三角高程测量原理及应用
三角高程测量原理及公式
三角高程测量
一、三角高程测量原理
(一)适用于:地形起伏大的地区进行高程控制。
实践证明,电磁波三角高程的精度可以达到四等水准的要求。
(二)原理
注意:当两点距离较大(大于300m )时:
1、 加球气差改正数:
B 点的高程:
AB A B h H H += l
i S h l i D h AB AB -+=-+=ααsin tan
即有: 2、可采用对向观测后取平均的方法,抵消球气差的影响。
球差为正,气差为负
二、三角高程测量的观测和计算
①安置经纬仪于测站上,量取仪高i 和目标高s 。
读 至0.5cm ,量取两次的结果之差≤1cm 时,取平均值。
②当中丝瞄准目标时,将竖盘指标水准管气泡居中,读取竖盘读数。
必须以盘左、盘右进行观测。
③竖直角观测测回数与限差应符合规定。
④用电磁波测距仪测量两点间的倾斜距离D ’,或用三角测量方法计算得两点间的水平距离D 。
f
l Dtg i h AB +-+=α即有: R
D f 243.0=。
三角高程测量
测量方法
测量方法
(1)在测站上安置仪器(经纬仪或全站仪),量取仪高;在目标点上安置觇标(标杆或棱镜), 量取觇标高。 (2)采用经纬仪或全站仪采用测回法观测竖直角口,取平均值为最后计算取值。 (3)采用全站仪或测距仪测量两点之间的水平距离或斜距。 (4)采用对向观测,即仪器与目标杆位置互换,按前述步骤进行观测。 (5)应用推导出的公式计算出高差及由已知点高程计算未知点高程。
主要误差
仪器误差由经纬仪等级所决定,垂直度盘的分划误差、偏心误差等都是影响因素。观测误差有照 准误差、指标水准管居中误差等。外界条件主要是大气垂直折光的影响。J6纬仪两测回垂直角平 均值的中误差可达±15'',对三角高程的影响与边长及推算高程路线总长有关,边长或总长愈长, 对高程的影响也愈大。因此,垂直角的观测应选择大气折光影响较小的阴天和每天的中午观测较 好,推算三角高程路线还应选择短边传递,对路线上的边数也有限制。 (三)大气垂直折光误差 大气垂直折光误差主要表现为折光系数K值的测定误差。实验证明,K值中误差约为±0.03~ ±0.05。另外,一般采用K的平均值计算球气差γ时,也会有误差。不过,取直、反觇高差的平 均值作为高差成果,可以大大减弱大气垂直折光误差的影响。
主要误差
(四)丈量仪器高和觇标高的误差 仪器高和觇标高的量测误差有多大,对高差的影响也会有多大。因此,应仔为
式中:f简称两差改正。因k值大约在0.08~0.14之间,所以,f恒大于零。大气垂直折光系数k 是随地区、气候、季节、地面覆盖物和视线超出地面高度等条件的不同而变化的,一般取k=0.14 计算两差改正f。
原理
为了减少两差改正数f,《城市测量规范》规定,代替四等水准的光电测距三角高程,其边长不 应大于1 km。减少两差改正误差的另一个方法是,在A,B两点同时进行对向观测,此时可以认为 k值是相同的,两差改正f也相等。取往返测高差的平均值为 可以抵消掉f。
全站仪三角高程测量的原理、方法、精度分析
摘要在工程建设的勘测、施工中常常涉及到高程测量,现场采用的测量方法主要是水准测量和三角高程测量。
水准测量精度高,但是速度比较慢,效率低。
此外,水准测量的转点多,而且标尺与仪器也存在下沉误差,如果在丘陵、山区等地使用水准测量进行高程传递是非常困难的,有时甚至是不可能的。
近些年来,由于全站仪的发展,使得测角、测距的精度不断提高。
三角高程测量传递高程比较灵活、方便、受地形条件限制较少等优点,因此全站仪三角高程测量补充了水准测量不能在山区等地形起伏较大的地区施测的不足,成为水准测量的重要方法。
本文对全站仪三角高程测量的原理、方法、精度等进行了分析,认为用全站仪代替水准仪进行高程测量,在一定范围内可达到三等水准测量要求。
关键词:全站仪三角高程精度分析等级水准AbstractIn the construction survey, construction often involve the height measurement, the scene is the leveling measurement method is mainly used and trigonometric leveling. Leveling precision, but at a slower speed, low efficiency. In addition, the turning point of leveling and gauge and instrument is also sinking error, if in the hills, mountains and other places using the leveling elevation transfer is very difficult, sometimes even impossible. In recent years, due to the development of the total station, the accuracy of Angle, distance to improve. Trigonometric leveling elevation is more flexible and convenient, and the advantages of less restricted by terrain conditions, so the triangle elevation surveying added leveling can't in mountainous terrain volatile regions such as measured by the insufficiency, has become an important method of leveling. In this paper, the principle