临床放射物理学基础ppt课件(最新)
合集下载
《临床放射诊断学PPT课件》
常见的放射学诊断
肺部影像学
用于评估呼吸系统疾病,如肺炎、肺结核和肺 肿瘤。
胸部影像学
用于评估胸腔和心脏疾病,如胸腔积液和冠状 动脉疾病。
骨骼影像学
用于检测和诊断骨折、关节退行性病变和骨肿 瘤。
腹部影像学
用于评估腹部脏器,如胃、肝、胰腺和肾脏。
放射学报告的编写
放射学报告应准确而清晰地描述检查结果,并提供具体的建议和诊断。报告应包括病人信息、检查描述、影像 所见和诊断结果。
3 随访和评估
放射学可以用于随访病情 发展和评估治疗效果,以 实现治疗的持续与优化。
常见的放射学检查方法
X射线摄影术
通过使用X射线辐射,获取身体 内部的影像,并用于诊断和评 估疾病。
计算机断层扫描 (CT)
通过旋转的X射线源和探测器, 获得横断面图像,以检测和诊 断异常。
核磁共振成像(MRI)
利用强磁场和无害的无线电波 来生成详细的身体内部图像, 诊断和评估多种病症。
《临床放射诊断学PPT课 件》
本课件将介绍临床放射诊断学的基本概念和技术,以及其在医学中的重Байду номын сангаас性。 我们将探讨常见的放射学检查方法和诊断技术,以及放射学报告的编写和安 全措施。
放射学的重要性
1 早期疾病诊断
放射学能够帮助医生早期 发现并诊断病变,以便及 时采取治疗措施。
2 指导治疗方案
通过放射学图像,医生可 以评估疾病的严重程度, 制定个体化的治疗计划。
放射学安全措施
在进行放射学检查时,必须遵守严格的安全措施,确保患者和医护人员的安 全。这包括适度使用辐射、正确操作设备和防护措施。
诊断意义和发展前景
随着科技的发展,放射学在临床诊断中的意义越来越重要。未来,我们将看 到更多先进的放射学技术和方法的出现,为医学进步提供更多的可能。
放射物理学课件
一个好的治疗计划,应该使其 剂量分布的形状与计划靶区的 形状相一致。但由于目前照射 技术的限制,不能达到这一点, 这是定义治疗区的原因之一; 另外治疗区的形状和大小与计 划靶区的符合程度,也可为医 生提供一个很好的评价治疗计 划的标准。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
ITV范围的确定应使得CTV 在其内出现的概率最高,以保 证CTV在分次照射中,得到最 大可能的处方剂量的照射。
ITV一旦确定,它与患者坐 标系的参照物内、外标记应保 持 不 变 。 lTV 的 确 定 在 适 形 治 疗 和 X(γ)射线立体定向治疗 中 具有特殊的意义和地位。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
图8-4 理想剂量学曲线
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
(一)高能X射线
剂量学特点: 最大剂量建成深度随 射线能量增加而增加; 在最大剂量建成点以前, 剂量随深度的增加而增 加,并随射线能量的增 加而减少;在建成点以 后,剂量随深度的增加 而减小,并随射线能量 的增加而增加。
照射区(irradiation volume,IV)
对一定的照射技术及射野
安排,50%等剂量线面所包括的范围。照射区的大小,直接反映
了治疗方案设计引起的正常组织受照范围。
冷剂量区(cold volume) 在 ITV内剂量低于CTV处方剂量 的下限(-5%)的范围。
热剂量区(hot volume) 高 于CTV处方剂量的上限(5%) 的范围。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
