω'''=⋅=ω' (1+x 2)′x =22211122)2(21xx x x x +=+=-ω ∴y ′x =(uv)′x =u ′x v+uv ′x =(2x 2-3)′x ·21x ++(2x 2-3)·21xx +=4x 23232161321xx x xx x x ++=+-++ 即y ′x =2316xx x ++例8 求y=(ax -bsin 2ωx)3对x 的导数.解:y ′=3(ax -bsin 2ωx)2·(ax -bsin 2ωx)′=3(ax -bsin 2ωx)[a -(bsin 2ωx)′] =3(ax -bsin 2ωx)[a -b2sin ωx ·(sin ωx)′]=3(ax -bsin 2ωx)[a -b2sin ωx ·cos ωx ·ω]=3(ax -bsin 2ωx)(a -b ω·sin2ωx) 例9 求y=sin nxcosnx 的导数.解: y ′=(sin n x)′cosnx+sin n x(cosnx)′=nsin n -1x ·(sinx)′cosnx+sin n x ·(-sinnx)(nx)′=nsin n -1xcosxcosnx -nsin n xsinnx=nsin n -1x(cosxcosnx -sinxsinnx)=nsin n -1xcos(n+1)x. 例10 求函数y=-x 2(3x -2)(3-2x)的导数.分析:根据公式(uv ω)′=u ′v ω+uv ′ω+uv ω′解:y ′=(-x 2)′(3x -2)(3-2x)+(-x 2)(3x -2)′(3-2x)+(-x 2)·(3x -2)(3-2x)′ =-2x(3x -2)(3-2x)-x 2·3(3-2x)-x 2(3x -2)(-2)=24x 3-39x 2+12x. 例11 求函数y=)4)(3()2)(1(++++x x x x 的导数.解:y ′={21])4)(3()2)(1([++++x x x x }′121(1)(2)(1)(2)[][]2(3)(4)(3)(4)x x x x x x x x -++++'=++++ 12221(1)(2)(21)(3)(4)(1)(2)(43)[]2(3)(4)(3)(4)x x x x x x x x x x x x x x -+++++++-+++++=⋅++++112221122221(1)(2)420222(3)(4)(3)(4)x x x x x x x x ----++++=⋅++++112223322(1)(2)(21011)(3)(4)x x x x x x --++++=++2=例12 求y=(3x+1)252151-+x x 的导数.解:y ′=[(3x+1)2]′52151-+x x +(3x+1)2[(1512-+x x )51]′=2(3x+1)·(3x+1)+(3x+1)24225111()()55151x x x x -++'-- =2(3x+1)·3·52151-+x x +(3x+1)2·22542)15(5)1()15(2)151(51-⋅+---+-x x x x x x =6(3x+1)52151-+x x +51 (3x+1)2·4225425(1)525(51)(51)x x x x x --+--⋅-- =6(3x+1)22随堂演练:1、求下列函数的导数(先设中间变量,再求导). (1)y=(5x -3)4(2)y=(2+3x)5(3)y=(2-x 2)3(4)y=(2x 3+x)2解:(1)令y=u 4,u=5x -3 ∴x u x u y y '''⋅==(u 4)′u ·(5x -3)′x =4u 3·5=4(5x -3)3·5=20(5x -3)3 (2)令y=u 5,u=2+3x ∴x u x u y y '''⋅==(u 5)′u ·(2+3x)′x =5u 4·3=5(2+3x)4·3=15(2+3x)4 (3)令y=u 3,u=2-x 2∴x u x u y y '''⋅==(u 3)′u ·(2-x 2)′x =3u 2·(-2x)=3(2-x 2)2(-2x)=-6x(2-x 2)2 (4)令y=u 2,u=2x 3+x∴x u x u y y '''⋅==(u 2)′u ·(2x 3+x)′x =2u ·(2·3x 2+1)=2(2x 3+x)(6x 2+1)=24x 5+16x 3+2x 2、求下列函数的导数(先设中间变量,再求导)(n ∈N *) (1)y=sin nx (2)y=cos nx (3)y=tan nx (4)y=cot nx 解:(1)令y=sinu ,u=nxx u x u y y '''⋅==(sinu)′u ·(nx)′x =cosu ·n=ncosnx (2)令y=cosu ,u=nxx u x u y y '''⋅==(cosu)′u ·(nx)′x =-sinu ·n=-nsinnx (3)令y=tanu ,u=nxx u x u y y '''⋅==(tanu)′u ·(nx)′x =(uucos sin )′u ·n =2)(cos )sin (sin cos cos u u u u u --⋅·n=nx n n u 22cos cos 1==n ·sec 2nx (4)令y=cotu ,u=nxx u x u y y '''⋅==(cotu)′u ·(nx)′x =(uusin cos )′u ·n =2)(sin cos cos sin sin u u u u u ⋅-⋅-·n=-u 2sin 1·n=-nx n 2sin =-ncsc 2nx 3、求下函数的导数. (1)y=32)12(1-x (1)解:y=32)12(1-x =(2x 2-1)-3y ′=[(2x 2-1)-3]′=-3(2x 2-1)-4(2x 2-1)′=-3(2x 2-1)-4(4x)=-12x(2x 2-1)-4(2)y=4131+x (2)解:y=41414)13()131(131-+=+=+x x xy ′=[(3x+1)41-]′=-41 (3x+1)45-(3x+1)′=-41 (3x+1)45-·3=-43(3x+1)45-.