and method of total station triangle elevation measurement, precision are analyzed, such as that using total station to replace the level height measurement, within a certain range can be up to three, the fourth level measurement requirements.Key Words:Total station, Triangle elevation, Accuracy analysis, Order leveling目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 前言 (1)1.1.1 研究目的与意义 (1)1.2 国内外研究现状 (2)1.2.1 国内研究现状 (2)1.2.2 国外研究现状 (2)1.3 本文研究内容 (3)第2章全站仪三角高程测量原理和观测方法 (4)2.1 全站仪三角高程的基本理论 (4)2.1.1 全站仪三角高程测量的原理 (4)2.1.2三角高程测量的基本公式 (5)2.2 全站仪三角高程测量的方法 (7)2.2.1对向观测法 (7)2.2.2中间测量法 (8)第3章三角高程与几何水准高程误差及精度的对比研究 (9)3.1 全站仪对向观测法的精度分析 (9)3.2 全站仪中间观测法的精度分析 (11)3.3 三角高程测量方法的比较 (13)第4章实例分析 (15)4.1 测量过程 (15)4.2 观测结果分析 (17)第5章结论与展望 (19)致谢 (20)参考文献 (21)第1章绪论1.1 前言测量地面待定点的高程,传统的方法是通过仪器测量待测点与已知点间的高差,然后计算出待测点的高程。
三角高程测量技术的原理与应用
三角高程测量技术的原理与应用引言:三角高程测量技术是一种用于确定地面上各点的高程差的技术,广泛应用于土地测量、建筑工程、地质勘探等领域。
本文将介绍三角高程测量技术的原理以及其在实际应用中的一些案例。
一、三角高程测量技术的原理三角高程测量技术基于三角形的几何性质,利用三角形的内角和外角之和等于180°的特点,通过测量三角形内角或边长的变化来计算高程差。
1.三角形的内角和在平面几何中,三角形的内角和总是等于180°。
通过测量三角形的内角和可以计算出与地面平行的三角形的高程差。
2.三角形的边长比例当两个三角形有一个共边时,它们的边长比例与高程差之间存在一定的关系。
根据这个关系可以通过测量两个三角形的边长比例来计算高程差。
3.水平仪水平仪是一种测量仪器,可以用来测量物体相对于地面的水平度。
通过水平仪可以测量物体的高度差,并计算出高程差。
二、三角高程测量技术的应用案例三角高程测量技术在土地测量、建筑工程和地质勘探等领域有着广泛的应用。
下面将分别介绍这些领域中的一些应用案例。
1.土地测量在土地测量中,三角高程测量技术可以用于确定不同地块之间的高程差,从而帮助规划和设计土地利用。
例如,在城市规划中,通过测量不同街区的高程差,可以确定出最佳的排水系统设计,以应对雨水的排放。
2.建筑工程在建筑工程中,三角高程测量技术可以用于确定建筑物的高程差,从而保证建筑物的平整度和垂直度。
例如,在建造高楼大厦时,通过测量建筑物不同层之间的高程差,可以确保整个建筑物的垂直度。
3.地质勘探在地质勘探中,三角高程测量技术可以用于确定地质构造的高程差,从而提供地质勘探的基础数据。
例如,在勘探矿产资源时,通过测量不同地质构造点的高程差,可以确定出矿石的分布情况。
三、三角高程测量技术的优势与难点1.优势三角高程测量技术具有测量范围广、测量精度高的优势。
由于三角测量是一种基于三角形几何性质的测量方法,可以适用于不同尺度和不同地形的测量需求。
三角高程测量原理
三角高程测量原理
三角高程测量原理是通过测量不同位置的角度来计算地面上的高程差。
这个原理是基于三角形的性质,根据三角形的内角和外角之间的关系,可以推导出高程差的计算公式。
测量过程中,需要选取两个测量点A和B,并在这两个点之间选择一个基准点O。
然后,用仰角仪或望远镜等测量工具,分别测量AOB、BOA和AOB三个角的大小。
测量出这三个角度后,可以根据三角形的内角和外角之间的关系来计算高程差。
根据三角形的内角和外角之间的关系,可以得到如下公式:
AOB + BOA + AOB = 180°
将测量的角度代入公式中,可以得到:
AOB + BOA + AOB = 180°
2AOB + BOA = 180°
AOB = (180° - BOA) / 2
根据这个公式,可以计算出AOB的角度,然后利用三角函数计算出高程差。
具体的计算方法可以根据具体的测量设备和测量要求进行选择和调整。
总之,三角高程测量原理是一种通过测量角度来计算地面高程
差的方法。
它利用了三角形的性质,通过测量不同位置的角度来计算地面高程差,可以广泛应用于地质勘探、土地测量和工程测量等领域。
三角高程测量的经典总结
三角高程测量的经典总结---------------------------------------------------------------最新资料推荐------------------------------------------------------ 三角高程测量的经典总结2. 4 三角高程 2. 4. 1 三角高程测量原理 1、原理三角高程测量的基本思想是根据由测站向照准点所观测的垂直角(或天顶距)和它们之间的水平距离,计算测站点与照准点之间的高差。
这种方法简便灵活,受地形条件的限制较少,故适用于测定三角点的高程。
三角点的高程主要是作为各种比例尺测图的高程控制的一部分。
一般都是在一定密度的水准网控制下,用三角高程测量的方法测定三角点的高程。