ITV范围的确定应使得CTV 在其内出现的概率最高,以保 证CTV在分次照射中,得到最 大可能的处方剂量的照射。
ITV一旦确定,它与患者坐 标系的参照物内、外标记应保 持 不 变 。 lTV 的 确 定 在 适 形 治 疗 和 X(γ)射线立体定向治疗 中 具有特殊的意义和地位。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
图8-4 理想剂量学曲线
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
(一)高能X射线
剂量学特点: 最大剂量建成深度随 射线能量增加而增加; 在最大剂量建成点以前, 剂量随深度的增加而增 加,并随射线能量的增 加而减少;在建成点以 后,剂量随深度的增加 而减小,并随射线能量 的增加而增加。
照射区(irradiation volume,IV)
对一定的照射技术及射野
安排,50%等剂量线面所包括的范围。照射区的大小,直接反映
了治疗方案设计引起的正常组织受照范围。
冷剂量区(cold volume) 在 ITV内剂量低于CTV处方剂量 的下限(-5%)的范围。
热剂量区(hot volume) 高 于CTV处方剂量的上限(5%) 的范围。
放射物理学PPT课件
第29页/共47页
立体定向适形放射治疗 立体定向适形放射治疗是一种精确的放射治疗技术,
在肿瘤靶体积受到高剂量照射的同时,其肿瘤靶体 积以外的正常组织则受到较低剂量的照射。
CT扫描机激光 定位系统
第30页/共47页
适形治疗(Conformal Therapy)是一种提高治疗增益的较为有效的物理措施。适形放射治 疗为一种治疗技术,使得:高剂量区的形状在三维方向上与靶区(病变)的形状一致。 从这个意义上讲,学术界将它称为三维适形放射治疗(3DCRT)
A第射32野页形/共状47适页 形
B射野内强度调节
适形放射治疗的分类 经典适形放射治疗 (Classical Conformal Radiation Therapy) 只满足第一个必要条件 调强适形放射治疗 (Intensity--Modulated Radiation Therapy, IMRT) 同时满足两个必要条件
第1页/共47页
➢ 约60-70%的恶性肿瘤病人在病程中的某一阶段要使用放疗。 ➢ 放疗疗效肯定,据1998年WHO统计, 目前有45%的恶性肿瘤可以治愈(手术
治愈22%,放疗治愈18%,化疗治愈5%)。
第2页/共47页
✓ 口咽、舌根、扁桃体癌的放疗治愈: 37%~53%,
✓ 上颌窦、鼻腔筛窦癌:
• 晚期癌症病人有明显的恶病质,如消瘦、脱水、营养状 况极差,无法进行放疗者可作为绝对禁忌证。
• 食管癌已穿孔,腔内合并大量积液,肺癌合并大量癌性 胸水,肝癌合并大量腹水等均应作为禁忌证。
• 对放射线不敏感的肿瘤,如软组织肉瘤:纤维肉瘤、平 滑肌肉瘤、横纹肌肉瘤、脂肪肉瘤、滑膜肉瘤、成骨肉 瘤、神经纤维肉瘤及黑色素瘤等应视为相对的禁忌证。 一般不做放疗。
立体定向适形放射治疗 立体定向适形放射治疗是一种精确的放射治疗技术,
在肿瘤靶体积受到高剂量照射的同时,其肿瘤靶体 积以外的正常组织则受到较低剂量的照射。
CT扫描机激光 定位系统
第30页/共47页
适形治疗(Conformal Therapy)是一种提高治疗增益的较为有效的物理措施。适形放射治 疗为一种治疗技术,使得:高剂量区的形状在三维方向上与靶区(病变)的形状一致。 从这个意义上讲,学术界将它称为三维适形放射治疗(3DCRT)
A第射32野页形/共状47适页 形
B射野内强度调节
