5 三角形内角和定理 第1课时

合集下载

三角形内角和ppt课件完整版

三角形内角和ppt课件完整版
度或边长。
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免

5.5三角形内角和定理(1)doc

5.5三角形内角和定理(1)doc

5.5三角形内角和定理(1)一、教学目标1.知识与技能目标:会用平行线的性质与平角的定义证明三角形内角和等于︒180,能用三角形内角和等于︒180进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

2.过程与方法目标:通过拼图实验、合作交流、推理论证的过程。

体现“做中学”发展学生的合情推理能力和逻辑思维能力,初步获得科学研究的体验。

3.情感态度价值观目标:通过操作、交流、探究、表述、推理等活动,培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆提出疑问,培养学生良好的学习习惯。

二、重点、难点重点:三角形内角和等于︒180的证明及应用难点:证明三角形内角和等于︒180三、教学过程“三角形的三个内角之和是︒180” 如何证明这个结论的正确性?已知:△ABC.求证:∠A+∠B+∠C=︒180证法一证明:在△ABC 的外部以CA 为边作∠ACE=∠A.延长BC 至D则 C E ∥B A ﹙内错角相等,两直线平行﹚∴∠DCE=∠B ﹙两直线平行,同位角相等﹚∵∠BCA+∠ACE+∠ECD=︒180 ﹙平角定义﹚∴∠BCA +∠A +∠B=︒180 ﹙等量代换﹚∴∠BCA +∠A +∠B = ︒1802.同学想一想还有没有其他的方法证明这个结论的正确性?证法二证明:延长BC 至D ,过C 作CE ∥BA.则∠A =∠ACE ﹙两直线平行,内错角相等﹚∠B =∠ECD ﹙两直线平行,同位角相等﹚ ∵∠BCA+∠ACE+∠ECD=︒180 E. D . A E. D .A证法三证明:过A 作EF ∥BC.则∠EAB =∠B.∠FAC = ∠C﹙两直线平行,内错角相等﹚∵∠EAB+∠BAC+∠CAF=︒180∴∠B+∠BAC+∠C=︒1801.三角形内角和定理:三角形的内角和等于︒180即△ABC 中,∠A +∠B+∠C=︒180 由证法一中的图可看出∠ACD 是三角形的一个外角,∠A 、∠B 是与∠ACD 不相邻的两个内角,由三角形内角和定理能推出∠ACD 与∠A 、 ∠B 之间有怎样的数量关系?∠ACD=∠A +∠B ∠ACD >∠A ∠ACD >∠B由此得出:推论1:三角形的一个外角等于与它不相邻的两个内角的和。

4.1《认识三角形》(第1课时)教学设计(5篇)

4.1《认识三角形》(第1课时)教学设计(5篇)

4.1《认识三角形》(第1课时)教学设计(5篇)第一篇:4.1《认识三角形》(第1课时)教学设计第4章三角形 4.1.1 认识三角形〖教学目标〗1.了解三角形的概念。