(3)y=sin(3x -6π) (3)解:y ′=[sin(3x -6π)]′=cos(3x -6π)(3x -6π)′=cos(3x -6π)·3=3cos(3x -6π) (4)y=cos(1+x 2)(4)解:y ′=[cos(1+x 2)]′=-sin(1+x 2)(1+x 2)′=-sin(1+x 2)·2x=-2xsin(1+x 2). 4、下列函数中,导数不等于21sin2x 的是( D ) A.2-41cos2x B.2+21sin 2x C. 21sin 2x D.x -21cos 2x 5、函数y=xcosx -sinx 的导数为( B )A.xsinxB.-xsinxC.xcosxD.-xcosx 6、求y=21xx -的导数.解:y ′=(21xx -)′2222)1()1(1x x x x x -'---'=122221(1)(1)21x x x x -'⋅--=-==223221(1)x ==-322(1)x -=-7、下列结论正确的是( B )A .x y x y 2cos ,2sin ='=B .22cos 2,sin x x y x y ='=C .x x y x y cos 2,cos 2='=D .xx y x y 1sin 1,1cos -='= 8、设x a y -++=11,则y '等于( D ) A .x a -++121121 B .x -121 C .x a --+121121 D .x--1219、22cos 53sin x x y +=的导数是( D )A .2sin 53sin 2x x -B .2sin 106sin x x x -C .2sin 106sin 3x x x +D .2sin 106sin 3x x x -10、1212-+=x x y 的导数是( B )A .22)12(12-++x x xB .22)12(12-++-x x xC .22)12(24-+-x x x D .1)12(24222+-+-x x x x 11、x y 1sin 3=的导数是( C ) A .x x 1sin 322- B .x x 2sin 2322- C .x x x 1sin 1cos 322⋅- D .xx x 2sin 1sin 232⋅12、已知函数1)(2-=ax x f 且2)1(='f ,则a 的值为( B ) A .1=a B .2=a C .2=a D .0>a13、设)43sin(2)(π+=x x f ,则__6___.4f π⎛⎫'=- ⎪⎝⎭14、曲线3213+=x y 在点)4,1(3处的切线方程为_____.0123=+-y x __________. 15、求下列函数的导数. (1)33sin sin x x y +=;(.cos 3cos sin 3)(sin )(sin 32233x x x x x x y +⋅='+'=') (2)5)5cos 5(sin x x y -=;)5sin 55cos 5()5cos 5(sin 5)5cos 5(sin )5cos 5(sin 544x x x x x x x x y +-='--=' ).5cos 5(sin )5cos 5(sin 254x x x x +-= (3))1(log cos 22-=x y ;()295()(21)()(21,)(274212952952129521295x x x x x x x x y x x y ++='++='+=--)(4).76433⎪⎭⎫⎝⎛-+=x x y(.)76()43(135)76()43(18)76()43(9424332----+-=-+--+='x x x x x x y )16、设x y 3sin 8=,求曲线在点⎪⎭⎫⎝⎛1,6πP 处的切线方程.提示:易知点P 在曲线上,故点P 就是切点,.33,cos sin 2462='⋅='=πx y x x y∴所求切线方程为)6(331π-=-x y ,即.023236=+--πy x17、求证双曲线5:221=-y x C 与椭圆7294:222=+y x C 在交点处的切线互相垂直.提示:由于曲线的图形关于坐标轴对称,故只要证其中一点的切线互相垂直即可,联立两曲线方程解得第一象限交点为)2,3(P ,不妨证明过P 点的两切线互相垂直.点P 在第一象限,故由522=-y x 得.23.5,53122='=∴-='-==x y k x xy x y 由729422=+y x ,得.23.94894,9483222-='=∴--='-==x y k x x y x y而121-=⋅k k ,∴两切线互相垂直. 18、已知102)1()(x x x f ++=,求.)1()1(f f ' 提示:)1()1(10)(292'++++='x x x x x f21022921)1(1011)1(10x x x x xx x +++=⎪⎪⎭⎫⎝⎛++++= .25210)1()1(,110)1(:1)1(10)(:)(21022102=='∴+=+++++='f f xx x x x x x f x f。