如下图:现在计划测量 A、 B 间高差, 在 A 点架设仪器, B 点立标尺。
量取仪器高,使望远镜瞄准B 上一点M,它距B 点的高度为目标高,测出水平和倾斜视线的夹角,若 A、 B 水平距离 S 已知,则:注意:上式中可根据仰角或俯角有正负值之分,当取仪器高=目标高时,计算就方便了。
在已知点架站测的高差叫直占、反之为反战。
2、地球曲率与大气对测量的影响我们在水准测量中知道,高程的测量受地球曲率的影响,仪器架在中间可以消除,三角1 / 7高程也能这样,但是对于一些独立交会点就不行了。
三角高程还受大气折射的影响。
如图:加设 A 点的高程为, 在 A 点架设仪器测量求出 B 点的高程。
如图可以得出但如图有两个影响:1)、地球曲率,在前面我们已经知道,地球曲率改正2)、大气折射不易确定,一般测量中把折射曲线近似看作圆弧,其平均半径为地球半径的 6~7 倍,则:,在这里 r 就是图上的 f2。
通常,我们令下面求,如图,在三角形中: ,当测量范围在20km 以内,可以用 S 代替 L,然后对公式做一适当的改正,进行计算。
2. 4. 2 竖盘的构造及竖角的测定 1、竖盘构造 1)、构造有竖盘指标水准管,如图:竖盘与望远镜连在一起,转动望远镜是竖盘一起跟着转动;但是竖盘指标和指标水准管在一起,他们不动,只有调节竖盘水准管微动螺旋式才会移动。
三角高程测量原理及应用
三角高程测量原理及应用
首先,需要测量基准点A与点B之间的水平角度α和垂直角度β,
以及距离AB。
然后,测量点A与点C之间的水平角度γ和垂直角度δ,
以及距离AC。
根据三角形的几何关系,可以得到以下公式:
h1 = AB * sin(β)
h2 = AC * sin(δ)
h=h1+h2
其中,h1和h2分别表示点B和点C相对于基准点A的高程,h表示
点C相对于基准点A的高程,AB和AC分别表示点B和点C与基准点A之
间的水平距离,β和δ分别表示点B和点C与基准点A之间的垂直角度。
三角高程测量的应用非常广泛。
它在土地测量和工程测量中被广泛使用,例如测量建筑物、道路、桥梁和其他土地特征的高程。
三角高程测量
也常用于制图和地图制作,帮助制图人员在地图上标记不同区域的高程差异,以便进行规划和分析。
此外,三角高程测量还常用于地质调查和地震监测。
地质学家可以使
用三角高程测量来测量地球表面的地形,以了解地质特征和地貌。
地震监
测人员可以使用三角高程测量来检测地震前后地表的变化,以评估地震造
成的地质灾害和地形变化。
总之,三角高程测量是一种常用且有效的测量方法。
它基于三角形的
几何原理,通过测量角度和距离来确定地表或建筑物的高程。
三角高程测
量在土地测量、工程测量、制图和地质调查等领域都有重要应用,为我们提供了有关地表高程的重要数据。
三角高程测量代替四等水准测量在实际工程中的应用
三角高程测量代替四等水准测量在实际工程中的应用随着工程建设的不断发展,各种测量技术都在不断的发展和进步。
在短时间内,三角高程测量已经代替了传统的四等水准测量工作,成为实际工程中非常重要的测量方法之一。
那么,三角高程测量是如何代替四等水准测量的,应该如何在实际工程中应用呢?三角高程测量原理三角高程测量是一种基于三角形相似原理的测量方法。
通过已知点和未知点之间的距离、高程和角度的测量,可以确定出未知点的高程。
而四等水准测量是通过直接测量地面高程高差,得出相邻两点之间的高差来计算高程。
相比于四等水准测量,三角高程测量更加便捷、精确、高效。
由于传统的四等水准测量流程繁琐,工作量大,成本高,经常受到天气、地形等限制,因此在实际工程中不再是首选。
随着三角高程测量技术的发展,它在实际工程中得到了广泛应用。
1.城市规划城市规划是一个庞大的工程项目,需要对工作区域进行高程测量,以保证整个项目的准确性和安全性。
相比于传统的四等水准测量,三角高程测量更加快捷、精确。
工作人员只需要在一个固定点上架设高度定位仪,同时使用手持GPS设备进行空间定位,就可以进行行走式的高程测量。
这极大的提高了高程测量的效率。
2.公路道路建设公路道路建设是一个非常重要的工程项目。
在建设过程中需要对道路沿线的高程进行测量,以便进行正确的设计和施工。
由于道路的长度和复杂度的影响,传统的四等水准测量十分困难。
三角高程测量技术可以在高效性和精度上满足道路建设的要求,这使得公路道路建设的工程测量更加容易,而且测量数据更加准确。
3.水利工程水利工程是具有很高技术要求的工程项目,如防洪工程、水库治理等。
在这些工程项目中,需要对水文测量进行高精度的测量。
使用传统的四等水准测量会受到测量工具的限制,这样会导致测量数据的误差较大。
相比之下,使用三角高程测量技术可以简化测量流程,增加测量精度,使得水利工程的施工更加科学严谨。
4.矿井勘探矿山勘探是一个极具挑战性的工程项目,需要对矿井高程进行实时监测以确保工作场地安全。
三角高程测量的计算公式
三角高程测量的计算公式三角高程测量是地理测量中常用的一种方法,用于测量地面上的点的高程。
本文将介绍三角高程测量的计算公式,并解释其原理和应用。
三角高程测量是基于三角法原理的一种测量方法。
它利用三角形的一些特性和测量数据,通过计算可以得到被测点的高程。
三角高程测量适用于各种地形条件,无论是平原、山地还是高原,都可以通过三角高程测量来确定各个点的高程。
三角高程测量的计算公式如下:h = H + d * tan(a)其中,h表示被测点的高程,H表示参考点的高程,d表示两个测点之间的水平距离,a表示两个测点之间的夹角。
根据这个公式,我们可以通过测量参考点和被测点之间的距离和夹角,再加上参考点的高程,就可以计算出被测点的高程。
这个公式的原理是基于三角形的相似性原理,即两个三角形的对应边的比例相等。
在实际测量中,我们首先需要选择一个参考点,可以是已知高程的点或者固定测量设备的位置。
然后,利用测量仪器测量参考点和被测点之间的水平距离和夹角。
最后,根据测量数据和计算公式,我们可以计算出被测点的高程。
三角高程测量在地理测量中具有广泛的应用。