2.掌握一类图形中的三角形计数方法,渗透分类思想。

3.掌握三角形的内角和规律及其应用。

4.培养分析、归纳问题和逻辑推理能力,激发学生的创造思维和探索精神。

〖教材分析〗教材从观察小木屋屋顶框架图入手,要求学生找出四个不同的三角形,并说明这些图形有什么共同点。

考虑到学生的认知水平,设计用动画“画”三角形,学生“观察”,总结、归纳出三角形定义。

本课时内容是在学生已了解三角形内角和知识的基础上学习的,主要引导学生参与探索发现三角形的内角和规律,为灵活运用三角形内角和规律打下坚实的基础。

整个教学内容力图让学生通过“感知―概括―应用”的思维过程去发现知识、掌握规律,并通过师生间和生生间的多层次、多通道的主体信息交流,发展学生的逻辑推理能力。

〖教学设计〗三角形是生活中常见的几何图形,学生都认识,但是对定义的理解不够准确。

为加深学生的理解,教学中让学生从自己的认识出发,教师给予引导、明晰,再得到定义。

“三角形的计数”是本节难点,为让每个学生都得到经历数学思考的体验,采用小组活动的方式,使每个学生都得到训练,发展个性化的学习。

同时,结合学生的认知水平,制作课件,生动、形象地帮助学生学习,降低学习难度。

(一)创设情境,引入新课师:同学们认识三角形吗?生:认识。

师:在生活中见过应用三角形的例子吗?师:哪一位同学能举一些例子?生1:三角形的屋顶。

生2:自行车的三角架。

师:很好。

老师也给同学们准备了一些生活中应用三角形的例子,我们一起来看看。

(屏幕显示自拍照片:学校篮球架,建筑工地塔式吊车,加油站大跨度屋顶等。

)师:这些例子说明了三角形在我们的生活中随处可见。

为什么三角形具有这么多应用呢?等我们学完这一章后,同学们就会有更深的理解。

下面我们一起来认识三角形。

三角形内角和定理的证明

三角形内角和定理的证明

第五节三角形内角和定理的证明第六课时●课题§6.5 三角形内角和定理的证明●教学目标(一)教学知识点三角形的内角和定理的证明.(二)能力训练要求掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力.(三)情感与价值观要求通过新颖、有趣的实际问题,来激发学生的求知欲.●教学重点三角形内角和定理的证明.●教学难点三角形内角和定理的证明方法.●教学方法实验、讨论法.●教具准备三角形纸片数张.投影片三张第一张:问题(记作投影片§6.5 A)第二张:实验(记作投影片§6.5 B)第三张:小明的想法(记作投影片§6.5 C)●教学过程Ⅰ.巧设现实情境,引入新课[师]大家来看一机器零件(出示投影片§6.5 A)工人师傅将凹型零件(图6-34)加工成斜面EC与槽底CD成55°的燕尾槽(图6-35)的程序是:将垂直的铣刀倾斜偏转35°角(图6-5),就能得到55°的燕尾槽底角.图6-34图6-35图6-36 为什么铣刀偏转35°角,就能得到55°的燕尾槽底角呢?Ⅱ.讲授新课[师]为了回答这个问题,先观察如下的实验(电脑实验,或实物实验)用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如图6-37),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC……其内角会产生怎样的变化呢?图6-37[生甲]当点A离BC越来越近时,∠A越来越接近180°,而其他两角越来越接近于0°.[生乙]三角形各内角的大小在变化过程中是相互影响的.[师]很好.在三角形中,最大的内角有没有等于或大于180°的?[生丙]三角形的最大内角不会大于或等于180°.[师]很好.看实验:当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B、∠C逐渐接近为互补的同旁内角.即∠B+∠C→180°.请同学们猜一猜:三角形的内角和可能是多少?[生齐声]180°[师]180°,这一猜测是否准确呢?我们曾做过如下实验:(出示投影片§6.5 B)实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果.(1)(2)(3)(4)图6-38实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起.[师]由实验可知:我们猜对了!三角形的内角之和正好为一个平角.但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同学们再来看实验.图6-39这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把三角形ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方.这时,∠A与∠ACE能重合吗?[生齐声]能重合.[师]为什么能重合呢?[生齐声]因为同位角∠ECD=∠B.所以CE∥B A.[师]很好,这样我们就可以证明了:三角形的内角和等于180°.接下来同学们来证明:三角形的内角和等于180°这个真命题.这是一个文字命题,证明时需要先干什么呢?[生]需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证.[师]对,下面大家来证明,哪位同学上黑板给大家板演呢?图6-40[生甲]已知,如图6-40,△AB C.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥AB.则∠ACE=∠A(两直线平行,内错角相等)∠ECD=∠B(两直线平行,同位角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠A+∠B+∠ACB=180°(等量代换)即:∠A+∠B+∠C=180°.[生乙]老师,我的证明过程是这样的:证明:作BC的延长线CD,作∠ECD=∠B.则:EC∥AB(同位角相等,两直线平行)∴∠A=∠ACE(两直线平行,内错角相等)∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)∴∠ACB+∠A+∠B=180°(等量代换)[师]同学们写得证明过程很好,在证明过程中,我们仅仅添画了一条射线CE,使处于原三角形中不同位置的三个角,巧妙地拼凑到一起来了.为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.我们通过推理的过程,得证了命题:三角形的内角和等于180°是真命题,这时称它为定理.即:三角形的内角和定理.小明也在证明三角形的内角和定理,他是这样想的.大家来议一议,他的想法可行吗?(出示投影片§6.5 C)图6-41在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC.(如图6-41)他的想法可行吗?你有没有其他的证法.[生甲]小明的想法可行.因为:∵PQ∥BC(已作)∴∠P AB=∠B(两直线平行,内错角相等)∠QAC=∠C(两直线平行,内错角相等)∵∠P AB+∠BAC+∠QAC=180°(1平角=180°)∴∠B+∠BAC+∠C=180°(等量代换)图6-42[生乙]也可以这样作辅助线.即:作CA的延长线AD,过点A作∠DAE=∠C(如图6-42).[生丙]也可以在三角形的一边上任取一点,然后过这一点分别作另外两边的平行线,这样也可证出定理.图6-43即:如图6-43,在BC上任取一点D,过点D分别作DE∥AB交AC于E,DF∥AC 交AB于F.∴四边形AFDE是平行四边形(平行四边形的定义)∠BDF=∠C(两直线平行,同位角相等)∠EDC=∠B(两直线平行,同位角相等)∴∠EDF=∠A(平行四边形的对角相等)∵∠BDF+∠EDF+∠EDC=180°(1平角=180°)∴∠A+∠B+∠C=180°(等量代换)[师]同学们讨论得真棒.接下来我们做练习以巩固三角形内角和定理.Ⅲ.课堂练习(一)课本P196随堂练习1、2.