复合函数求偏导解读课件

复合函数求偏导解读课件
偏导数的几何意义
在二维空间中,偏导数表示函数图像在某一点处切线的斜率。
偏导数的定义
对于一个多变量函数,如果一个变量变化,而其他变量保持不变,则该函数对变化变量的导数称为偏导数。
1
2
3
对于复合函数,如果 u 是内层函数,v 是外层函数,则 (uv)' = u'v + uv'。
链式法则
对于一个由方程 F(x, y, z) = 0 定义的隐函数 z = f(x, y),求偏导数时需要用到全微分。
线性方程组的求解
在求解线性方程组时,经常会遇到求解系数矩阵的逆或行列式的问题。通过求偏导可以将这些问题转化为求解偏导数等于零的点,从而找到方程组的解。
矩阵的导数
在微分方程中,求解初值问题是常见的数学问题。通过求偏导可以将初值问题转化为求解偏导数等于零的点,从而找到方程的解。
在研究微分方程的解的性质时,例如解的存在性、唯一性和稳定性等,需要用到求偏导的方法。通过求偏导可以得到解的导数或二阶导数,进一步研究解的性质和行为。
详细描述
商式法则是说,如果两个函数的商的偏导数存在,则等于被除函数对x的偏导数除以除函数对x的偏导数减去被除函数对y的偏导数除以除函数对y的偏导数。即:(u/v)'x = (u'x * v - u * v'x) / (v^2)。
复合函数的偏导数求解
CATALOGUE
03
偏导数的符号表示
用符号 "∂" 表示偏导数,例如 f'x(x0, y0) 表示函数 f 在点 (x0, y0) 处对 x 的偏导数。
求解初值问题
研究解的性质
THANKS
感谢观看
复合函数求偏导的应用

高一数学复合函数讲解

高一数学复合函数讲解

1、复合函数的概念如果y是a的函数,a又是x的函数,即y=fa,a=gx,那么y关于x的函数y=fgx叫做函数y=fx和a=gx的复合函数,其中a是中间变量,自变量为x,函数值y;例如:函数是由复合而成立;函数是由复合而成立;a是中间变量;2、复合函数单调性由引例对任意a,都有意义a>0且a≠1且;对任意,当a>1时,单调递增,当0<a<1时,单调递减;∵当a>1时,∵y=fu是上的递减函数∴∴∴是单调递减函数类似地, 当0<a<1时,是单调递增函数一般地,定理:设函数u=gx在区间M上有意义,函数y=fu在区间N上有意义,且当X∈M 时,u∈N;有以下四种情况:1若u=gx在M上是增函数,y=fu在N上是增函数,则y=fgx在M上也是增函数;2若u=gx在M上是增函数,y=fu在N上是减函数,则y=fgx在M上也是减函数;3若u=gx在M上是减函数,y=fu在N上是增函数,则y=fgx在M上也是减函数;4若u=gx在M上是减函数,y=fu在N上是减函数,则y=fgx在M上也是增函数;注意:内层函数u=gx的值域是外层函数y=fu的定义域的子集;例1、讨论函数的单调性12又是减函数∴函数的增区间是-∞,2,减区间是2,+∞;②x∈-1,3令∴x∈-1,1上,u是递增的,x∈1,3上,u是递减的;∵是增函数∴函数在-1,1上单调递增,在1,3上单调递减;注意:要求定义域练习:求下列函数的单调区间;1、1减区间,增区间;2增区间-∞,-3,减区间1,+∞;3减区间,增区间;4减区间,增函数;2、已知求gx的单调区间;提示:设,则gx=fu利用复合函数单调性解决:gx的单调递增区间分别为-∞,-1,0,1,单调递减区间分别为-1,0,1,+∞;例2、y=fx,且lglgy=lg3x+lg3-x1y=fx的表达式及定义域;2求y=fx的值域;3讨论y=fx的单调性,并求其在单调区间上相应的反函数;答案:1x∈0,320,3y=fx在上单调递增函数,在上是单调递减函数当x∈时,;当x∈时,;例3、确定函数的单调区间;提示,先求定义域:-∞,0,0,+∞,再由奇函数,先考虑0,+∞上单调性,并分情况讨论; 函数的递增区间分别为-∞,-1,0,+∞函数的递减区间分别为-1,0,0,1;1、求下列函数的单调区间;1232、求函数的递减区间;3、求函数的递增区间;4、讨论下列函数的单调性;12答案:11递减区间2递增区间0,+∞3递减区间-∞,0递增区间2,+∞2、,23、-∞,-24、1在上是增函数,在上是减函数;2a >1时,在-∞,1上是减函数,在3,+∞上是增函数;用待定系数法求函数解析式一、填空题:1、已知二次函数m x x y ++=32的图象与x 轴只有一个交点,则m =;2、抛物线c bx x y ++=2过点1,0,与x 轴两交点间距离3,则b =,c =;3、抛物线42++=bx x y 与x 轴只有一个交点,则b =;4、抛物线的顶点是C2,3,它与x 轴交于A 、B 两点,它们的横坐标是方程0342=+-x x 的两个根,则AB =,S △ABC =;5、如图,二次函数5)2(2-+--=a x a x y 的图象交x 轴于A 、B 两点,交y 轴于点C,当线段AB 最短时,线段OC 的长是;6、若抛物线c x x y +-=212的顶点在x 轴上,则c 的值是;7、抛物线12--=mx x y 与x 轴有个交点; 二、选择题1、抛物线()5322--=x y 与y 轴的交点坐标是A0,-5;B0,13;C0,4;D3,-52、抛物线x x y --=221的顶点坐标为 A ⎪⎭⎫ ⎝⎛211,-B ⎪⎭⎫ ⎝⎛211,-C ⎪⎭⎫ ⎝⎛1,21-D -1,0 3、若抛物线()322++--=m x m x y 的顶点在y 轴上,则m 的值为 A -3B3C -2D24、若抛物线c x x y +-=212的顶点在x 轴上,则c 的值为A 41;B 41-;C 161;D 161- 5、函数()x x y -=32图象可能为 6、若2,5,4,5是抛物线c bx ax y ++=2上的两点,那么它的对称轴为直线A ab x -=B 1=x C 2=x D 3=x7、抛物线12--=mx x y 与x 轴的交点个数是A0;B1;C2;D 无数个;三、求符合下列条件的二次函数式图象:1、过点0,1,1,1,-1,-1;2、对称轴是x =2,经过1,4和5,0两点;3、抛物线与x 轴的一个交点6,0,顶点是4,-84、当x =3时,y 有最大值为-1,且抛物线过点4,-3;5、抛物线以点-1,-8为顶点,且与y 轴交点纵坐标为-6;6、顶点在x 轴上,对称轴方程x =-3,且经过点-1,4;7、求二次函数)4()232-+-+=m m x m x y (的图象与x 轴两交点间的距离的最小值,此时m 的值是多少8、二次函数图象经过A0,2和B5,7两点,且它的顶点在直线y =-x 上;。