适形放射治疗的分类 经典适形放射治疗 (Classical Conformal Radiation Therapy) 只满足第一个必要条件 调强适形放射治疗 (Intensity--Modulated Radiation Therapy, IMRT) 同时满足两个必要条件
第1页/共47页
➢ 约60-70%的恶性肿瘤病人在病程中的某一阶段要使用放疗。 ➢ 放疗疗效肯定,据1998年WHO统计, 目前有45%的恶性肿瘤可以治愈(手术
治愈22%,放疗治愈18%,化疗治愈5%)。
第2页/共47页
✓ 口咽、舌根、扁桃体癌的放疗治愈: 37%~53%,
✓ 上颌窦、鼻腔筛窦癌:
• 晚期癌症病人有明显的恶病质,如消瘦、脱水、营养状 况极差,无法进行放疗者可作为绝对禁忌证。
• 食管癌已穿孔,腔内合并大量积液,肺癌合并大量癌性 胸水,肝癌合并大量腹水等均应作为禁忌证。
• 对放射线不敏感的肿瘤,如软组织肉瘤:纤维肉瘤、平 滑肌肉瘤、横纹肌肉瘤、脂肪肉瘤、滑膜肉瘤、成骨肉 瘤、神经纤维肉瘤及黑色素瘤等应视为相对的禁忌证。 一般不做放疗。
医用X线的物理学基础PPT课件
CHENLI
28
5、软X线摄影:是利用X线谱中波长较长的软 X线透过动物体软组织,使胶片感光的一种摄 影方法。近年来,铂靶X线管专供软组织特别 是乳腺的软X线摄影。
6、X线体层摄影:它可以使动物体某部位事 先选择的一个深部层次,在X线片上显影清楚。 而其他前后各层结构则显影模糊或不显影。X 线体层摄影的方法很多,主要有:一次多层体 层摄影、自体层摄影、线形及其他轨迹体层摄 影、横轴体层摄影、曲面体层摄影、干板体层 摄影。
CHENLI
32
根据动物体各部结构在解剖和生理方面的不同,
介入造影剂的途径有直接注入、生理排泄和生 理积聚三种,以前两种应用最为普遍。X线造 影检查是X线诊断工作中应用广泛而又甚为有 效的方法
CHENLI
33
X线医学影像学进展
X线医学影像学的发展过程大致可分为三阶段: 第一阶段是从伦琴发现X线后出现的早期X线
6
(二)x线与物质的作用
1.穿透作用:X线的波长短.即能量大,故 穿透力强。
一定波长的X线的穿透性与物质的性质、结构 有关。
一般原子序数高的物质对X线的吸收作用强, X线穿透力差。
由于X线能穿透人体,因而在医学诊断和治疗 中得到广泛应用。
CHENLI
7
X线在穿透过程中x线被部分吸收而发生衰减。
CHENLI
9
3.感光效应
涂有溴化银的胶片经X线照射后可以感光, 产生潜影,经显影、定影处理后形成灰阶度不 同的X线照片.这就是X线摄影的基础。
CHENLI
10
4.电离效应
X线穿过物体而被吸收时.能产生电离作用, 使组成物质的分子分解成正负离子。X线照射 空气可使其产生正负离子而成为导体。通过测 量空气电离的程度可以检测X线的剂量。
最新放射生物学的物理化学基础ppt课件
水的电离和激发
• H2O+为不稳定离子,在水中迅即解 离为氢离子(H+)和羟自由基(• OH)。
• 自由电子在其运动中又不断和水分 子碰掩,击出其它水分子中的轨道 电子,引起次级电离。
水的电离和激发
• 这些电子在其运动和引起电离的过程 中逐渐丧失其能量,直至不能再击出 其它分子的电子,它们就被水分子捕 获,形成带负电的水离子(H2O-),后 者亦极不稳定。
加成和抽氢两类反应。 • 2)核糖的损伤: 单、双链断裂与DNA的碱
基缺失。 • 3)磷酸基的损伤
自由基对生物分子的作用
• 2.自由基与脂质过氧化(生物膜的损伤)
• 脂质过氧化作用是由于氧自由基攻击了 生物膜磷脂中的多不饱和脂肪酸引起, 形成脂质过氧化物对细胞造成损伤。
脂质过氧化作用对 细胞的损伤机制