图6-441.直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论.答案:90°60°如图6-44,在△ABC中,∠C=90°∵∠A+∠B+∠C=180°∴∠A+∠B=90°.图6-45如图6-45,△ABC是等边三角形,则:∠A=∠B=∠C.∵∠A+∠B+∠C=180°∴∠A=∠B=∠C=60°图6-462.如图6-46,已知,在△ABC中,DE∥BC,∠A=60°,∠C=70°,求证:∠ADE=50°.证明:∵DE∥BC(已知)∴∠AED=∠C(两直线平行,同位角相等)∵∠C=70°(已知)∴∠AED=70°(等量代换)∵∠A+∠AED+∠ADE=180°(三角形的内角和定理)∴∠ADE=180°-∠A-∠AED(等式的性质)∵∠A=60°(已知)∴∠ADE=180°-60°-70°=50°(等量代换)(二)读一读P197.(三)看课本P195~196,然后小结.Ⅳ.课时小结这堂课,我们证明了一个很有用的三角形内角和定理.证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角.辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它.Ⅴ.课后作业(一)课本P198习题6.6 1、2(二)1.预习内容P199~2002.预习提纲(1)三角形内角和定理的推论是什么?(2)三角形内角和定理的推论的应用.Ⅵ.活动与探究1.证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图6-47(1)),如果把这三个角“凑”到三角形内一点呢?(如图6-47(2))“凑”到三角形外一点呢?(如图6-47(3)),你还能想出其他证法吗?(1)(2)(3)图6-47[过程]让学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路.[结果]证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点;还可以把这三个角“凑”到三角形外一点.证明略.●板书设计§6.5 三角形内角和定理的证明一、三角形内角和定理三角形三个内角的和等于180°图6-48已知,如图6-48,△ABC.求证:∠A+∠B+∠C=180°证明:作BC的延长线CD,过点C作射线CE∥BA,则:∠A=∠ACE()∠ECD=∠B()∵∠ECD+∠ACE+∠ACB=180°()∴∠A+∠B+∠ACB=180°()二、议一议三、课堂练习四、课时小结五、课后作业巧添平行线-6.5 三角形内角和定理的证明证三角形内角和定理贵州省剑河二中杨通刚课本给出了三角形内角和定理的一种证明方法,其证明思路是作∠ECA=∠A,然后利用平行线的判定与性质证明∠ECD=∠B.这样就将三个内角转移成平角∠BCD使定理获证.其实,巧添平行线转移角度也能很快地得到证明.图6-49证法一:如图6-49,延长BC至D,过C点作CE∥A B.∵CE∥AB,∴∠1=∠B(两直线平行,同位角相等)∠2=∠A(两直线平行,内错角相等)∵∠ACB+∠2+∠1=180°(平角定义)∴∠A+∠B+∠ACB=180°.图6-50证法二:如图6-50,过点A作EF∥BC,则∠1=∠B,∠2=∠C.∵∠1+∠BAC+∠2=180°,∴∠BAC+∠B+∠C=180°.图6-51证法三:如图6-51,在BC边上任取一点D,过D作DE∥AB交AC于E,作DF∥AC交AB于F.∵DE∥AB,∴∠1=∠B,∠2=∠4,∵DF∥AC,∴∠3=∠C,∠A=∠4,∴∠2=∠A,又∠1+∠2+∠3=180°∴∠A+∠B+∠C=180°.图6-52证法四:过点A作AD∥BC(如图6-52)∵AD∥BC∴∠1=∠C,∠DAB+∠ABC=180°∴∠BAC+∠B+∠C=∠DAB+∠ABC=180°.图6-53证法五:如图6-53,过点A任作一条射线AD,再作BE∥AD,CF∥AD.∵BE∥AD∥CF∴∠1=∠3,∠2=∠4,∠EBC+∠BCF=180°∴∠BAC+∠ABC+∠ACB=∠EBC+∠BCF=180°.参考练习-6.5 三角形内角和定理的证明图6-541.已知,△ABC中,AD是高,E是AC边上一点,BE与AD交于点F(如图6-54),∠ABC=45°,∠BAC=75°,∠AFB=120°.求证:BE ⊥AC .证明:∵AD 是高(已知) ∴∠ADB =90°(垂直的定义)∵∠ABC +∠ADB +∠BAD =180°(三角形内角和定理) ∠ABC =45°(已知)∴∠BAD =45°(等式的性质) ∵∠BAC =75°(已知)∴∠DAC =30°(等式的性质)∵∠AFB +∠AFE =180°(1平角=180°) ∠AFB =120°(已知)∴∠AFE =60°(等式性质)∵∠AFE +∠AEF +∠DAC =180°(三角形内角和定理) ∴∠AEF =90°(等式性质) ∴AC ⊥AE (垂直的定义)2.如图6-55,△ABC 中,∠B =∠ACB ,CD 是高,求证:∠BCD =21∠A.图6-55证明:∵∠A +∠B +∠ACB =180°(三角形内角和定理) ∠B =∠ACB (已知)∴∠B =2180A ∠-︒=90°-21∠A∵CD 是△ABC 的高(已知) ∴∠BDC =90°∵∠BDC +∠B +∠DCB =180°(三角形内角和定理) ∴∠BCD =180°-∠BDC -∠B=180°-90°-(90°-21∠A )=21∠A (等式的性质)§6.5 三角形内角和定理的证明班级:_______ 姓名:_______一、填空请你填一填(1)如果三角形的三个内角都相等,那么每一个角的度数等于_______.(2)在△ABC中,若∠A=65°,∠B=∠C,则∠B=_______.(3)在△ABC中,若∠C=90°,∠A=30°,则∠B=_______.(4)在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=_______.(5)在图6—5—1和6—5—2中,∠1、∠2与∠B、∠C的关系是_______(6)已知,如图6—5—3,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC,垂足为D,则∠DBC的度数为_______.图6—5—1 图6—5—2 图6—5—3二、选择题认真选一选(1)在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于()A.65°B.115°C.80°D.50°(2)两条平行线被第三条直线所截,那么一组同旁内角的平分线()A.相互重合B.互相平行C.相互垂直D.无法确定相互关系图6—5—4(3)如图6—5—4,AB∥CD,∠A=35°,∠C=80°,那么∠E等于()A.35°B.45°C.55°D.75°三、数学眼光看世界图6—5—5(1)一块大型模板如图6—5—5,设计要求BA与CD相交成30°角,DA与CB相交成20°的角,怎样通过测量∠A,∠B,∠C,∠D的度数,来检查模板是否合格?(2)小芳和小白在一起温习三角形内角和定理,小芳灵机一动,想考考小白对知识掌握的程度,她给小白出了一道这样的题目:图6—5—6如图6—5—6,证明五边形的内角和等于540°.即:∠A+∠B+∠C+∠D+∠E=540°.参考答案一、(1)60°(2)57.5°(3)60°(4)30°60°90°(5)∠1+∠2=∠B+∠C(6)18°二、(1)B (2)C (3)B三、(1)测量∠B+∠C是否等于150°,∠C+∠D是否等于160°,若是则合格,否则不合格.(2)分析:连结对角线将五边形分割成三个三角形.如连结BD、BE,则五边形ABCDE 被分割成三个三角形:△BCD、△BDE、△ABE,这三个三角形的所有内角和等于180°×3=540°,即为∠A+∠B+∠C+∠D+∠E=540°。