复合函数的导数讲义

复合函数的导数讲义

复合函数的导数【基础知识】如果函数)(x ϕ在点x 处可导,函数f (u )在点u=)(x ϕ处可导,则复合函数y= f (u )=f [)(x ϕ]在点x 处也可导,并且(f [)(x ϕ])ˊ=[])(x f ϕ')(x ϕ'或记作 x y '=u y '•x u '熟记链式法则若y= f (u ),u=)(x ϕ⇒ y= f [)(x ϕ],则x y '=)()(x u f ϕ''若y= f (u ),u=)(v ϕ,v=)(x ψ⇒ y= f [))((x ψϕ],则x y '=)()()(x v u f ψϕ''' (2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。

在求导时要由外到内,逐层求导。

【例题详解】例1函数4)31(1x y -=的导数.例2求51x x y -=的导数. 解:4)31(1x y -=4)31(--=x .解:511⎪⎭⎫ ⎝⎛-=x x y , 设4-=u y ,x u 31-=,则'541151'⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-=-x x x x y x u x u y y '''⋅=x u x u )'31()'(4-⋅=-254)1()1(1151x x x x x ----⋅⎪⎭⎫⎝⎛-=-)3(45-⋅-=-u 55)31(1212---==x u 5)31(12x -=.254)1(1151x x x -⋅⎪⎭⎫ ⎝⎛-=-5654)1(51---=x x 例3 求下列函数的导数x y 23-=解:(1)x y23-= ,令u=3 -2x ,则有y=u ,u=3 -2x由复合函数求导法则x u xu y y '∙'='有y ′=()xu x u )23('-'=xu231)2(21--=-∙在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u ,于是前面可以直接写出如下结果:y ˊ=xx x231)23(2321--='-∙-在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程:y ˊ=xx231)2(2321--=-∙-例4求下列函数的导数(1)y=x 21-cos x (2)y=ln (x +21x +)解:(1)y=x 21-cos x由于y=x 21-cos x 是两个函数x 21-与cos x 的乘积,而其中x 21-又是复合函数,所以在对此函数求导时应先用乘积求导法则,而在求x 21-导数时再用复合函数求导法则,于是y ˊ=(x 21-)ˊcos x -x 21-sin x=x xcos 212)2(---x 21-sin x=xx 21cos ---x 21-sin x(2)y=ln (x +21x +) 由于y=ln (x +21x +)是u= x +21x +与y=ln u 复合而成,所以对此函数求导时,应先用复合函数求导法则,在求x u '时用函数和的求导法则,而求(21x +)′的导数时再用一次复合函数的求导法则,所以y ˊ=211x x ++•[1+(21x +)ˊ]=211x x ++•⎪⎪⎭⎫ ⎝⎛++21221x x=211x x ++•2211x x x +++=211x +例 5 设)1ln(++=x x y 求 y '.解 利用复合函数求导法求导,得)'1(11)]'1[ln('222++++=++=x x x x x x y ])1(1[1122'++++=x x x])1(1211[11222'+++++=x x x x 11]11[11222+=++++=x x x x x .小结 对于复合函数,要根据复合结构,逐层求导,直到最内层求完,对例4中括号层次分析清楚,对掌握复合函数的求导是有帮助的.例6求y=(x 2-3x+2)2sin3x 的导数.解:y′=[(x 2-3x+2)2]′sin3x+(x 2-3x+2)2(sin3x)′=2(x 2-3x+2)(x 2-3x+2)′sin3x+(x 2-3x+2)2cos3x(3x)′ =2(x 2-3x+2)(2x -3)sin3x+3(x 2-3x+2)2cos3x.【巩固练习】1.求下函数的导数.(1)cos 3xy = (2)y =(3)y=(5x -3)4(4)y=(2+3x)5(5)y=(2-x 2)3 (6)y=(2x 3+x)2(7)y=32)12(1-x (8)y=4131+x(9)y=sin(3x -6π) (10)y=cos(1+x 2)(11)32)2(x y -=(12)2sin x y =;(13))4cos(x y -=π(14))13sin(ln -=x y .(15)122sin -=x x y (16))132ln(2++x x作业: 一、选择题 1. 