第5章用样本推断总体汇总

合集下载

初中数学 九年级 用样本推断总体 知识点清单

初中数学 九年级 用样本推断总体 知识点清单

第5章用样本推断总体
5.1 总体平均数与方差的估计
知识点1 总体平均数与方差的估计
特别提醒:
对于简单随机样本,在大多数情况下,当样本容量足够大时,用样本估计总体是合理的.一般来说,用样本去估计总体时,样本越具有代表性,容量越大,对总体的估计也就越精确.
5.2 统计的简单应用
知识点1 用样本的“率”估计总体相应的“率”
特别提醒:
“率”(百分比)=
具有某些特性的个体的总数数据总数
知识点2
用样本推断总体的过程
1. 用样本推断总体的过程
2.通过科学调查,在取得真实可靠的数据后,可以运用正确的统计方法来推断总体,还可以利用已有的统计数据对事物在未来一段时间内的发展趋势做出判断和预测,为正确的决策提供服务。

特别提醒:
做出预测要注意时间段的范围,如羽绒服的销售量受季节影响较大,体育锻炼的成绩也只是在一定范围内按规律提高,超出一定范围的预测不可靠。

知识点3用直线表示随机现象的变化趋势
用直线表示随机现象变化趋势的一般步骤:
特别解读:用直线表示随机现象的变化趋势,其实质是一种相关关系,即一个变量随机产生的数据确定后,另一个变量与它相关的值却不能完全确定,然而它们之间又遵循某种客观规律。

第五章 统计推断(1)

第五章 统计推断(1)
2检验是根据s判断抽出该样本的总体 其标准差是否等于
某一给定值。
检验程序:
(a) 确定假设H 0和H A: H 0:= 0;H A 有三种可能的形式: ( 1 ) 0 (2) 0 (若已知不可能小于 0 ) (3) 0 (若已知不可能大于 0 )
(b)计算检验的统计量:
1. 单个样本平均数检验
在实际研究中,常常要 检验一个样本平均数 x与已知的总体 平均数0是否有显著差异,即检 验该样本是否来自某一 已知 的总体。
已知的总体平均数一般 为一些公认的理论数值 。如畜禽正常 的生理指标、怀孕期、 生产性能指标等,都可 以样本平均数 与之比较,检验差异显 著性。
1.1 在σ已知的情况下,单个平均数的显著性 检验-u检验 检验程序:
• 两类错误之间的关系如何?
二者的区别是I型错误只有在否定H0的情况下发生,而 II型错误只有在接受H0时才会发生。 二者的联系是,在样本容量相同的情况下,I型错误减 小,II型错误就会增大;反之II型错误减小,I型错误就 会增大。比如,将显著性水平α从0.05提高到0.01,就 更容易接受H0,因此犯I型错误的概率就减小,但相应 地增加了犯II型错误的概率。
第一节 假设检验的基本步骤及原理
1. 假设检验的基本步骤
我们通过一个例子来介绍假设检验的基本步骤:
例一,已知某品种玉米 单穗重X ~ N (300,9.52 ),即单穗重 总体平均数0 300g,标准差 9.5 g。在种植过程中喷洒 了某种药剂的植株中随 机抽取9个果穗,测得平均单穗 重 x 308g,试问这种药剂对该品 种玉米的平均单穗重 有无真实影响?
• (一)提出假设
首先对样本所在的总体 作一假设。假设喷洒了 药剂的玉米单穗重 总体平均数与原来的玉米单穗重总 体平均数0之间没有真实差异, 即=0。也就是说表面差异( x 0)是由抽样误差造成的 。

《用样本推断总体》教案

《用样本推断总体》教案

第5章 用样本推断总体【教学目标】:通过复习,使学生系统地回顾本章所学的知识,通过例题和练习,使学生能够运用所学的知识解决问题。

【重点难点】:重点、难点:对所学的知识进行梳理,深刻理解每一部分的内容,从而运用所学的知识分析问题和解决问题。

【教学过程】:一、知识回顾(以问题的形式回顾知识)1、为什么说用简单的随机抽样很公平?你是否会进行简单的随机抽样?由于是用抽签的方法决定哪一个个体进入样本,这使得每个个体都有均等的机会被选入样本,因此随机抽样是公平的。

2、样本的选取应注意什么问题?其一是要留意样本在总体中是否具有代表性,其二是样本容量必须足够大,其三是注意样本避免遗漏某一群体。

3、是否会根据样本的平均数和方差来估计总体的平均数和方差?4、概率的定义是什么?大量重复实验时频率是否可作为事件发生的概率?你能计算简单事件的概率吗?表示一个事件发生的可能性大小的数值叫做该事件的概率,用“P”来表示,大量重复实验时频率可作为事件发生的概率。