三角形内角和定理

三角形内角和定理

(1)解:
∵ ∠A+∠B+∠C = 180º(三角形内角和定理) ∴ ∠C=180º-(∠A+ ∠B) ·
∵ ∠A= 30º ,∠B = 65º(已知) ∴ ∠C=180º-( 30º + 65º ) = 85º
2.在△ABC中,∠B=62º24 ′ ,∠C= 28º52 ′ ,求∠A的度数.
解: ∵ ∠B=62º24 ′ ,∠C=28º52 ′ (已知) 又 ∵ ∠A+∠B+∠C = 180º(三角形内角和定理) ∴ ∠A=180º-(∠B+ ∠C) =180º-( 62º24 ′ + 28º52 ′ ) = 88º44 ′ ·
∴ ∠DBC= 180º - ∠BDC - ∠C = 180º -90º -72º =18º.
请同学们谈一谈本 节课自己的收获
2、已知△ABC,延长BC到点D,过点C作直线CE ∥ AB,得 到∠ 1和 ∠2 . ∠1和 ∠2 与三角形的内角有什么关系?
A
E
A
E 1
2 1
B
2C
B
C
D
D
3、请根据右图给出的图示(过点C作ED ∥ AB),对“三 角形内角和等于180 °”说理.
∠B=∠1(两直线平行,同位角相等) ∵ ∠1+∠2+∠ACB = 180º(平角的定义) ∴ ∠B+∠A+∠ACB = 180º(等量代换)
三角形的内角和等于180º
请根据下图给出的图示(过点C作ED ∥ AB),对“三 角形内角和等于180 °”说理.
说理过程:
A
过点C作DE ∥AB .
E ∵ DE ∥AB ,
解: ∵ ∠C=42º,∠A = ∠B, (已知) 又 ∵ ∠A+∠B+∠C = 180º(三角形内角和定理) ∴ ∠B+∠B+ 42º = 180º · ∴ ∠B=69º ·

北师版八年级数学上册课件 第七章 平行线的证明 三角形内角和定理 第1课时 三角形内角和定理的证明

北师版八年级数学上册课件 第七章 平行线的证明 三角形内角和定理 第1课时 三角形内角和定理的证明

三、解答题(共36分) 14.(10分)如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于点 D,AE是∠BAC的平分线.求∠AED的度数.
解:∵AD⊥BC,∴∠ADB=∠ADC=90°. ∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD= 30°.∴∠BAC=∠BAD+∠CAD=50°+30°=80°. ∵AE是∠BAC的平分线,∴∠BAE=40°.∴∠DAE=∠BAD-∠BAE =50°-40°=10°.∴∠AED=90°-∠DAE=80°
7.(4分)(天门中考)如图,AD∥BC,∠C=30°,∠ADB∶∠BDC= 1∶2,则∠DBC的度数是__5_0_°_.
8.(8分)如图,D是AB上一点,E是AC上一点,BE,CD相交于点F, ∠A=57°,∠ACD=35°,∠ABE=19°,求∠BFD的度数.
解:∵∠A=57°,∠ACD=35°,∴∠ADC=180°-∠A-∠ACD= 180°-57°-35°=88°.∴∠BDC=180°-∠ADC=180°-88°= 92°.
A.20° B.40° C.60° D.80°
3.(3分)已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C= 2∠A,则此三角形( B )
A.有一个内角为45° B.有一个内角为60° C.是直角三角形 D.是钝角三角形
4.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC,若 ∠A=70°,∠AED=60°,则∠B的大小为( A)
∵∠ABE=19°,∴∠BFD=180°-∠BDC-∠ABE=180°-92°- 19°=69°
9.(9分)(教材P185复习题T6变式)如图,在△ABC中,CD平分∠ACB,过 点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,求∠CDE的度数.

14-2三角形的内角和(第1课时)(教学课件)-七年级数学下册同步精品课堂(沪教版)

14-2三角形的内角和(第1课时)(教学课件)-七年级数学下册同步精品课堂(沪教版)

2.已知△ABC中两个内角的度数,判断△ABC的类型:
(1)∠A=30°,∠B=40°;
(2)∠B=32°,∠C=58°;
(3)∠B=60°,∠C=50°.
解:(2)在△ABC中, ∠A+∠B+∠C=180° (三角形的内角和等于180°). ∵∠B=32°,∠C=58°(已知), ∴∠A=180°-∠B-∠C =180°-32°-58° =90°(等式性质) ∴△ABC是直角三角形.
解:根据题意,设∠A、∠B、∠C的度数分别为2x,3x,4x。 ∵∠A、∠B、∠C是△ABC的三个内角(已知)
∴∠A+∠B+∠C=180° (三角形内角和等于180°)
即 2x+3x+4x=180
解得 x=20
∴ ∠A =40°,∠B=60°,∠C=80°(等式性质)
随堂检测
1、判断下列各组角度的角是否是同一个 三角形的内角?
∠A+∠B+∠C=180° (三角形的内角和等于180°). ∵∠B=35°,∠C=55°(已知), ∴∠A=180°∠B∠C =180°35°55° =90°(等式性质).
∴△ABC是直角三角形.
可设一份为x.
例题2 在△ABC中,已知∠A:∠B:∠C=1︰2︰3, 求∠A、∠B、∠C的度数.
解:根据题意,可设∠A、∠B、∠C的度数分别为x、2x、3x.
∴ ∠1=30°(等式性质).
B
D
C 在△ADC中,
∠1+∠C+∠ADC=180°
求∠DAC的度 数,可在
(三角形的内角和等于180°). ∵∠C=45°(已知),
△ADC中加以 解决.
∴∠ADC=180°-30°-45°=105° (等式性质).