它可以用于绘制地形图、制作地图、建筑工程设计等。
通过三角高程测量,我们可以快速准确地确定地面上各个点的高程,为地理信息系统的建设和规划提供重要的数据支持。
在实际应用中,三角高程测量需要考虑一些误差因素。
例如,测量仪器的精度、天气条件、地形复杂度等都会对测量结果产生影响。
因此,在测量过程中要注意选择合适的测量仪器、控制测量误差,并进行合理的数据处理和分析。
三角高程测量是一种常用的地理测量方法,通过测量参考点和被测点之间的距离和夹角,再结合计算公式,可以准确地确定被测点的高程。
它在地理信息系统、地形图制作、建筑工程设计等领域具有重要的应用价值。
在实际应用中,我们需要注意测量误差的控制和数据处理,以提高测量结果的精度和可靠性。
通过三角高程测量,我们可以更好地了解地球表面的地形特征,为人类的生活和发展提供有益的信息。
三角高程测量法的基本原理与实施步骤
三角高程测量法的基本原理与实施步骤高程测量是地理测量中的一个重要组成部分,它是确定地点在垂直方向上的高度差,从而推导出地形的起伏和变化情况。
三角高程测量法是一种常用且较为精确的高程测量方法之一,本文将介绍三角高程测量法的基本原理与实施步骤。
一、三角高程测量法的基本原理三角高程测量法基于三角形的相似性原理,它通过一个已知高度的基准点和两个相邻点之间的水平距离来计算出相邻点的高度差。
其基本原理如下:1. 角度测量:首先,我们需要测量出两个相邻点相对于基准点的水平方向的角度。
这可以通过定向测量仪等测量设备来完成。
测量精度要求高时,可以使用全站仪等高精度仪器。
2. 距离测量:在角度测量完成后,我们需要通过测距仪、测距杆等工具测量出基准点和相邻点之间的水平距离。
测距精度将直接影响测量结果的准确性。
3. 高度差计算:测量完成后,我们可以利用三角形的相似性原理,根据已知的角度和距离计算出两个相邻点的高度差。
具体计算方式是利用三角函数中的正切函数来求解高度差。
二、三角高程测量法的实施步骤实际进行三角高程测量时,我们需要按照一定的步骤来进行,以确保测量结果的准确性和可靠性。
下面是三角高程测量法的实施步骤:1. 确定基准点:首先,我们需要选择一个已知高度的基准点。
这个基准点可以是大地水准点、气象台、水坝等高程已知的地物。
在选择基准点时,需要考虑地理位置的便利性和高程的稳定性。
2. 设置测量站:在确定基准点后,我们需要设置测量站点,并在测量站点上安装测量设备,如全站仪等。
测量站点的选择应考虑到地势的平坦性和视线的通畅性,以确保能够准确测量角度和距离。
3. 开展测量:在测量站点设置完毕后,我们可以开始进行角度和距离的测量工作。
首先,利用测量设备测量出基准点和相邻点之间的水平角度;然后,利用测距仪等设备测量出基准点和相邻点之间的水平距离。
4. 计算高度差:在完成测量后,我们可以根据已知的角度、距离和基准点的高度,利用三角函数的运算来计算出相邻点的高度差。
三角高程测量原理误差分析及应用
三角高程测量原理误差分析及应用三角高程测量是一种常用的地理测量方法,用于测量地球表面上任意两点之间的高差。
它的原理基于三角形的几何性质,通过测量三角形的边长和角度来计算出高程差。
误差分析是对测量结果进行评估和分析,以确定测量结果的可靠性和精度。
三角高程测量在工程测量、地形测量和地理信息系统等领域有广泛的应用。
三角高程测量的原理是基于几何三角形的性质。
在三角形中,已知两边长度和夹角时,可以通过正弦定理求得第三边的长度。
在实际应用中,使用测量仪器(如全站仪、水准仪)测量两个点的水平距离和夹角,然后根据几何关系计算出两点之间的高差。
对于三角高程测量的误差分析,需要对各种误差进行综合评估和处理。
首先要进行误差源的分析和估计,确定各个误差源对测量结果的影响程度。
然后通过合适的数理统计方法对误差进行处理,例如最小二乘法、平差方法等,以提高测量结果的准确性和可靠性。
最后,通过误差传递的计算,评估最终测量结果的误差范围和可信度。
三角高程测量在地理测量和工程测量中有广泛的应用。
地理测量方面,可以通过三角高程测量来测量地球表面的高程特征,生成数字高程模型,用于地形分析和地图制作。
在工程测量方面,三角高程测量被用于测量任意两点间的高差,如建筑物、道路和管道等的高程差,以支持工程设计和建设。
另外,在地理信息系统中,三角高程测量可以用于数据融合和质量控制,提高地理数据的精度和准确性。
总结而言,三角高程测量是一种常用的地理测量方法,利用三角形的几何性质来测量地表上任意两点的高差。
在测量过程中会存在各种误差,需要进行误差分析和处理,以提高测量结果的准确性和可靠性。
三角高程测量在地理测量和工程测量中有广泛应用,可以用于生成数字高程模型、工程设计和数据质量控制等领域。
三角高程测量原理
三角高程测量原理
1.建立控制点:首先在测量区域内选择一些控制点,确定其具体位置和地面高程,以提供测量基准。
2.三角网的建立:根据实际情况,选择控制点,用直角坐标法或者经纬度法建立地面控制网,包括水平控制网和垂直控制网。
3.角度测量:在三角形内测量各个角的大小,可使用全站仪、经纬度仪等精密测量仪器,或者使用经典的光学仪器,如经纬仪、准直仪等。
4.边长测量:在三角形的两边上测量距离,并转化为实际长度,通常使用测距仪、全站仪等测量仪器。
5.计算高程差:根据正弦定理和余弦定理,利用角度、边长的测量结果,计算出各个点之间的高程差。
6.绘制地形图:根据计算结果,绘制出测量区域的地形图,以直观地表示各个点的高程差。
可以通过数字化方式输入到计算机中,借助地理信息系统(GIS)进行处理和分析。
在实际应用中,三角高程测量常用于测量道路、河流、山地等大范围地形。
同时也可以结合其它测量方法,如水准测量、GPS测量等,以提高测量结果的精度和可靠性。
总之,三角高程测量原理是一种测量地表高程差的有效方法,通过测量三角形的角度和边长,计算出各个点之间的高程差,从而绘制出准确的地形图。
在土地测量、地理测量等领域有广泛应用。