5、如何进行概率预测?列出所有机会均等均等的结果以及其中所关注的结果,求出后者与前者的个数之比。

加权平均数。

对于一组数据12,,n x x x ,如果1x 出现1f ,2x 出现2f 次,…,n x 出现n f 次,那么1122n n x f x f x f x n++= (其中12n f f f n ++= ) 二、例题例1、判断下面这几个抽样调查选取样本的方法是否合适,并说明理由。

(1)小黄同学想了解其所在地区初中学生在家复习功课的时间,调查了他所在学校初三年级的60位同学;(2)某位同欲了解我国老年人的健康状况,调查了10位老年人健康情况;(3)某电视台需要在本市了解某节目的收视率,对一所大学的学生进行了调查。

例2、以下是某位同学的实习作业(了解当地中学初三年级男生的身高情况)他从其中的一所学校这所学校共有134名男生)随机选取60位同学的身高作为样本,具体的数据如下:158、163、160、175、167、165、172、155、158、164、170、166、148164、171、166、165、162、159、179、170、163、164、157、155、163、166169、163、169、171、161、166、165、164、167、169、172、173、154、149169、161、161、163、166、164、177、163、150、162、163、154、166、170166、159、161、166、158请你对这些数据进行整理、分析,用样本估计总体的思想,估计当地中学初三年级男生的身高情况。

第5章__抽样推断

第5章__抽样推断

抽样误差的影响因素
(1)总体各单位标志变异程度。 (2)样本容量的大小。 (3)抽样方法。 (4)抽样的组织形式。
四、抽样极限误差
含义:
抽样极限误差指在进行抽样估计时,根据研究对象的变 异程度和分析任务的要求所确定的样本指标与总体指标 之间可允许的最大误差范围。
计算方法:
它等于样本指标可允许变动的上限或下限与总体指标 之差的绝对值。
则:
x
n
10 1(公斤) 100
即:当根据样本学生的平均体重估计全部学生的平均 体重时,抽样平均误差为1公斤。
例题二解 已知: N 2000, n 400, x 4800, 300
则:
x
n
300 15(小时) 400
x
2 1 n
3002 1
400
13.42(小时)
n N
-20
400
-15
225
-5
25
0
0
-15
225
-10
100
0
0
5
25
-5
25
0
0
10
100
15
225
0
0
5
25
15
225
20
400
0
2000
样本平均数的平均数( x )
x
样本可能数目
960 16
60元
所以 (x) X
样抽样平均误差x