北师大版数学八年级上册5《三角形内角和定理》教学设计1

北师大版数学八年级上册5《三角形内角和定理》教学设计1

北师大版数学八年级上册5《三角形内角和定理》教学设计1一. 教材分析《三角形内角和定理》是北师大版数学八年级上册第五章的内容。

本节内容主要让学生掌握三角形的内角和定理,即三角形的三个内角之和等于180度。

这个定理是几何学中的基础内容,对于学生后续学习几何学其他知识有着重要的影响。

教材通过丰富的活动,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。

二. 学情分析学生在学习本节内容前,已经学习了多边形的概念、分类,对多边形有了一定的了解。

同时,学生已经掌握了角的度量方法,能够准确地度量角的度数。

此外,学生还学习了平行线的性质、同位角、内错角等知识,对于通过观察、操作、推理等方法探索几何问题的解决策略有了一定的掌握。

但是,部分学生在解决几何问题时,仍存在思维定势,不能灵活运用所学知识。

三. 教学目标1.知识与技能目标:让学生掌握三角形的内角和定理,能运用三角形的内角和定理解决简单的几何问题。

2.过程与方法目标:通过观察、操作、推理等方法,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。

3.情感态度与价值观目标:让学生在探索过程中,体验到数学的乐趣,增强对数学的兴趣,培养学生的团队协作能力和交流表达能力。

四. 教学重难点1.教学重点:三角形的内角和定理。

2.教学难点:如何引导学生通过观察、操作、推理等方法探索并验证三角形的内角和定理。

五. 教学方法1.情境教学法:通过设置情境,让学生在实际问题中感受并探索三角形的内角和定理。

2.引导发现法:引导学生通过观察、操作、推理等方法,自主发现并验证三角形的内角和定理。

3.合作学习法:学生进行小组合作,培养学生的团队协作能力和交流表达能力。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。

2.学具:每个学生准备一套三角板、直尺、圆规等。

七. 教学过程1.导入(5分钟)教师通过多媒体展示一系列与三角形有关的问题,如:什么是三角形?三角形有哪些性质?引发学生对三角形的思考,为新课的学习做好铺垫。

沪科版数学八年级上册教案-三角形内角和定理的证明及推论1、2,三角形的外角-2课时

沪科版数学八年级上册教案-三角形内角和定理的证明及推论1、2,三角形的外角-2课时

13.2命题与证明第3课时三角形内角和定理的证明及推论1,2教学目标【知识与能力】1、通过对三角形内角和定理的探究,进一步了解证明的基本过程。

2、能将几何命题的文字语言用图形语言和符号语言表示出来。

【过程与方法】经历具体的几何命题的文字语言翻译成图形语言和符号语言的过程,学会将文字语言用图形语言和符号语言来表示的方法。

【情感态度价值观】通过学习几何证明,初步感受推理的严密性、条理性。

教学重难点【教学重点】根据具体的证明过程,填写推理的理由。

【教学难点】将文字语言表述的证明题改写成图形语言和符号语言表述的证明题。

课前准备课件、教具等。

教学过程一、情境导入问题:将三角形的内角剪下,试着拼拼看.三角形的内角和是否为180°?从拼角的过程你能想出证明的办法吗?二、合作探究探究点一:三角形内角和定理的证明例1 如图,在△ABC内任意取一点P,过点P画三条直线分别平行于△ABC的三条边.(1)∠1、∠2、∠3分别和△ABC的哪一个角相等?请说明理由;(2)利用(1)说明三角形三个内角的和等于180°.解析:(1)利用平行线的性质即可证得;(2)根据对顶角相等,以及∠HPE+∠1+∠FPI +∠3+∠GPD+∠2=360°和(1)的结论即可证得.解:(1)∠1=∠A,∠2=∠B,∠3=∠C.理由如下:∵HI∥AC,∴∠1=∠CEP,又∵DE∥AB,∴∠CEP=∠A,∴∠1=∠A.同理,∠2=∠B,∠3=∠C;(2)如图,∵∠HPE=∠1,∠FPI=∠3,∠GPD=∠2,又∵∠HPE+∠1+∠FPI+∠3+∠GPD+∠2=360°,∴∠1+∠2+∠3=180°,∵∠1=∠A,∠2=∠B,∠3=∠C,∴∠A +∠B+∠C=180°.方法总结:本题考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等.探究点二:直角三角形的两锐角互余例2 直角三角形两锐角的平分线的夹角是______.解析:作出图形,根据直角三角形两锐角互余求出∠ABC+∠BAC=90°,再根据角平分线的定义可得∠OAB+∠OBA=1(∠ABC+∠BAC),然后利用三角形的内角和等于180°求出2∠AOB,即为两角平分线的夹角.如图,∠ABC+∠BAC=90°,∵AD、BE分别是∠BAC和∠ABC的角平分线,∴∠OAB+∠OBA =1(∠ABC+∠BAC)=45°,∴∠AOB=180°-(∠OAB+∠OBA)=135°,∴∠AOE=45°,∴两锐角2的平分线的夹角是45°或135°.故答案为45°或135°.方法总结:本题考查了直角三角形两锐角互余的性质,角平分线的定义,整体思想的利用是解题的关键,作出图形更形象直观.探究点三:有两个角互余的三角形是直角三角形例3 如图所示,AB∥CD,∠BAC和∠DCA的平分线相交于H点,那么△AHC是直角三角形吗?为什么?解析:要判断△AHC 的形状,首先观察它的三个内角,其中∠1与∠2与已知条件角平分线有关,而两条角平分线分别平分∠BAC 和∠DCA ,这两个角是同旁内角,于是联想到已知条件中的AB ∥CD .解:△AHC 是直角三角形.理由如下:因为AB ∥CD ,所以∠BAC +∠DCA =180°.又因为AH ,CH 分别平分∠BAC 和∠DCA ,所以∠1=12∠BAC ,∠2=12∠DCA , 所以∠1+∠2=12(∠BAC +∠DCA ), 所以∠1+∠2=90°,所以△AHC 为直角三角形.方法总结:判定一个三角形是否为直角三角形,既可以通过这个三角形有一个角是直角来判定(直角三角形的定义),也可以通过有两个角度数之和为90°来判定.三、板书设计三角形内角和定理的证明及推论1、2⎩⎪⎨⎪⎧三角形内角和定理:三角形的内角和等于180°.证明定理的一般步骤:①找出命题的题设和结论,画出图形;②题设部分是已知部分,结论部分是要证明的部分;③利用已知条件,依据定义、基本事实、已证定理,并按照逻辑规则,推导出结论.推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.教学反思教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦.在课堂中,放手让学生自主探索证明三角形内角和定理的方法,让学生在动手试一试、动口说一说、相互评一评的过程中掌握证明的各种方法.课堂中,营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断地发展。