三角高程测量的往返观测计算公式
三角高程测量是一种常用的测量方法,它可以用来测量地面上点的准确高程。
在这篇文章中,我们将着重介绍三角高程测量中的往返观测计算公式。
一、三角高程测量原理三角高程测量是利用三角形的相似性原理,通过已知两点的高程和这两点到待测点的水平距离,来计算待测点的高程。
三角高程测量的基本原理如下:1. 在地面上选择一个已知高程的点A,以及要测量高程的点P。
2. 通过测量仪器测量点A和点P之间的水平距离d和两点的高程差h。
3. 通过三角函数计算出点P的高程。
二、三角高程测量的往返观测在实际测量中,为了提高精度,常常采用往返观测的方法进行测量。
往返观测的原理是利用观测仪器来回测量两点之间的距离和高程差,然后取平均值作为最终结果,以减小由于观测仪器误差、大气温度、大气压力等因素造成的误差。
三、三角高程测量往返观测计算公式往返观测的三角高程测量计算公式如下:1. 求点P的高程差首先需要计算出点P的高程差,使用以下公式:\[ \Delta h = h_1 - h_2 \]其中,\(h_1\) 为第一次测量的高程,\(h_2\) 为第二次测量的高程。
2. 求两次测量的平均距离将两次测量的距离\(d_1\)和\(d_2\)求均值,得到平均距离:\[ \bar{d} = \frac{d_1 + d_2}{2} \]3. 计算点P的高程利用三角函数计算出点P的高程:\[ H = h_2 + \frac{\Delta h \times \bar{d}}{d_2} \]其中,\(H\)为最终计算出的点P的高程。
四、注意事项在进行三角高程测量的往返观测时,需要注意以下几点:1. 观测仪器的选择和校准非常重要,需要保证其精度和稳定性。
2. 大气温度和大气压力对测量结果有较大影响,需要进行相应的修正。
3. 观测时需要注意周围环境的影响,避免受到建筑物、树木、地形等因素干扰。
4. 测量终点的选取应当避免大坡度地形,以减小误差。
通过以上介绍,我们了解了三角高程测量中的往返观测计算公式及其应用注意事项。
三角高程测量原理及应用
三角高程测量原理及应用 Revised by Hanlin on 10 January 2021三角高程测量及其误差分析与应用一、三角高程测量的基本原理三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
如图1,所示,在地面上A,B两点间测定高差hAB,A点设置仪器,在B点竖立标尺。
量取望远镜旋转轴中心I至地面点上A点的仪器高i1,用望远镜中的十字丝的横丝照准B点标尺上的一点M,它距B点的高度称为目标高i2,测出倾斜视线与水平线所夹的竖角为a,若A,B两点间的水平距离已知为S,则由图可得图1如图1,所示,在地面上A,B两点间测定高差hAB,A点设置仪器,在B点竖立标尺。
量取望远镜旋转轴中心至地面点上A点的仪器高i,用望远镜中的十字丝的横丝照准B点标尺,它距B点的高度称为目标高v,测出倾斜视线与水平线所夹的竖角为a,若A,B两点间的水平距离已知为s,则由图可得,AB两点间高差的公式为:若A点的高程已知为HA,则B点的高程为:但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。
因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。
1.1单向观测法单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。
这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。
1.2对向观测法对向观测法是目前使用比较多的一种方法。
对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。
从而就可以得到两个观测量:直觇:h AB =S往tanα往+i往-v往+c往+r往②反觇:h BA =S返tanα返+i返-v返+c返+r返③S——A、B间的水平距离;α——观测时的高度角;i——仪器高;v——棱镜高;c——地球曲率改正;r——大气折光改正。
三角高程测量往返高差限差
三角高程测量是一种常用的测量方法,用于测量地面上两点之间的高差。
而往返高差限差则是指在进行三角高程测量时,允许的高差误差范围。
本文将从三角高程测量的原理、往返高差限差的定义和实际应用等方面进行介绍。
一、三角高程测量的原理三角高程测量是利用三角形的相似性原理进行的。
在测量过程中,首先选取一个已知高程的基准点A,然后选择需要测量高差的目标点B和一个中间点C。
通过测量AB、BC的水平距离和AC、BC的垂直距离,可以计算出AB与AC之间的高差。
二、往返高差限差的定义往返高差限差是指在进行三角高程测量时,测量结果与真实高差之间的允许误差范围。
通常情况下,往返高差限差是由测量精度、仪器误差、人为操作等因素综合考虑而确定的。
三、往返高差限差的实际应用往返高差限差在实际测量中起到了重要的作用,它能够有效地控制测量误差,保证测量结果的准确性。
以下是一些实际应用的举例:1. 建筑工程中的高程测量在建筑工程中,三角高程测量常用于确定建筑物的基准高度和各个部位的高差。
通过合理设置往返高差限差,可以确保建筑物各个部位的高度符合设计要求。
2. 水利工程中的高程测量在水利工程中,三角高程测量常用于确定河流、水库等水体的高程。
通过合理设置往返高差限差,可以保证水利工程的设计和施工的准确性,确保水利设施的正常运行。
3. 地质勘探中的高程测量在地质勘探中,三角高程测量常用于确定地质剖面的高差。
通过合理设置往返高差限差,可以控制测量误差,保证地质勘探数据的准确性,为地质研究提供可靠的依据。
四、往返高差限差的确定方法确定往返高差限差的方法主要包括以下几个方面:1. 根据测量精度要求确定根据具体的测量任务和要求,结合测量仪器的精度,确定往返高差限差的范围。