• e + H+→ H ·
• e-+H2O → e水合
•
e水合+O2
→
O
2
(超氧化物阴离子)
• H · + H · →H2
• · OH + · OH→H2O2
(过氧化氢)
水的电离和激发
• 水分子受电离辐射作用时,将水 分子中的轨道电子击出,发生电 离作用,产生带正电的水离子 (H2O+)和自由电子(e-)。
粒子辐射的种类
• 一般由加速器加速的高能质子轰击重金属 靶产生。是高能质子与原子核里的中子碰 撞发生核反应的结果。
• 当负π介子的能量在40~90MeV时,在组织 中的射程可达6~13cm,可用于放射治疗。
粒子辐射的种类
• 重离子:某些原子被剥去或部分剥去 外围电子后,形成带正电荷的原子核。
放射物理学ppt课件
间接致电离辐射在放射治疗中主要指X(γ)辐 射,X(γ)光子进入介质ቤተ መጻሕፍቲ ባይዱ经与介质相互作用 损失能量,分为两步。 如图(a)入射光子将其部分或全部能量转移给 介质而释放出次级电子; 其次如图(b)获得光子转移能量的大部分次级 电子再与介质原子中的电子作用,以使原子电离 或激发的形式损失其能量,即被介质所吸收;而 少数次级电子与介质原子的原子核作用,发生轫 致辐射产生X射线。
热释光材料的剂量响应与其受辐照和加热历史 有关,在使用前必须退火。如LiF在照射前要经 过1小时400℃高温和24小时80℃低温退火。它 的剂量响应,一般在10Gy以前呈线性变化,大 于10Gy则出现超线性现象。其灵敏度基本不依 赖于X(γ)射线光子的能量,但对于低于10MeV的 电子束,灵敏度下降5%~10%。热释光材料的 剂量响应依赖于许多条件,因此校准要在相同条 件,如同一读出器,近似相同的辐射质和剂量水 平下进行,经过严格校准和对热释光材料的精心 筛选,测量精度可达到95%~97%。
吸收剂量(Absorbed dose) 吸收剂量 Dd E dm 即电离辐射给予质量为dm的介质的平均授 予能。 单位为J/kg,专用名为戈瑞Gray(Gy)。 1 Gy=1 J/kg 1Gy=100cGy 拉德(rad), 1Gy=100 rad
比释动能(kinetic energy released per unit mass,Kerma) 比释动能 K dE tr dm 即不带电粒子在质量为dm的介质中释放的 全部带电粒子的初始动能之和。 K的单位为J/kg,专用名戈瑞(Gy)。
同体积的半导体探测器,要比空气电离室 的灵敏度高18000倍左右。这样的半导体 探头可以做得 非常小(0.3—0.7mm3),除 常规用于测量剂量梯 度比较大的区域, 如剂量建成区、半影区的剂量分布和用于 小野剂量分布的测量外,近十年来,半导 体探测器越来越被广泛用于患者治疗过程 中的剂量监测
临床放射物理学基础PPT课件
(肿瘤深度 )
❖ 百分深度剂量 ❖ 建成效应 ❖ 等剂量曲线
❖ 半影 ❖ 几何半影 ❖ 穿射半影 ❖ 散射半影
精选ppt课件最新
8
放射源(S)
射线源
在没有特别说明的情况下,一 般指放射源的前表面的中心,或 产生射线的靶面中心。
精选ppt课件最新
9
射野中心轴/射线中心轴
射线束的中心对称轴线。
临床上一般用放射源S穿过照 射野中心的连线作照射野中心 轴。
❖ 射线能量高,皮肤剂量低,最大剂量点(Dm)深度 大约为该射线能量值的1/4。
❖ 随着射线能量增加,Dm点的位置下移,皮肤表面 剂量下降,深部剂量增加。
❖ 放射源与皮肤距离固定时,百分深度剂量随射线 能量、照射野面积的增大而增大。
❖ 固定野照射时,应将病灶前缘放在Dm点之后,限 束器距照射野皮肤表面应>5cm。
17
等剂量曲线