x (x)2
样本可能数目
2000 11.18元 16
四个工人工资分别为40、50、70、80元
抽样平均误差 x
n
15.81 11.18元 2

用样本推断总体

用样本推断总体

第五章用样本推断总体(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--编写日期:2015年11月29日课时教案章节第四章课题总体平均数与方差的估计课型新授课教法讲练结合教学目标【知识与技能】1.掌握用样本平均数估计总体平均数2.掌握用样本方差估计总体方差.【过程与方法】通过对具体事例的分析、探讨,掌握简单随机样本在大多数情况下,当样本容量足够大时,样本的平均数和方差能反应总体相应的情况.【情感态度】感受数学在生活中的应用.教学重点样本平均数、方差估计总体平均数、方差的综合应用.教学难点体会统计思想,并会用样本平均数和方差估计总体平均数和方差.教学方法投影仪教学媒体一、情景导入,初步认知一所学校要从两名短跑速度较快的同学中选拔一名去参加市里的比赛,为了使选拔公平,每名同学都进行10次测试,结果两名同学测试的结果的平均数是相同的,那么,派谁去参加比赛更好呢?【教学说明】:二、思考探究,获取新知1.我们在研究某个总体时,一般用数据表示总体中每个个体的某种数量特性,所有这些数据组成一个总体,而样本则是从总体中抽取的部分数据,因此,样本蕴含着总体的许多信息,这使我们有可能通过样本的某些特性去推断总体的相应特性.2.从总体中抽取样本,然后通过对样本的分析,去推断总体的情况,这是统计的基本思想,用样本平均数,样本方差分别去估计总体平均数,总体方差就是这一思想的体现,实践和理论都表明:对于简单的随机样本,在大多数情况下,当样本容量足够大时,这种估计是合理的.3.思考:(1)如何估计某城市所有家庭一年内平均丢弃的塑料袋个数?(2)在检查甲、乙两种棉花的纤维长度时,如何估计哪种棉花的纤维长度比较整齐?【归纳结论】:4.探究:某农科院在某地区选择了自然条件相同的两个试验区,用相同的管理技术试种甲、乙两个品种的水稻各100亩.如何确定哪个品种的水稻在该地区更有推广价值呢?为了选择合适的稻种,我们需要关心这两种水稻的平均产量及产量的稳定性(即方差),于是,待水稻成熟后,各自从这100亩水稻随机抽取10亩水稻,记录它们的亩产量(样本),数据如下表所示:我们可以求出这10亩甲、乙品种的水稻的平均产量.因此,我们可以用这个产量来估计这两种水稻大面积种植后的平均产量.我们还可以计算出这10亩甲、乙品种的水稻的方差,从而利用这两个方差来估计.这两种水稻大面积种植后的稳定性(即方差),从而得出哪种水稻值得推广.5.通过上面的探究,怎样用样本去估计总体,才能使估计更加合理?【归纳结论】:6.如何用样本方差估计总体方差?【归纳结论】【教学说明】三、运用新知,深化理解1.见教材P143例题.年宁波市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图.(另附:九年级女生立定跳远的计分标准)九年级女生立定跳远计分标准:(注:不到上限,则按下限计分,满分10分)(1)求这10名女生在本次测试中,立定跳远距离的极差,立定跳远得分的众数和平均数;(2)请你估计该校选择立定跳远的200名女生得满分的人数.(2)因为10名女生中有6名得满分,所以估计200名女生中得满分的人数是200×610=120(人).3.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,抽查了两人在最近10次选拔赛中的表现,他们的成绩(单位:cm)如下:你认为该派谁参加?4.如图所示,为了了解A、B两个旅游点的游客人数变化情况,抽取了从2002年至2006年“五一”的旅游人数变化情况,制成下图.根据图中所示解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;编写日期:2015年11月30日课时教案教学目标【知识与技能】用样本中的“率”估计总体中的“率”.【过程与方法】经历数据的收集、整理、描述与分析的过程,进一步发展统计的意识和数据处理能力.【情感态度】体会统计在生活中的应用.教学重点用样本中的“率”估计总体中的“率”教学难点用样本中的“率”估计总体中的“率”.教学方法投影仪教学媒体一、情景导入,初步认知在实践中,我们常常通过简单的随机抽样,用样本的“率”去估计总体相应的“率”,例如工厂为了估计一批产品的合格率,常常从产品中随机抽取一部分进行检查,通过对样本进行分析,推断出这批产品的合格率.那么有什么方法来对“率”作出合理的估计呢?【教学说明】:二、思考探究,获取新知1.某工厂生产了一批产品,从中抽取1000件来检查,发现有10件次品,试估计这批产品的次品率.解:由于是随机抽取,即总体中每一件产品都有相同的机会被抽取,因此,随机抽取的1000件产品组成了一个简单随机样本,因而可以用这个样本的次品率作为对这批产品的次品率的估计,从而这批产品的次品率为1%.2.某地为提倡节约用水,准备实行“阶梯水价计费”方式,用户月用水量不超出基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取了部分用户的月用水量数据.并将这些数据绘制成了如下的图形:如果自来水公司将基本月用水量定为每户12吨,那么该地区20万用户中约有多少用户能够全部享受基本价格?【教学说明】:三、运用新知,深化理解1.见教材P147例2.2.某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为多少件?3.为了了解我市某县参加2008年初中毕业会考的6000名考生的数学成绩,从中抽查了200名学生的数学成绩(成绩为整数,满分120分)进行统计分析,并根据抽查结果绘制了如下的统计表和扇形统计图:(1)请将以上统计表和扇形统计图补充完整;(2)若规定60分以下(不含60分)为“不合格”,60分以上(含60分)为“合格”,80分以上(含80分)为“优秀”,试求该样本的合格率、优秀率;(3)在(2)的规定下,请用上述样本的有关信息估计该县本次毕业会考中数学成绩优秀的人数和不合格的人数.