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)

《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案)下面是我分享的《三角形内角和》数学教案7篇(小学数学《三角形的内角和》教案),供大家赏析。

《三角形内角和》数学教案1学习目标:(1) 知识与技能:掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法:通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。

使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习二.回顾课本1、三角形的内角和是多少度?你是怎样知道的?2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的'步骤①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。

如何把三个角转化为平角或两平行线间的同旁内角呢?① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

② 如图1,延长BC,过C作CE∥AB③ 如图2,过A作DE∥AB④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习四、学习小结:(回顾一下这一节所学的,看看你学会了吗?)五、达标检测:略六、布置作业《三角形内角和》数学教案2教学内容义务教育课程标准试验教科书《数学》(人教版)四年级下册第85页。

2022八年级数学上册 第十一章 三角形11.2 与三角形有关的角 1三角形的内角第1课时 三角形的

2022八年级数学上册 第十一章 三角形11.2 与三角形有关的角 1三角形的内角第1课时 三角形的

考查角度 三角形中的折叠问题 13.(1)如图,在三角形纸片ABC中,∠A=64°,∠B=76°,将纸片的一角 折叠,使点C落在△ABC内部,折痕为MN.如果∠1=17°,求∠2的度数;
(2)小明在(1)的解题过程中发现∠1+∠2=2∠C,小明的这个发现对任意 的三角形都成立吗?请说明理由.
成立.理由如下:由题意可知2∠CNM+∠1=180°,2∠CMN+∠2=180°, ∴2(∠CNM+∠CMN)+∠1+∠2=360°. ∵∠C+∠CNM+∠CMN=180°, ∴∠CMN+∠CMN=180°-∠C, ∴2(180°-∠C)=360°-(∠1+∠2), ∴∠1+∠2=2∠C.
解:(1)由题可知∠BEC=∠CDB=90°.在△BEC中, ∵∠BEC+∠EBC+∠BCE=180°, ∴∠BCE=180°-∠BEC-∠EBC=90°-∠EBC.同理,∠CBD=90°- ∠DCB.在△BHC中, ∵∠BHC+∠HCB+∠HBC=180°, ∴∠BHC+90°-∠EBC+90°-∠DCB=180°,即∠BHC=∠EBC+∠DCB. 又∵∠EBC+∠DCB+∠A=180°,即∠EBC+∠DCB=180°-∠A,
易错点 不能灵活运用三角形内角和定理 8.如图,点E,F分别在AB,CD上,若∠B=40°,∠C=70°,则∠1+ ∠2=___1_1_0_°__.
9.如图,在△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+
∠2的大小为( B )
A.130°
B.230°
C.180°
D.310°
10.将一副三角板按如图所示叠放在一起,则图中∠α的度数是( C )
第十一章 三角形
11.2 与三角形有关的角
11.2.1 三角形的内1.(2018·百色)在△OAB中,∠O=90°,∠A=35°,则∠B的度数为 ( B)