通常情况下,往返高差限差应小于等于测量精度的一半。
2. 根据测量仪器的精度确定根据使用的测量仪器的精度,结合测量任务的要求,确定往返高差限差的范围。
通常情况下,往返高差限差应小于等于测量仪器的精度。
最新三角高程测量原理及应用
三角高程测量及其误差分析与应用 1 一、 三角高程测量的基本原理2 三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间3 的高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的4 基本方法。
5 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立6 标尺。
量取望远镜旋转轴中心I 至地面点上A 点的仪器高i 1,用望远镜中的十字7 丝的横丝照准B 点标尺上的一点M ,它距B 点的高度称为目标高i 2,测出倾斜视8 线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为S 0,则由图可得9 10 11 1213 1415 图116 如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立17 标尺。
量取望远镜旋转轴中心至地面点上A 点的仪器高i ,用望远镜中的十字丝18 的横丝照准B 点标尺,它距B 点的高度称为目标高v ,测出倾斜视线与水平线所19 夹的竖角为a ,若A,B 两点间的水平距离已知为s ,则由图可得,AB 两点间高差20 的公式为:21 22若A 点的高程已知为H A ,则B 点的高程为:2324 但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度25 的影响非常大,必须纳入考虑分析的范围。
因而,出现了各种不同的三角高程测26AB h s tg i vα=•+-B A AB A H H h H s tg i vα=+=+•+-量方法,主要分为:单向观测法,对向观测法,以及中间观测法。
271.1 单向观测法28单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进29行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的30高程。
这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度31相对较低。
321.2 对向观测法33对向观测法是目前使用比较多的一种方法。
测绘技术三角高程测量详解
测绘技术三角高程测量详解测绘技术在现代社会中扮演着重要的角色,其中三角高程测量作为测绘技术的重要组成部分,对于地理信息的获取和实际应用具有重要意义。
本文将对三角高程测量进行详细解析,介绍其原理、方法和应用。
一、三角高程测量的原理三角高程测量是一种基于三角形的测量方法,通过测量三角形的边长与角度来计算目标点的高程。
其基本原理是利用三角形的几何关系,根据已知边长和角度的关系求解目标点的高程。
三角高程测量的原理有两种方法,即几何三角高程测量和均差三角高程测量。
几何三角高程测量是利用定点观测和差角观测进行高程测量,其原理是通过比较观测点与已知高程点之间的角度差异,从而计算出目标点的高程。
均差三角高程测量是通过测量三角形边长和角度的变化量,利用高程差与边长、角度的关系求解目标点的高程。
二、三角高程测量的方法三角高程测量有多种方法,常用的包括:倾斜距离法、距离比例法、角度比例法、高程变换法等。
下面将对其中两种方法进行详细介绍。
1. 倾斜距离法倾斜距离法是一种适用于平地和坡地的高程测量方法,其原理是通过测量目标点与已知点之间的倾斜距离和水平距离的比值来计算目标点的高程。
该方法需要在目标点和已知点之间设置一个水平距离基线,并使用倾斜仪测量两点之间的倾斜角和倾斜距离,再根据比例关系计算出高程。
倾斜距离法的优点是测量方便快捷,适用范围广,但需要考虑目标点与已知点之间的可视性和坡度等因素对测量结果的影响。
2. 距离比例法距离比例法是一种适用于山地和复杂地形的高程测量方法,其原理是测量目标点与已知点之间的距离,并根据距离比例关系计算出目标点的高程。
该方法需要测量目标点与已知点之间的水平距离和垂直距离,并计算距离比例,再通过已知点的高程推算出目标点的高程。
距离比例法的优点是适用范围广,不受地形复杂性的限制,但需要考虑测量误差和仪器精度对结果的影响。
三、三角高程测量的应用三角高程测量在地理信息系统、地质勘探、城市规划等领域具有广泛的应用。
三角高程测量的原理
2 即圆弧PN的弦切角∠MPN等于圆心角 ε的一半。
三角高程测量
因ε很小, PN PN D,由图可
得 MPN MN MN
2 PN D
即
MN D
2
因
PN D
R' R'
所以
MN D2
若令
k
R
2R ' ,k称为大气折光系数
R' ,则 R ' R,代入上式得
hAB =D·tanα + i - v + f1 - f2
三角高程测量
在三角高程测量中,由于球 差f1使高差减小,气差f2使高差 增大,因此,在高差中应进行“ 加入球差减去气差”的改正,即 球气差改正,亦称两差改正,通 常用 f 表示。即
f = f1 - f2 将上式代入hAB =D·tanα + i v + f1 - f2 ,并整理得:
k f2
MN
D2 2R
k
三角高程测量
D2 f1 CE 2R
f2
MN
D2 2R
k
将上式代入 f = f1 - f2 得
f D2 D2 k (1 k) D2
2R 2R
2R
三角高程测量
4. 三角高程测量的观测方法
(1)直、反觇观测 由已知高程点设站观测待定高程点的垂直角叫直
觇。 由待定高程点设站观测已知高程点的垂直角叫反
由于R>>i+HA,故可以用R代替
i+HA+R,则
R2+D2=(CE+R)2
展开得 R2+D2=CE2+2R·CE+R2