函数y =2)13(1-x 的导数是( ) A.3)13(6-x B. 2)13(6-x C. -3)13(6-x D. -2)13(6-x3. 函数y =sin (3x +4π)的导数为( ) A. 3sin (3x +4π) B. 3cos (3x +4π)C. 3sin 2(3x +4π) D. 3cos 2(3x +4π) 4. 曲线n x y =在x=2处的导数是12,则n=( ) A. 1 B. 2 C. 3 D. 45. 函数y =cos2x +sin x 的导数为( )A. -2sin2x +xx2cos B. 2sin2x +xx 2cos C. -2sin2x +xx 2sin D. 2sin2x -xx 2cos6. 过点P (1,2)与曲线y=2x 2相切的切线方程是( ) A. 4x -y -2=0 B. 4x+y -2=0 C. 4x+y=0D. 4x -y+2=0二、填空题8. 曲线y =sin3x 在点P (3π,0)处切线的斜率为___________。

2.13-2抽象函数(复合函数)定义域的求法讲义

2.13-2抽象函数(复合函数)定义域的求法讲义

抽象函数的定义域抽象函数的定义:我们把没有给出具体解析式的函数称为抽象函数。

复合函数的概念:设y=f(u )的定义域为Du ,值域为Mu ,函数u=g(x )的定义域为Dx ,值域为Mx,那么对于Dx 内的任意一个x 经过u ;有唯一确定的y 值与之对应,因此变量x 与y 之间通过变量u 形成的一种函数关系,记为:y=f[g(x)],这种函数称为复合函数(composite function),其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。

总结解题模板1.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。

4.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

例1已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.分析:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[]()f g x 的定义域.本题该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围.解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤.故函数(35)f x -的定义域为41033⎡⎤⎢⎥⎣⎦,.变式训练:若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

复合函数讲义

复合函数讲义

复合函数教师:司马红丽复合函数【知识要点归纳】 1、复合函数的定义2、定义域和值域:3、单调性【经典例题】例1:设函数2(32)35f x x x +=+−,求()f x 的解析式例2:设函数f (x )的定义域是[—1,1]那么函数f (x 2-1)的定义域是________例3:若,且,求的最值。

例4:若函数的值域为一切实数,求实数的取值范围。

例5:求函数23log (32)y x x =++的单调增区间和单调减区间。

例6:讨论函数3428.0+−=x x y 的单调性。

例7:已知)32(log 24x x y −+=. (1)求定义域;(2)求f (x )的单调区间;(3)求y 的最大值,并求取最大值时x 值.例8:若)3(log ax y a −=在[0,1]上是减函数,则a 的取值范围是_______。

例9:若()()25log 3log 3x x −≥()()25log 3log 3yy−−−,则( )A .x y −≥ 0B .x y +≥ 0C .x y −≤ 0D .x y +≤ 0【课堂练习】 1.函数y=在区间[4,5]上的最大值是_______,最小值是_______。

2.函数y =(2 – x – x 2)的单调减区间是_______。

3.已知y = a log (2-xa )在[0,1]上是x 的减函数,求a 的取值范围.4.若y = f (x )定义域为[-2, 1],求y = f (2x + 1)和y = f (x 2)的定义域5.求函数1x x 24325−−⋅+的单调区间和值域.6.已知y = f (x )在R 上是增函数,试判断y = f (-2x + 3x + 1)的单调性.7.已知函数122−+−=ax x y 在区间()3,∞−上是增函数,求a 的范围.8.是否存在常数λ使函数y=4x +(2-λ)2x +2-λ在区间(-∞,-2)上是减函数,在[-1,0]上是增函数?若存在,求出λ范围,若不存在求出λ的取值范围。