平面几何中的三角形和三角形的内角和定理

平面几何中的三角形和三角形的内角和定理

平面几何中的三角形和三角形的内角和定理三角形是平面上最简单、最基本的几何图形之一。

它由三条线段所围成,每条线段称为三角形的边,两条相邻的边所夹的角称为三角形的角。

在三角形中,有一些角具有特殊的性质,它们的和也有着特别的规律。

本文将介绍三角形中的三角形内角和定理,帮助读者更好地理解和应用平面几何。

一、三角形的内角和对于任意一个三角形ABC,三个内角的和应该等于180度,即∠A+∠B+∠C=180°。

这个结论可以用多种方法来证明。

方法一:利用三角形的等角定理。

我们先假设三角形ABC中的角A等于90度,则∠B和∠C互为余角,即∠B=90°-∠C。

将等式代入∠A+∠B+∠C=180°中,可以得到∠A+(90°-∠C)+∠C=180°,化简后得到∠A+90°=180°,即∠A=90°。

因此,三角形ABC是一个直角三角形。

方法二:利用平行线与交线的性质。

我们用线段AC作为三角形ABC的一条边,通过点B画一条平行于线段AC的直线DE,使DE与BC相交于点F。

因为AC与DE平行,所以∠A=∠E。

同时,∠EBF和∠CBF都是180度减去∠C,即∠EBF=∠CBF=180°-∠C。

因此,∠E+∠B+∠F=∠A+∠B+∠C=180°,即∠E+∠B+(180°-∠C)=180°,化简后得到∠E=∠C。

所以,∠A+∠B+∠C=∠E+∠B+∠C=180°。

方法三:利用三角形的面积公式。

我们将三角形ABC绕某个顶点旋转,使其底边平移至一条与底边平行的直线上,然后将三角形划分成两个梯形和一个三角形。

根据相似三角形的性质,两个梯形面积之和与三角形面积之比等于梯形的中线之比,即hA:hB=AC:BD。

因为BD=AC,所以hA=hB。

同理,再用梯形的面积公式,可得hA=hB=hC,即三角形ABC的三个高相等。

《三角形的内角和》PPT课件 精品

《三角形的内角和》PPT课件 精品
第1课时 三角形的内角和
人教版八年级上册
课前准备
任意三角形纸片、剪刀、量角器、直尺
学习目标
重点 1
经历探究活动的 过程,多角度探 索并证明三角形 内角和定理,体 会证明的必要性;
【推理能力】
难点 2
获取添加辅助线 的思路和方法, 能用平行线的性 质证明三角形内 角和等于180°;
【几何直观、推理能力】
辅助线通常画成虚线.
思路 添加平行线 (转化法) (辅助线)
利用平行线的 性质,转移角
① 依据平角定义,得到180°; ② 两直线平行,同旁内角互补.
知识点二 运用三角形内角和定理
将正确答案填到相应的横线上。
① 在△ABC中,∠A=30°,∠B = 65°,则∠C =___8_5_°__ ② 在△ABC中,∠C= 42°,∠A = ∠B,则∠B = ___6_9_°__ ③ 在△ABC中,∠A=∠B =∠C,则∠A = ___6_0_°__ ④ 在△ABC中,∠C= 36°,∠A:∠B = 1:2,则∠B = ___9_6_°__
隐含条件:三角形三个内角的和等于180°
例1 如图,在△ABC 中, ∠BAC =40°, ∠B =75°,AD 是 △ABC的角平分线.求∠ADB 的度数.
C
解:由∠BAC = 40°, AD是△ ABC
的角平分线,得
D
∠BAD = 1 ∠BAC = 20°.
2
在△ABD中,
A
B
∠ADB =180°-∠B-∠BAD
三角形三个内角的和等于180°.
画图写出
已知:△ABC.
A
已知求证
求证:∠A+∠B+∠C=180°.
证明过程 ?

青岛版八年级上册数学《三角形内角和定理》PPT课件

青岛版八年级上册数学《三角形内角和定理》PPT课件

1.(1)如图(甲),在五角星图形中,求∠A+∠B +∠C +∠D +
∠E 的度数.
(2)把图(乙)、(丙)叫蜕化的五角星,问它们的五角之和
与五A角星图形的A五角之和仍相等D 吗?为什么A? E
B
E
D
C
B
C
C
D
(甲)
(乙)
B
E
(丙)
相等,也可凑到一个三角形中.
当堂检测
1△ABC 中,若∠A +∠B =∠C ,则△ABC 是( B )
的数据。 按从小到大排列为_______________,圈出正中间位置的数 据。你发现了什么? (3)若又加入一名男生身高173cm,新数据中有___个数据。 按从大到小排列为_______________________,圈出中间的 两个数,并求出平均数为_______。 按从 小到大排列为______________________,圈出中间的 两个数,并求出平均数为_____。
请你帮小明把想法化为实际行动. 证明:过点A作PQ∥BC,则 ∠1=∠B(两直线平行,内错角相等), ∠2=∠C(两直线平行,内错角相等), 又∵∠1+∠2+∠3=1800 (平角的定义), ∴ ∠BAC+∠B+∠C=1800 (等量代换).
P AQ 132
B
C
小明的想法已经变为现实,由此你受到什么启发? 你有新的证法吗?
201
人数/名 4
6
5
4
2
则该校篮球队21名同学身高的中位是 ———
小结
求中位数的一般步骤:
1.将这一组数据从小到大(或从大到小)排列;
2.若该数据含有奇数个数,位于中间位 置的数是中位数;