则
三角高程测量原理
三角高程测量原理
三角高程测量是一种常用的地理测量方法,通过三角形的相似原理和三角函数
的运用,可以准确地计算出地表上不同点的高程差。
在实际的工程测量中,三角高程测量具有重要的应用价值,可以为工程建设提供准确的地理信息数据。
本文将介绍三角高程测量的原理及其应用。
首先,三角高程测量的原理是基于三角形的相似原理。
在地理测量中,我们通
常利用望远镜等仪器观测不同点之间的水平距离和垂直角度,然后利用三角函数计算出高程差。
在实际测量中,我们通常选择一个基准点作为起点,然后通过测量不同点与基准点的水平距离和垂直角度,可以计算出不同点的高程差。
其次,三角高程测量的原理还涉及到三角函数的运用。
在实际测量中,我们通
常会用到正弦、余弦、正切等三角函数来计算高程差。
以正弦函数为例,我们可以利用正弦定理计算出不同点之间的高程差,从而得到准确的地理信息数据。
三角函数的运用是三角高程测量原理的重要组成部分,可以帮助我们准确地计算出高程差。
三角高程测量原理的应用非常广泛,特别是在工程测量中具有重要的价值。
在
道路、铁路、水利工程等建设中,我们常常需要准确地测量地面的高程差,以便进行工程设计和施工。
三角高程测量可以为工程建设提供准确的地理信息数据,为工程施工提供可靠的依据。
总之,三角高程测量是一种重要的地理测量方法,其原理基于三角形的相似原
理和三角函数的运用。
通过三角高程测量,我们可以准确地计算出不同点之间的高程差,为工程建设提供可靠的地理信息数据。
在实际的工程测量中,三角高程测量具有重要的应用价值,可以为工程建设提供准确的地理信息数据,为工程施工提供可靠的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角高程测量及其误差分析与应用一、 三角高程测量的基本原理三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。
它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。
如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。
量取望远镜旋转轴中心I 至地面点上A 点的仪器高i 1,用望远镜中的十字丝的横丝照准B 点标尺上的一点M ,它距B 点的高度称为目标高i 2,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为S 0,则由图可得图1如图1,所示,在地面上A,B 两点间测定高差h AB , A 点设置仪器,在B 点竖立标尺。
量取望远镜旋转轴中心至地面点上A 点的仪器高i ,用望远镜中的十字丝的横丝照准B 点标尺,它距B 点的高度称为目标高v ,测出倾斜视线与水平线所夹的竖角为a ,若A,B 两点间的水平距离已知为s ,则由图可得,AB 两点间高差的公式为:若A 点的高程已知为H A ,则B 点的高程为:但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。
因而,出现了各种不同的三角高程AB h s tg i vα=•+-B A AB A H H h H s tg i v α=+=+•+-测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。
1.1 单向观测法单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。
这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。
1.2 对向观测法对向观测法是目前使用比较多的一种方法。
对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。
从而就可以得到两个观测量:直觇:h AB= S往tanα往+i往-v往+c往+r往②反觇:h BA= S返tanα返+i返-v返+c返+r返③S——A、B间的水平距离;α——观测时的高度角;i——仪器高;v——棱镜高;c——地球曲率改正;r——大气折光改正。
然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。
由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。
所以在对向观测法中可以将它们消除掉。
h=0.5(h AB- h BA)=0.5[( S往tanα往+i往-v往+c往+r往)-( S返tanα返+i返-v返+c返+r返)] =0.5(S往tanα往-S返tanα返+i往-i返+v返-v往) ④与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。
1.3 中间观测法中间观测法是模拟水准测量而来的一种方法,它像水准测量一样,在两个待测点之间架设仪器,分别照准待测点上的棱镜,再根据三角高程测量的基本原理,类似于水准测量进行两待测点之间的高差计算。
此种方法要求将全站仪尽量架设在两个待测点的中间位置,使前后视距大致相等,在偶数站上施测控制点,从而有效地消除大气折光误差和前后棱镜不等高的零点差,这样就可以像水准测量一样将地球曲率的影响降到最低。
而且这种方法可以不需要测量仪器高,这样在观测时可以相对简单些,而且减少了一个误差的来源,提高观测的精度。
全站仪中间观测法三角高程测量可代替三、四等水准测量。
在测量过程中,应选择硬地面作转点,用对中脚架支撑对中杆棱镜,棱镜上安装觇牌,保持两棱镜等高,并轮流作为前镜和后镜,同时将测段设成偶数站,以消除两棱镜不等高而产生的残余误差影响。
与对向观测法相比,中间观测法有自己的优点,但当两观测点间的水平距离小于或等于1km 时,对向观测法三角高程测量精度一般高于中间观测法三角高程测量精度,而当两观测点间的水平距离大于1km 时,中间观测法三角高程测量精度一般高于对向观测法三角高程测量精度。