年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表(如下),请根据图表信息解答下列问题:(1)补全频数分布表;(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平.编写日期:2015年11月31日课时教案教学重点借助统计图表、统计量作出正确决策.教学难点能够利用统计的有关知识解决相关实际问题.教学方法投影仪教学媒体一、情景导入,初步认知我们知道能够用样本的量来估计总体中的量,那么,我们能不能利用样本来推算将来的情况呢?【教学说明】:二、思考探究,获取新知1.李奶奶在小区开了一家便利店,供应A,B,C,D,E5个品种的食物,由于不同品种的食物的保质期不同,因此,有些品种因滞销而变质,造成浪费,有些品种因脱销而给居民带来不便.面对这种情况,李奶奶很着急.请你想办法帮助李奶奶解决这一问题.分析:随机抽取几天中这5个品种的食物的销售情况,再根据结果提出合理的建议.(1)收集数据;(2)分析数据和统计结果;(3)估计结果确定进货方案.2.利用样本来推断总体的过程是怎样的呢?【归纳结论】:【教学说明】三、运用新知,深化理解1.见教材P151“做一做”.2.小红的奶奶开了一个牛奶销售店,主要经营“学生奶”“酸牛奶”“原味奶”,可奶奶经营不善,经常有些品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,你会对奶奶有哪些好的建议?3.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分:(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为平方千米,牡丹园面积为平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日接待游客量和单日最多接待游客量中的某个量近似成正比例关系,根据小娜的发现,请估计将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量与停车位数量统计表解:(1)(2)陆地面积平分千米水面面积平方千米图略(3)3700【教学说明】:四、师生互动、课堂小结布置作业教材“习题”中第3 题.教学后记编写日期:2015年12月1日课时教案章节第四章课题章末复习课型新授课教法讲练结合教学目标【知识与技能】整合初中阶段所学统计知识,梳理形成知识网络.【过程与方法】加深对统计知识的理解,增强主动应用数学的意识和综合运用所学知识解决问题的能力.【情感态度】进一步理解用样本去估计总体的统计思想,培养从一般到特殊,再从特殊到一般的认知规律.教学重点统计知识的灵活应用.教学难点统计知识的灵活应用.教学方法投影仪教学媒体一、知识结构【教学说明】二、释疑解惑,加深理解1.由于简单随机样本客观地反映了实际情况,能够代表总体,因此我们可以用简单随机样本的平均数与方差分别去估计总体的平均数与方差.2.怎样用样本去估计总体,才能使估计更加合理?①抽取的样本要具有随机性;②样本容量要足够大.3.如何用样本方差估计总体方差?①计算样本平均数;②计算样本方差;③用样本方差估计总体方差.方差能够反映一组数据与其平均值的离散程度的大小.方差越大,离散程度越大,稳定性越差.4.在实践中,我们常常通过简单的随机抽样,用样本的“率”去估计总体相应的“率”.5.我们可以利用已有的统计数据来对事物在未来一段时间内的发展趋势做出判断和预测,为正确的决策提供服务.【教学说明】三、典例精析,复习新知1.如图所示是甲、乙两地某十天的日平均气温统计图,则甲、乙两地这10天的日平均气温的方差大小关系为:s2甲______s2乙(用>,=,<填空).2.某果园有果树200棵,从中随机抽取5棵,每棵果树的产量分别为(单位:千克):98,102,97,103,105,那么这5棵果树的平均产量为多少千克极差是多少这200棵果树的总产量约为多少千克3.某初中为了迎接初三学生体育中考,特地进行了一次考前模拟测试.如图是女生800米跑的成绩中抽取的10个同学的成绩.(1)求出这10名女生成绩的中位数、众数和极差;(2)按《萧山教育局中考体育》规定,女生800米跑成绩不超过3′25″就可以得满分.现该校初三学生有636人,其中男生比女生少74人.请你根据上面抽样的结果,估算该校初三学生中有多少名女生该项考试得满分?4.为了了解市场上甲、乙两种手表日走时误差的情况,从这两种手表中各随机抽取10块进行测试,两种手表日走时误差的数据如下(单位:秒):(1)计算甲、乙两种手表日走时误差的平均数;(2)你认为甲、乙两种手表中哪种手表走时稳定性好?说说你的理由.【教学说明】:四、复习训练,巩固提高1.下面是某地区2001~2004年初中生在校人数和全国初中学校数统计图(如图),由图可知从2001~2004年,该地区初中生在校人数()A.逐年增加,学校数也逐年增加B.逐年增加,学校数却逐年减少C.逐年减少,学校数也逐年减少D.逐年减少,学校数却逐年增加2.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们在某出口处,对离开园区的游客进行调查,并将在此出口调查所得的数据整理后绘成图.(1)在此出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占此出口的被调查游客人数的()%.(2)试问此出口的被调查游客在园区内人均购买了多少瓶饮料?3.某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等级.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(注:等级A、B、C、D分别代表优秀、良好、合格、不合格)(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.4.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.小时以上B.1~小时C.~1小时D.小时以下图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在小时以下?【教学说明】:五、师生互动,课堂小结布置教材“复习题5”中第2、5、6、8、10题.作业。