三角形的内角和(基础)知识讲解

三角形的内角和(基础)知识讲解

三角形的内角和(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l , 因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC的三个内角剪下,拼成以C为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A,得CD∥AB,有∠2=∠B;在图5-2中过A作MN∥BC有∠1=∠B,∠2=∠C,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.(2016春•宜兴市校级月考)如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,若∠BDC=140°,∠BGC=110°,则∠A为()A.70°B.75°C.80°D.85°【思路点拨】首先根据三角形的内角和定理,求出∠1+∠2=40°,∠1+∠2+∠3+∠4=70°;然后判断出∠3+∠4=30°,再根据BE是∠ABD的平分线,CF是∠ACD的平分线,判断出∠5+∠6=30°;最后根据三角形的内角和定理,用180°减去∠1+∠2+∠3+∠4+∠5+∠6的度数,求出∠A为多少度即可.【答案与解析】解:如图,∵∠BDC=140°,∴∠1+∠2=180°﹣140°=40°,∵∠BGC=110°,∴∠1+∠2+∠3+∠4=180°﹣110°=70°,∴∠3+∠4=70°﹣40°=30°,∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠3=∠5,∠4=∠6,又∵∠3+∠4=30°,∴∠5+∠6=30°,∴∠1+∠2+∠3+∠4+∠5+∠6=(∠1+∠2+∠3+∠4)+(∠5+∠6)=70°+30°=100°∴∠A=180°﹣100°=80°.故选:C.【总结升华】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的外角3.(1)如图,AB和CD交于交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段与点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于()A、40°B、65°C、75°D、115°【答案】B【变式2】(2015春•龙口市)如图,∠A+∠B+∠C+∠D+∠E的度数为度.【答案】如图连接CE,根据三角形的外角性质得∠1=∠A+∠B=∠2+∠3,在△DCE中有,∠D+∠2+∠DCB+∠3+∠AED=180°,∴∠D+∠A+∠DCB+∠B+∠AED=180°.类型三、三角形的内角外角综合4.(2015春•绿园)如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE的度数.【思路点拨】先根据三角形内角和定理求出∠BAC的度数,由角平分线的定义得出∠BAD的度数,根据三角形外角的性质求出∠ADE的度数,由两角互补的性质即可得出结论.【答案与解析】解:∵∠ABC=38°,∠ACB=100°(己知)∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).又∵AD平分∠BAC(己知),∴∠BAD=21°,∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质).又∵AE是BC边上的高,即∠E=90°,∴∠DAE=90°﹣59°=31°.【总结升华】此题考查的是三角形的内角和定理,熟知三角形内角和是180°是解答此题的关键.举一反三:【变式】如图所示,已知△ABC 中,P 为内角平分线AD 、BE 、CF 的交点,过点P 作PG ⊥BC 于G ,试说明∠BPD 与∠CPG 的大小关系并说明理由.【答案】解:∠BPD =∠CPG .理由如下:∵ AD 、BE 、CF 分别是∠BAC 、∠ABC 、∠ACB 的角平分线,∴ ∠1=12∠ABC ,∠2=12∠BAC ,∠3=12∠ACB . ∴ ∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB )=90°. 又∵ ∠4=∠1+∠2,∴ ∠4+∠3=90°.又∵ PG ⊥BC ,∴ ∠3+∠5=90°.∴ ∠4=∠5,即∠BPD =∠CPG .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q
C
S
B P
N
M
(2)
A R C
M
B
T
(3)
你还能想出其他证法吗?
验证
先将纸片三角形一角折向其对边,使顶点落在对边上,折 线与对边平行(图1),然后把另外两角相向对折,使其 顶点与已折角的顶点相嵌合(图2)、(图3),最后得到 (图4)所示的结果.
A
B 图1
C
B
A 图2
C
B
A 图3
C
BAC 图4
读一读
如果BC不动,把点A“拉离”BC, 那么当点A越来越远离BC时,∠A就 越来越小(越来越接近0°),而 ∠B和∠C则越来越大,它们的和
A
越来越接近180°, 当把点A拉
到无穷远时,便有AB∥AC,∠B和
B C
∠C成为同旁内角,它们的和等于180°.由此你能想到什么?
在△ABC中,如果BC不动,把点A“压”向BC,那么当点A越来
答案:270
5. 如图,在△ABC中,∠A=60°, ∠B=70°,∠ACB的平分线交AB于D, DE∥BC交AC于E,求∠EDC和∠BDC的
度数.
【解析】∵∠A=60°,∠B=70°,∴∠ACB=180°-60° -70°=50°,∵CD是∠ACB的平分线, ∴∠ACD=∠BCD=25°,∵DE∥BC,∴∠EDC=∠BCD=25°. 在△BCD中,∠B=70°,∠BCD=25°,
∠2= ∠B(两直线平行,同位角相等).
又∵∠1+∠2+∠3= 180° (平角的定义), ∴∠A+∠B+∠ACB= 180° (等量代换). 你还有其他方法来证明三角形内角和定理吗?
做一做
在证明三角形内角和定理时,小明的想法是把三个角“凑” 到A处,他过点A作直线PQ∥BC(如图),他的想法可行吗? 请你帮小明把想法化为实际行动. 证明:过点A作PQ∥BC,则 ∠1=∠B(两直线平行,内错角相等), P
1
A
3 2
Q
∠2=∠C(两直线平行,内错角相等),
又∵∠1+∠2+∠3= 180° (平角的定义), ∴ ∠BAC+∠B+∠C= 180° (等量代换). 小明的想法已经变为现实,由此你受到 Hale Waihona Puke 么启发?你有新的证法吗?B
C
试一试
根据下面的图形,写出相应的证明.
A
Q R Q
S
A P T
N
R C
B
P (1)
5 三角形内角和定理
第1课时
1.掌握三角形内角和定理的证明及其简单应用. 2.初步掌握利用辅助线证明,体会思维实验和符号化的 理性作用. 3.通过一题多解,初步体会思维的多向性,引导学生的 个性化发展.
如图,我们把∠A移到了∠1的 位置,∠B移到了∠2的位置.就得到 了三角形三个内角的和等于
A
1 3 2 180°. B C D 根据前面的公理和定理,你能用自己的语言说说这一结论 的证明思路吗?你能用比较简捷的语言写出这一证明过程 吗?与同伴交流.
1.(昆明·中考)如图所示,
在△ABC中,CD是∠ACB的平分线,
∠A=80°,∠B=60°, 那么∠BDC=( A.80° C.100° )
B.90° D.110°
2.(济宁·中考)若一个三角形三个内角度数的比为2∶3∶4,
那么这个三角形是( )
A.直角三角形
C.钝角三角形
B.锐角三角形
D.等边三角形
∴∠BDC=180°-70°-25°=85°.
通过本课时的学习,需要我们掌握: 1.三角形的内角和是180°. 2.证明三角形内角和是180°,不仅可以通过实验操作验 证,还可以通过严密的推理得到证明.通过平行线将三个 内角拼在一起,得到一个平角或构造同旁内角是常用方法.
要在座的人都停止了说话的时候,有了机会,方 才可以谦逊地把问题提出,向人学习。 ——约翰•洛克
A 已知:如图,△ABC. 求证:∠A+∠B+∠C=180°. B C
分析:延长BC到D,过点C作射线CE∥AB,这样,就相当于把 ∠A移到了∠1的位置,把∠B移到了∠2的位置.
A
1 3 2
E
B 证明:作BC的延长线CD,过点C作射线CE∥AB,则 ∠1=∠A(两直线平行,内错角相等),
C
D
这里的CD,CE 称为辅助线, 辅助线通常 画成虚线.
越接近BC时, ∠A就越来越大(越来越接近180°),而∠B和
∠C越来越小(越来越接近0°).由此你能想到什么?
A
B
C
试一试
用橡皮筋构成△ABC,其中顶点B,C为定点,A为动点,放 松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变 化时所形成的一系列的三角形,其内角会产生怎样的变化
呢?
结论
当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋 向平行,这时,∠B,∠C逐渐接近为互补的同旁内角,即 ∠B+∠C接近于180°.
【解析】因为∠A=70°,∠B=60°,所以∠C=50°, 又因为DE//BC,所以∠AED=∠C=50°. 答案:50°
4.(郴州·中考) 如图,一个直角三角形纸片,剪去直 角后,得到一个四边形,则∠1+∠2=___度.
【解析】如图,根据题意可知∠5=90°, ∴∠3+∠4=90°, ∴∠1+∠2=180°+180°-(∠3+∠4) =360°-90°=270°.
【解析】选B.由题意可设这个三角形的三个内角度数分别
为2x,3x,4x,根据三角形内角和定理可得:2x+3x+4x=180°,
得x=20°,因此可得三个内角度数分别为40°,60°,80°.
3.(红河·中考) 如图,D,E分别是AB,AC上的点,若 ∠A=70°,∠B=60°,DE∥BC,则∠AED的度数是____.
相关文档
最新文档