等剂量曲线
❖射线束在一定组织深部中心轴处的剂量最高,远离中心轴则逐渐减弱, 把不同深度但相同剂量的各点连成一线称为等剂量曲线。 ❖模体中百分深度剂量相同的点连接起来即成等剂量曲线。 ❖射线能量越高,等剂量曲线越趋平坦,对治疗有利。 ❖用来描述吸收剂量的二维或三维分布。 ❖能够直观地给出整个照射野在二维方向上模体对放射线的吸收情况。
❖ 靶皮距(FSD):靶面到皮肤的距离(肿瘤深度 )。
精选ppt课件最新
13
放射源
射 野 中 心 轴 照 射野
肿瘤中心点
源 皮 距
源 瘤 距
靶 皮 距
❖ 放射源(S) ❖ 射野中心轴(SA) ❖ 照射野(A) ❖ 参考点 ❖ 校准点 ❖ 肿瘤中心点(C) ❖ 源皮距 (SSD) ❖ 源瘤距 (STC) ❖ 源轴距 (SAD) ❖ 靶皮距 (Dc)
❖ 百分深度剂量 ❖ 建成效应 ❖ 等剂量曲线
❖ 半影 ❖ 几何半影 ❖ 穿射半影 ❖ 散射半影
精选ppt课件最新
8
放射源(S)
射线源
在没有特别说明的情况下,一 般指放射源的前表面的中心,或 产生射线的靶面中心。
精选ppt课件最新
9
射野中心轴/射线中心轴
射线束的中心对称轴线。
临床上一般用放射源S穿过照 射野中心的连线作照射野中心 轴。
❖ 射线能量高,皮肤剂量低,最大剂量点(Dm)深度 大约为该射线能量值的1/4。
❖ 随着射线能量增加,Dm点的位置下移,皮肤表面 剂量下降,深部剂量增加。
❖ 放射源与皮肤距离固定时,百分深度剂量随射线 能量、照射野面积的增大而增大。
❖ 固定野照射时,应将病灶前缘放在Dm点之后,限 束器距照射野皮肤表面应>5cm。
17
等剂量曲线
等剂量曲线
❖射线束在一定组织深部中心轴处的剂量最高,远离中心轴则逐渐减弱, 把不同深度但相同剂量的各点连成一线称为等剂量曲线。 ❖模体中百分深度剂量相同的点连接起来即成等剂量曲线。 ❖射线能量越高,等剂量曲线越趋平坦,对治疗有利。 ❖用来描述吸收剂量的二维或三维分布。 ❖能够直观地给出整个照射野在二维方向上模体对放射线的吸收情况。
❖ 靶皮距(FSD):靶面到皮肤的距离(肿瘤深度 )。
精选ppt课件最新
13
放射源
射 野 中 心 轴 照 射野
肿瘤中心点
源 皮 距
源 瘤 距
靶 皮 距
❖ 放射源(S) ❖ 射野中心轴(SA) ❖ 照射野(A) ❖ 参考点 ❖ 校准点 ❖ 肿瘤中心点(C) ❖ 源皮距 (SSD) ❖ 源瘤距 (STC) ❖ 源轴距 (SAD) ❖ 靶皮距 (Dc)
放射物理学.ppt
6、无污染
近距离后装治疗机
代现后装治疗机主要包括:治疗计划系 统和治疗系统。
现代近距离治疗的特点:
1、放射源微型化,程控步进电机驱动; 2、高活度放射源形成高剂量率治疗; 3、微机计划设计。
模拟定位机
X线模拟定位机是用来模拟加速器或60Co 治疗机机械性能的专用X线诊断机。
作用:模拟各类治疗机实施治疗时的照 射部位及范围,进行治疗前定位。
放射物理学
——放射治疗常用放射源及其 物理特性
ludows
临床放射物理学: ① 放疗设备的结构、性能; ② 各种射线的物理特性、在人体内的分布规律; ③ 探讨提高肿瘤剂量,降低正常组织受量的物
理方法。
一、放射源的种类
① γ、 β射线———放射性同位素
② 普通X射线(KV级)——X线治疗机。 高能X射线(MV级)——加速器。
光子的穿透本领有三种情况:
1、放射性同位素:通常用核素名+辐射类
型表示, 如60Coγ射线。 2、中低能X射线,通常用半价层表示。 半价层HVL:射线强度通过某物质减弱为入
射强度的一Байду номын сангаас所需的厚度。如
1mmAL,0.5mmCu