统计学第5章 总体分布、样本分布

统计学第5章 总体分布、样本分布
T X Y n
其中X ~ N(0,1), Y ~ 2(n), 且X与Y相互独立。
0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -3.5 -1.5 0.5 n=5 2.5 n=20 n=120
t分布的均值为0,方差为n/(n-2)。
3. F分布
F分布变量是由两个2变量之比组成的:
5.1.4 格利文科(Glivenko)定理 (样本分布与总体分布的关系)
格利文科定理:当n趋于无穷大时,Fn(x)依概率1 (关于x)均匀地收敛于总体分布F(x).
格利文科定理的数学表达如下:
P(lim
n x
sup
Fn ( x) F ( x) 0) 1
这表明当n充分大时,样本分布Fn(x)是总体分布F(x) 的一个良好近似。 格利文科定理是用样本特征推断总体特征的依据。
2 2
e
正态分布是一种最常见的分布。通常如果一个随机 变量只受到大量小的独立因素的影响,则它服从正 态分布。
正态分布有许多特点: 例如它是对称的。 正态变量大约有68%的可 能性在离均值一个标准 差的范围内取值; 大约有95%的可能性在离 均值1.96倍标准差的范 围内取值。 几乎不在离均值3倍标准 差以外的地方取值。


s
2
1 n 1
( xi x )
i 1
n
2
5.1.5 随机样本的均值函数
对于随机样本X1, X2, … , Xn, 定义样本的均值函数 (简称为样本均值)为
X
1
X n
i 1
n
n
i
由于式中Xi是随机样本(随机变量),因此作为 随机样本函数的 X 是随机变量 比较样本数据的均值

第5章 5.1 总体平均数与方差的估计

第5章 5.1 总体平均数与方差的估计
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/92021/9/92021/9/92021/9/99/9/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月9日星期四2021/9/92021/9/92021/9/9 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/92021/9/92021/9/99/9/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/92021/9/9September 9, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/92021/9/92021/9/92021/9/9
甲机床 99 100 98 100 100 103 乙机床 99 100 102 99 100 100 (1)分别计算两组数据的平均数与方差; (2)根据(1)的计算结果,你能知道哪一台机床加工这种零件更符合要求吗? 解:(1) x 甲=(99+100+98+100+100+103)÷6=100(mm). x 乙=(99+100+ 102+99+100+100)÷6=100(mm).s2甲=16[(99-100)2+3(100-100)2+(98-
上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出 100 条鱼,发现只有两
条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的
鱼数约为( B ) A.5000 条
B.2500 条
C.1傅随机抽查了本单位今年四月份里 6 天的日用水量(单位:吨),结 果如下:7,8,8,7,6,6.根据这些数据,估计四月份本单位用水量为 210 吨. 4.某车间为了解日均耗电情况,抽查了该车间 10 天中每天的耗电量,数据 如下表:(单位:度)

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断

σ
n )
抽样推断的基本原理
抽样推断的优良标准
设θ 为待估计的总体参数, θ为样本统计量,则 θ的优良标 准为: 1若 E(θ ) =θ ,则称 θ为 θ 的无偏估计量(无偏性)
更有效的估计量(有效性) 2若σθ1 < σθ2,则称θ1为比θ2
3若 越大σθ 越小,则称 θ 为θ 的一致估计量(一 致性)
即中选成分相同但中选顺序不同的视为同一样本
抽样推断的一般问题
抽样组织方式
简单随机抽样 类型抽样 整群抽样 等距抽样 多阶段抽样 多重抽样
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示. 考虑顺序的不重复抽样 考虑顺序的重复抽样 不考虑顺序的不重复抽样 不考虑顺序的重复抽样
抽样推断的一般问题
全及总体指标:参数 (未知量) 统计推断 样本总体指标:统计量 (已知量)
抽样推断的一般问题
抽样推断的特点 按随机原则抽取样本 运用概率论的理论和方法,用样本指标来推断 总体指标。 推断的误差可以事先计算和控制。
抽样推断的一般问题
抽样推断的应用 无法或 很难进行全面调查而又需要了解 其全面情况时 某些可以采用全面调查的社会经济现象, 也可采用抽样推断。 可用于生产过程的质量控制 进行假设检验
抽样推断的基本原理
抽样推断的优良标准——有效性 中位数的抽样分布
9 8 7 6 5 4 3 2 1 0 -1 45 50 55 60 65 70 75
平均数的抽样 分布
E(x) =
E ( me ) =
e
σx <σm
抽样推断的基本原理