在长距离、高低起伏大的区域高程测量中,可选择用中间观测法三角高程测量,其精度可达三、四等水准测量精度,在提高观测条件的情况下,理论上可达二等水准测量精度。
二、三角高程测量的误差分析根据三角高程测量的基本原理,以及在观测过程中的各种影响因素,三角高程法测量高差主要的误差来源有:测距误差、测量高度角的误差、测量仪器高和棱镜高的误差、大气折光误差、以及地球曲率所引起的误差。
2.1 测距误差在上述的基本计算式中,用到的平距或者斜距都是用全站仪直接测量所得,而仪器本身有其精度限制,因而不可避免的会产生误差。
因此,可以采用相对精确的测距仪器来获取两点之间的水平距离或者斜距。
然后根据仪器本身提供的相关参数对测得的数据进行相应的改正,提高数据的精度。
2.2 测角误差垂直角观测误差m对高差的影响随边长D的增大而增大。
竖直角观测误差包α括仪器误差、观测误差及外界条件的影响等。
仪器误差不可避免,可以根据具体情况选取更精密的仪器来测量。
垂直角的观测误差主要有照准误差、读数误差、气泡居中误差。
由于人眼的分辨力有限,在工作中垂直角用红外全站仪观测两个测回,则可以在一定程度上提高测量精度。
外界环境条件对观测也会产生一定的影响,如空气清晰程度,会很大程度上干扰观测时的瞄准质量,从而影响观测值得精度。
对于上述误差,有的也可以通过观测方法来减弱或者消除:事先仔细检验仪器竖盘分划误差;改进砚标结构;在观测程序上采用盘左、盘右分别依次照准砚标,即可使竖直角观测精度提高。
2.3 测量仪器高和棱镜高的误差仪器高和棱镜高量取误差直接影响着高差值,因此应认真、细致地量取仪器高和棱镜高,以控制其在最小误差范围内。
在量测时,可以采取三次测量取平均值的方式来获取仪器高和棱镜高,从而使得精度得到提高。
还可以通过改变测量方式,如采用中间观测法,避免仪器高的量测,减少了一个误差的来源。
2.4 大气折光和地球曲率引起的误差在三角高程测量中,由于相邻两点之间的距离相对比较大,必须考虑到大气折光和地球曲率对测量结果的影响。
大气折光误差系数随地区、气候、季节、地面、覆盖物和视线超出地面高度等因素而变化,目前还不能精确测定它的数值。
一般认为,气象条件变化在同一地区该系数变化可达±0.2,平原丘陵地区日平均变化达±0.08,在山区视线位于远离地表的较稳定的大气层中,它的日变化大都小于±0.05。
为了解决这个问题,采用对向观测法,用往返测单向观测值取平均值,得到的对向观测中就不含有大气折光。
另外,为减少大气折光误差对观测视线的影响,可以选择阴天或夜间进行测量。
地球是一个椭球地,在较小范围内可以不考虑地球曲率的影响,但三角高程测量涉及的两相邻点间的距离都比较大,必须考虑它的影响。
尤其是在地形起伏较大的地区,地球曲率的影响更加明显。
对于该项误差,我们也必须进行相应的改正,而大地水准面是一个不规则的曲面,地球曲率改正也就很难以做到十分精确。
所以,我们可以根据实际情况改变测量方式,如采用对向观测法进行观测,以减弱或消除掉它的影响。
在以上的几种误差中,垂直角的误差对测量结果的影响最大。
由于在基本测量公式中垂直角需要与距离相乘,而距离一般都比较大,进行乘法运算后的值也就相应的变的比较大。
所以在观测中垂直角的精度一定要得到保证。
三、三角高程测量的应用在地形控制测量机航测外业控制测量工作中主要应用三角高程测量的方法测定一系列控制点的高程。
其最大的优点是在测定控制点的平面位置的过程中同时测定其高程。
与水准面相比,能一次测定距离较远或高差较大两点间的高度之差。
(一)三角高程路线所谓三角高程路线,是在两已知高程点间,由已知其水平距离的若干条边组成的路线。
用三角高程测量的方法,对每条边都进行往返向测定高差。
三角高程路线中各条边的高差均须往返观测,其竖角均用盘左盘右测定,测回数按规定办理。
在推算出整条路线的总高差后,根据两端的已知高程算得高差闭合差。
(二)独立高程点由二至三个已知高程点对一个未知高程的点,用三角高程的方法求算该点的高程,称为独立高程点。
通常已知高程各点至未知高程点间的水平距离,已在求算未知高程点的平面位置时求得。
凡不能包括在三角高程路线内的锁网形平面控制点及各种交会点其高程可用独立高程点的方法测定。
(三)高程导线高程导线亦是根据三角高程测量原理测定的。
它采用导线的形式联测所求各点的高程。
其特点是不需要测定点的平面位置,所以与水准测量相似。
计算高差所需的距离用视距测量的方法求得。
高程导线可以根据地形测量需要布置成附合导线形式,起闭于两个已知高程点;或用闭合导线形式,起闭于同一已知高程点;有时也可用支导线形式,但总长度较短,通常对附合与闭合高程导线可采用隔点设站,就是只单向测定各边的高差,所以成为单站导线。
若每点设站即往返测定每条边的高差则称为复站导线。
(四)光电测距三角高程测量采用高程导线的施测形式而用光电测距仪施测距离来测量地面点高程的工作方式称为光电测距三角高程测量。
由于光电测距仪精度远高于视距测量,因此每站施测的长度可以增长而减少施测的站数,也提高了所求高程点的精度,可以用来代替四等水准测量。
工效较四等水准要高。
四、总结三角高程测量因其自身原理的不同,与水准测量相比有缺点,也有其独特的优势。
在很多时候,三角高程测量在精度上都与几何水准测量有一定的差距。
但它可以进行较远距离测量,跨过待测点之间的难以进行水准测量的地段,而且每一测站观测需要的时间相对水准测量来说也是大大缩减。
因而,三角高程测量以它的测量时间、生产效率、经济效益优于几何水准测量得以广泛应用,尤其在山区作业,几何水准测量非常困难,三角高程测量发挥了很大优势,解决了几何水准测量难以解决的高程传递。
随着高精度电磁波测距仪的广泛应用,三角高程测量在国内外已被广泛应用于高程测量中。
在国内,利用三角高程测量替代水准测量问题,也被众多工程技术人员所认同,并成为国内测绘界极为关注的课题。