复合函数(知识点总结、例题分类讲解)

复合函数(知识点总结、例题分类讲解)

千里之行,始于足下。

复合函数(知识点总结、例题分类讲解)复合函数是指由两个或多个函数相互作用形成的新函数。

在数学中,复合函数是一种常见的概念,并且在高等数学、线性代数、微积分等多个领域中都有应用。

本文将对复合函数的知识点进行总结,并通过分类讲解一些例题。

一、复合函数的定义:设有函数f和g,对于g的定义域中的每个x,存在f的定义域中的y,使得y=g(x),则有一个复合函数h(x)=f(g(x)),它的定义域是所有能使得g(x)的值能成为f(x)定义域中的自变量的值的x。

二、复合函数的求解步骤:1. 确定复合函数的形式h(x)=f(g(x))。

2. 确定g(x)的定义域和f(x)的定义域,并找到能使得g(x)的值成为f(x)的自变量的值。

3. 将g(x)的值代入f(x)中,得到新的函数h(x)。

三、复合函数的性质:1. 复合函数的定义域是g(x)的定义域和f(x)的定义域的交集。

2. 复合函数的值域是f(x)的值域的子集。

四、复合函数的例题分类讲解:1. 简单的复合函数求导:例题1:已知f(x)=x²和g(x)=2x+1,求复合函数h(x)=f(g(x))的导函数h'(x)。

第1页/共2页锲而不舍,金石可镂。

解析:首先计算g'(x)=2,然后计算f'的导函数f'(x)=2x。

根据链式法则,h'(x)=f'(g(x))*g'(x)=2(2x+1)*2=8x+4。

2. 复合函数中含有指数函数:例题2:已知f(x)=eˣ和g(x)=ln(x),求复合函数h(x)=f(g(x))的导函数h'(x)。

解析:首先计算g'(x)=1/x,然后计算f'的导函数f'(x)=eˣ。

根据链式法则,h'(x)=f'(g(x))*g'(x)=eˣ*(1/x)=eˣ/x。

3. 复合函数中含有三角函数:例题3:已知f(x)=sin(x)和g(x)=x²,求复合函数h(x)=f(g(x))的导函数h'(x)。

复合函数(讲义)

复合函数(讲义)

复合函数(讲义)1.复合函数定义如果函数y=f(u),u=g(x),那么函数y=f(g(x))就被称为复合函数,其中f(u)是外层函数,g(x)是内层函数,u是中间变量。

2.复合函数定义域的求法①如果y=f(x)的定义域为[a,b],那么复合函数y=f(g(x))的定义域即为不等式a≤g(x)≤b的解集;②如果y=f(g(x))的定义域为[a,b],那么函数y=f(x)的定义域即为x∈[a,b]时g(x)的取值范围。

注:同一对应法则f下的范围相同,即f(u)、f(g(x))、f(h(x))三个函数中,u,g(x),f(x)的范围相同。

3.复合函数的单调性口诀:同增异减。

已知函数y=f(g(x)),则求其单调区间的一般步骤如下:1)确定定义域;2)将复合函数y=f(g(x))分解成:y=f(u),u=g(x);3)分别确定这两个函数的单调区间。

4.复合函数的奇偶性口诀:有偶则偶,全奇为奇。

即:f(x)。

偶函数。

偶函数。

奇函数。

奇函数g(x)。

偶函数。

奇函数。

偶函数。

奇函数f(g(x))。

偶函数。

偶函数。

偶函数。

奇函数精讲精练】1.1)f(g(x))=2(3x-5)+3=6x-7,g(f(x))=3(2x+3)-5=6x+4 2)f(x+1)=(x+1)²+1= x²+2x+22.1)f(x²),则x²≥0,即定义域为[0,+∞)f(x-2),则x-2≥0,即定义域为[2,+∞)2)f(x+1),则x+1∈[-2,1],即定义域为[-3,0]f(2),则2∈[-2,1],即定义域为[-3,0]3)f(2x),则2x∈[-1,+∞),即定义域为[-1/2,+∞)f(log₂x),则log₂x∈[-1,+∞),即定义域为[1/2,+∞) 4)f(x)=log₃x,则定义域为(0,+∞)3.1)y=log₁⁄₂(x²+6x+13),x²+6x+13>0,即x∈(-∞,-3]∪(-3,-2]∪(-2,+∞),值域为(-∞,+∞)2)y=(f(x²)+f(2-x))/(2-x²),x²≤2,即x∈[-√2,√2],(2-x)²>0,即2-x≠0,即x≠2,值域为(-∞,a]∪[b,+∞),其中a=f(2-√2)+f(√2-2),b=f(2+√2)+f(-√2-2)3)y=log₂(4x²-1),4x²-1>0,即x∈(-∞,-1/2)∪(1/2,+∞),值域为(-∞,+∞)4.已知y=ax²/(x²+1)-11x²/(x²+4),化简得y=-3x²(x²+1)/(x²+4)(x²+1),x²+4>0,即x∈(-∞,-2)∪(-2,+∞),x²+1>0,即x∈(-∞,+∞),因此定义域为(-∞,-2)∪(-2,+∞),值域为(-∞,0]1.函数f(x)=3x^2-18x+24在x∈[1,8]时有最小值8,则函数的最小值为8,求a的值。