3、高能X射线,通常用兆伏 (MV)表示, 如 6MV-X 线。
二、电离生物效应
一般指400kV以下X线治疗肿瘤的装置
• 原理:高速运动的电子作用于钨等重 金属靶,发生特征辐射、韧致辐射, 产生X线。
• 用途:主要用于体表肿瘤和浅表淋巴 结转移的治疗或预防性照射。
• 缺点:深度剂量低,皮肤剂量高;骨 吸收剂量高;易于散射,剂量分布差。
60Co治疗机
原理:利用放射性同位素60Co发射出的γ 射线治疗肿瘤
近距离后装治疗机
代现后装治疗机主要包括:治疗计划系 统和治疗系统。
现代近距离治疗的特点:
1、放射源微型化,程控步进电机驱动; 2、高活度放射源形成高剂量率治疗; 3、微机计划设计。
模拟定位机
X线模拟定位机是用来模拟加速器或60Co 治疗机机械性能的专用X线诊断机。
作用:模拟各类治疗机实施治疗时的照 射部位及范围,进行治疗前定位。
放射物理学
——放射治疗常用放射源及其 物理特性
ludows
临床放射物理学: ① 放疗设备的结构、性能; ② 各种射线的物理特性、在人体内的分布规律; ③ 探讨提高肿瘤剂量,降低正常组织受量的物
理方法。
一、放射源的种类
① γ、 β射线———放射性同位素
② 普通X射线(KV级)——X线治疗机。 高能X射线(MV级)——加速器。
光子的穿透本领有三种情况:
1、放射性同位素:通常用核素名+辐射类
型表示, 如60Coγ射线。 2、中低能X射线,通常用半价层表示。 半价层HVL:射线强度通过某物质减弱为入
射强度的一Байду номын сангаас所需的厚度。如
1mmAL,0.5mmCu
3、高能X射线,通常用兆伏 (MV)表示, 如 6MV-X 线。
二、电离生物效应
一般指400kV以下X线治疗肿瘤的装置
• 原理:高速运动的电子作用于钨等重 金属靶,发生特征辐射、韧致辐射, 产生X线。
• 用途:主要用于体表肿瘤和浅表淋巴 结转移的治疗或预防性照射。
• 缺点:深度剂量低,皮肤剂量高;骨 吸收剂量高;易于散射,剂量分布差。
60Co治疗机
原理:利用放射性同位素60Co发射出的γ 射线治疗肿瘤
放射物理学.ppt
2、吸收剂量 (absorbed dose, D) 吸收剂量 D等于dE除以dm的商。即电离 辐射给予质量为dm介质的平均能量dE。
D = dE / dm 单位:焦耳/千克 (J/kg)。 专用名 Gray(Gy),1 Gy = 1 J/kg; 原用单位rad,1rad = 1cGy
3、百分深度剂量
放射物理学
——放射治疗常用放射源及其 物理特性
ludows
临床放射物理学: ① 放疗设备的结构、性能; ② 各种射线的物理特性、在人体内的分布规律; ③ 探讨提高肿瘤剂量,降低正常组织受量的物
理方法。
一、放射源的种类
① γ、 β射线———放射性同位素
② 普通X射线(KV级)——X线治疗机。 高能X射线(MV级)——加速器。
(3)碰撞损失与辐射损失
碰撞损失:由电离激发而引起,用单位长 度的能量损失来量度(dE/dx),在低能时发 生,主要产生热。
辐射损失:由特征辐射和韧致辐射引起的, 在高能范围发生,主要产生X射线,γ射 线
损失比=碰撞损失/辐射损失=816mev/T.Z
T-电子动能,Z—原子序数
2、光子射线与物质的相互作用
光电效应:光子高速前 进,在物质中与原子 的内层电子相撞,光 子将全部能量用于击 出电子,并赋予电子 高速前进的动能,这 种现象叫做光电效应。 与原子序数有关。 (光电效应主要发生 在低kV级的 X线,骨 吸收高于肌肉和脂肪)
康普顿效应:随着入
射光子能量的增加 ( 200kV-7 MV),光子与 轨道上外层电子相撞 ,光子将部分能量转 移给电子,使电子快 速前进(反冲电子),而 光子本身则以减低之 能量,改变方向,继 续前进(散射光子),这 种现象叫做康普顿效 应。与原子序数无关
放射物理学基础ppt课件
• CT模拟机:是利用CT获取患者图像并进行三 维重建,同时将图像传给放射治疗计划系统, 进而对肿瘤实现精确定位的专用CT机。
8
近距离后装治疗机
• 现代后装治疗机主要包括:治疗计划系 统和治疗系统。
• 现代近距离治疗的特点: • 放射源微型化,程控步进电机驱动; • 高活度放射源形成高剂量率治疗; • 微机计划设计。
随着入射光子能量的增加200kv2mv光子与轨道上电子相撞光子将部分能量转移给电子使电子快速前进反冲电子而光子本身则以减低之能量改变方向继续前进散射光子这种现象叫做康普顿效应
常用放疗设备
• X线治疗机 • 60Co治疗机 • 医用直线加速器 • 模拟定位机 • 近距离后装治疗机
1
X线治疗机
• 一般指400kV以下X线治疗肿瘤的装置 • 原理:高速运动的电子作用于钨等重金属靶,
将部分能量转移给
电子,使电子快速
前进(反冲电子),
而光子本身则以减
低之能量,改变方
向,继续前进(散射
光子),这种现象叫
做康普顿效应。
15
电子对效应:
• 入射光子能量大 于1.02MV时, 光子可以与原子 核相互作用,使 入射光子的全部 能量转化成为具 有一定能量的正 电子和负电子, 这就是电子对效 应。
8.25
0.195
1.3cm
137-铯
33 年
γ
0.66MeV
3..26
0.079
0.6cm
60-钴
5.27 年
γ
1.25MeV
13.1
0.309
1.27cm
192-铱 74.5 天
γ
350KeV
4.9
0.1157
0.3cm 38
8
近距离后装治疗机
• 现代后装治疗机主要包括:治疗计划系 统和治疗系统。
• 现代近距离治疗的特点: • 放射源微型化,程控步进电机驱动; • 高活度放射源形成高剂量率治疗; • 微机计划设计。
随着入射光子能量的增加200kv2mv光子与轨道上电子相撞光子将部分能量转移给电子使电子快速前进反冲电子而光子本身则以减低之能量改变方向继续前进散射光子这种现象叫做康普顿效应
常用放疗设备
• X线治疗机 • 60Co治疗机 • 医用直线加速器 • 模拟定位机 • 近距离后装治疗机
1
X线治疗机
• 一般指400kV以下X线治疗肿瘤的装置 • 原理:高速运动的电子作用于钨等重金属靶,
将部分能量转移给
电子,使电子快速
前进(反冲电子),
而光子本身则以减
低之能量,改变方
向,继续前进(散射
光子),这种现象叫
做康普顿效应。
15
电子对效应:
• 入射光子能量大 于1.02MV时, 光子可以与原子 核相互作用,使 入射光子的全部 能量转化成为具 有一定能量的正 电子和负电子, 这就是电子对效 应。
8.25
0.195
1.3cm
137-铯
33 年
γ
0.66MeV
3..26
0.079
0.6cm
60-钴
5.27 年
γ
1.25MeV
13.1
0.309
1.27cm
192-铱 74.5 天
γ
350KeV
4.9
0.1157
0.3cm 38
放射治疗的物理学基础217页PPT
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
放射治疗的物理学基础
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不ห้องสมุดไป่ตู้使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克