高数课件64复合函数求导法则

高数课件64复合函数求导法则

03
误区三
运算错误。有些同学在求导过程中由于运算不熟练或粗心大意导致出错。
要避免这种误区,需要加强运算练习,提高运算准确性和熟练度。
典型例题分析与解答
例题一
求函数$y = sin(2x)$的导数。
分析
这是一个典型的复合函数求导问题,其中外层函数是$sin u$,内层函数是$u = 2x$。根据复合函数求导法则,我们 有$frac{dy}{dx} = frac{d(sin u)}{du} cdot frac{du}{dx} = cos u cdot 2 = 2cos(2x)$。
解答
$y' = 2cos(2x)$。
例题二
求函数$y = e^{tan x}$的导数。
分析
这也是一个复合函数求导问题,其中外层函数是$e^u$, 内层函数是$u = tan x$。根据复合函数求导法则,我们有 $frac{dy}{dx} = frac{d(e^u)}{du} cdot frac{du}{dx} = e^u cdot sec^2 x = e^{tan x} cdot sec^2 x$。
解答
$y' = e^{tan x} cdot sec^2 x$。
07 总结与展望
课程内容总结
复合函数求导法则基本概念
讲解了复合函数、中间变量、链式法则等基本概念,为求导法则 的学习打下基础。
复合函数求导法则的推导
详细推导了复合函数求导法则,包括一元复合函数、多元复合函数 以及含参变量的复合函数的求导方法。
THANKS FOR WATCHING
感谢您的观看
04 复合函数求导法则的应用
单一复合函数的求导
链式法则
若函数u=g(x)在点x可导,函数 y=f(u)在对应点u=g(x)可导,则 复合函数y=f[g(x)]在点x可导,且 其导数为y'=f'(u)g'(x)或 dy/dx=dy/du * du/dx。

复合函数课件

复合函数课件

复合函数图像的绘制方法
步骤四:绘制图像
根据得到的点,使用平滑的曲线连接这些点,绘制出复合函数的图像。
复合函数图像的变换
平移变换
当复合函数的内部函数在自变量上加减一个常数时,图像会沿x轴方向平移。
复合函数图像的变换
01
伸缩变换
02
当复合函数的内部函数在自变量 上乘以或除以一个常数时,图像 会沿x轴或y轴方向伸缩。
如果存在一个常数T,对于定义域内 的所有x,都有f(x+T)=f(x),则函数 为周期函数。复合函数的周期性由内 外函数共同决定。
复合函数的对称性
总结词
对称性描述了函数图像的对称性质。
详细描述
复合函数的对称性与内外函数的对称性和对应关系有关。例如,如果内外函数都是轴对称的,那么复合函数可能 是轴对称的;如果内外函数都是中心对称的,那么复合函数可能是中心对称的。
的角色。
深化理解
通过研究复合函数,可以深入理 解函数的性质和变化规律,进一
步加深对函数概念的理解。
拓展思维
复合函数可以拓展人们的思维方 式和解题思路,对于提高数学素
养和思维能力有很大的帮助。
02
复合函数的性质
复合函数的单调性
总结词
单调性描述了函数值随自变量变化的趋势。
详细描述
复合函数的单调性取决于内外函数的单调性以及它们的对应关系。如果内外函 数单调性相同,则复合函数为增函数;如果单调性相反,则复合函数为减函数 。
分部积分法
换元积分法
换元积分法是通过引入新的变量来简 化定积分的计算方法。
分部积分法是一种通过将两个函数的 乘积进行求导来计算定积分的方法。
积分在复合函数中的应用
复合函数求导法则

复合函数的定义域详细讲义及练习详细答案

复合函数的定义域详细讲义及练习详细答案

复合函数一,复合函数的定义:设y是u的函数,即y=f(u),u是x的函数,即u=g(x),且g(x)的值域与f(u)的定义域的交集非空,那么y通过u的联系成为x 的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数,记作y=f[g(x)],其中u称为中间变量。

二,对高中复合函数的通解法——综合分析法1、解复合函数题的关键之一是写出复合过程例1:指出下列函数的复合过程。

(1)y=√2-x2 (2)y=sin3x (3)y=sin3x (4)y=3cos√1-x2解:(1) y=√2-x2是由y=√u,u=2-x2复合而成的。

(2)y=sin3x是由y=sinu,u=3x复合而成的。

(3)∵y=sin3x=(sinx)-3∴y=sin3x是由y=u-3,u=sinx复合而成的。

(4)y=3cos√1+x2是由y=3cosu,u=√r,r=1+x2复合而成的。

2、解复合函数题的关键之二是正确理解复合函数的定义。

看下例题:例2:已知f(x+3)的定义域为[1、2],求f(2x-5) 的定义域。

经典误解1:解:f(x+3)是由y=f(u),u=g(x)=x+3复合而成的。

F(2x-5)是由y=f(u2),u2=g(x)=2x-5复合而成的。

由g(x),G(x)得:u2=2x-11即:y=f(u2),u2=2x-11∵f(u1)的定义域为[1、2]∴1≤x﹤2∴-9≤2x-11﹤-6即:y=f(u2)的定义域为[-9、-6]∴f(2x-5)的定义域为[-9、-6]经典误解2:解:∵f(x+3)的定义域为[1、2]∴1≤x+3﹤2∴-2≤x﹤-1∴-4≤2x﹤-2∴-9≤2x-5﹤-7∴f(2x-5)的定义域为[-9、-7](下转2页)注:通过以上两例误解可得,解高中复合函数题会出错主要原因是对复合函数的概念的理解模棱两可,从定义域中找出“y”通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数,记作y=f[g(x)],其中u称为“中间变量”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
复合函数(讲义)
➢ 知识点睛
1. 复合函数定义
若函数()y f u =,()u g x =,则称函数(())y f g x =为复合
函数,其中()f u 为外层函数,g (x )为层函数,u 是中间变量.
2. 复合函数定义域的求法
①若y =()f x 的定义域为[a ,b ],则复合函数(())y f g x =的定义域即为不等式a ≤g (x )≤b 的解集;
②若(())y f g x =的定义域为[a ,b ],则函数y =()f x 的定义域即为x ∈[a ,b ]时g (x )的取值围.
注:同一对应法则f 下的围相同,即f (u )、f (g (x ))、f (h (x ))三个函数中,u ,g (x ),
f (x )的围相同.
3. 复合函数的单调性
口诀:同增异减.
已知函数(())y f g x =,则求其单调区间的一般步骤如下: (1)确定定义域;
(2)将复合函数(())y f g x =分解成:()y f u =,()u g x =;
(3)分别确定这两个函数的单调区间.
4. 复合函数的奇偶性
口诀:有偶则偶,全奇为奇.即:
➢ 精讲精练
1. (1)设函数 f (x )=2x +3,g(x )=3x -5,则 f (g (x ))=____________,g (f
(x ))=____________;
(2)已知2211()f x x x x
-=+,则(1)f x +=_________.
2. (1)设函数f (x )的定义域为[01],,则函数2()f x 的定义域为____________,函数2)f -的定义域为____________;
3. 求函数的值域:
4. 已知函数233x
x y a -+=,当[13]x ∈,时有最小值8,则a 的值为____________.
5. 如果函数2()21x x f x a a =+-(a >0,且a ≠1)在[-1,1]上有最大值14,则a 的值为____________.
6. 设0a >,1a ≠,函数2lg (23)x
x y a -+=有最大值,则不等式2log (57)0a x x -+>的
解集为____________.
7. 若函数()f x 在()-∞+∞,上是减函数,则2(2)y f x x =-的单调递增区间是
____________.
8. 直接写出下列函数的单调区间:
(2)函数2()ln(23)f x x x =--的单调递减区间是_________;
(3)函数()242x x f x =-⋅的单调递减区间是____________;
(4)函数2
0.50.5log log 2()x f x x =-+的单调减区间是______.
9. 求下列函数的单调区间:
(4)函数
()f x =的单调递增区间是_______.
10. 已知f (x )=log a |x -1|在(0,1)上递减,那么f (x )在(1,+∞)上(

A .递增无最大值
B .递减无最小值
C .递增有最大值
D .递减有最小值
11. 已知函数log (()2)a f x x a =-在(11)-,上是x 的减函数,则a 的取值围是
____________.
【参考答案】
1. (1)6x -7;6x +4;(2)x 2+2x +3
2. (1)[-1,1];[4,9];(2)5[0]2,;11(][)32
-∞-+∞U ,,; (3)4];(4)(-4,-1)∪(1,4)
3. (1)(-∞,-2);(2)3[57]4,;(3)1[2]4
-, 4. 16
5. 13
或3 6. (2,3)
7. (1,+∞)
8. (1)(-∞,3);(2)(-∞,-1);
(3)(-∞,-2);(4)(02
, 9. (1)(-∞,-2),(-2,+∞);(2)(-2,2);
(3)(-1,1);(4)7()2
-∞-, 10. A
11.(1,2]
12.(-8,-6]
13.a>1。

相关文档
最新文档