第5章 用样本推断总体 5.1 总体平均数与方差的估计

第5章 用样本推断总体 5.1 总体平均数与方差的估计

做一做
种菜能手李大叔种植了一批 株数
新品种的黄瓜,为了考察这 20
20 18
种黄瓜的生长情况,李大叔 15
15
10
抽查了部分黄瓜株上长出的 10
5
黄瓜根数,得到右面的条形 图,请估计这个新品种黄瓜 0 10 13 14 15 黄瓜根数
平均每株结多少根黄瓜.
解: x 10 10 15 13 20 14 18 15 16.25
变式:抽查某商场10月份7天的营业额(单位:万元), 结果如下:
3.0,3.1,2.9,3.0,3.4,3.2,3.5. 试估计这个商场10月份的营业额(精确到0.01万元).
解:这7天营业额的平均数为:
x 3.0+3.1+2.9+3.0+3.4+3.2+3.5 3.157 7
10月份的营业额为:3.16×31=97.87万元.
例1:某单位共有280位员工参加了社会公益捐款活动, 从中任意抽取了12位员工的捐款数额,记录如下:
捐款数额/元 员工人数
0 3 456 2 9 28 16 5
估计该单位的捐款总额. x= 30 2+50 5+80 3+100 2 =62.5(元) 12 捐款总金额约为:62.5 280=17500(元)
例2:老王家的鱼塘中放养了某种鱼1500条,若干年
后,准备打捞出售,为了估计鱼塘中这种鱼的总质
量,
平均每条鱼的 质量/千克
2.8
第2次
20
3.0
第3次
10
2.5
(1)鱼塘中这种鱼平均每条重约多少千克?
x= 15 2.8+20 3.0+10 2.5 =2.82(kg) 15 20 10

统计学第5章抽样推断

统计学第5章抽样推断
就 是 由 样 本 指 标 直 接 代 替 全 及 指 标 , 不 考 虑
任 何 抽 样 误 差 因 素 。 即 用 x直 接 代 表 X , 用 p 直 接 代 表 P。
例 在 全 部 产 品 中 , 抽 取 100件 进 行 仔 细 检 查 , 得 到 平 均 重 量 x1002克 , 合 格 率 p98% , 我 们 直 接 推 断 全 部 产 品 的 平 均 重 量 X 1002克 , 合 格 率 P 98% 。
(1)
2
n
(1 )
12 2 (1
100
) 1.19 (千克 )
x
n
N
100 10000
(2) 若以概率 95.45%(t 2)保证,该农场 10000 亩小麦的平均
亩产量的可能范围为:
X : x 400 2 1.19 x
X (: 397 .62 ,402.38 ) (3) 若以概率 99.73%(t 3)保证,该农场 10000 亩小麦的平均
在重复抽样情况下:
p (1 p )
p
n
在不重复抽样情况下:
p (1 p ) n
(1 )
p
n
N

某玻璃器皿厂某日生产15000只印花玻璃 杯,现按重复抽样方式从中抽取150只进行 质量检验,结果有147只合格,其余3只为不 合格品,试求这批印花玻璃杯合格率(成数) 的抽样平均误差。
N15000n150
二、区间估计
根据样本指标和抽样误差去推断全及 指标的可能范围,它能说清楚估计的准 确程度和把握程度。
总体平均数和总体成数的估计
X :(x x, x x)
1的概率保证下:x tx
P:(pp, pp)
1的概率保证下: p tp

湘教版九年级上册数学第五章 用样本推断总体 单元测试题(有答案)

湘教版九年级上册数学第五章 用样本推断总体 单元测试题(有答案)

湘教版九年级数学上册第五章用样本推断总体单元评估检测试卷一、单选题(共10题;共30分)1.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A. 条形统计图B. 折线统计图C. 扇形统计图D. 条形统计图、扇形统计图均可2.(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A. 平均数B. 方差C. 众数D. 中位数3.小宁同学根据全班同学的血型绘制了如图所示的扇形统计图,该班血型为A型的有20人,那么该班血型为AB型的人数为()A. 2人B. 5人C. 8人D. 10人4.母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况。

下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图。

请你根据图中提供的信息,若全校共有990名学生,估计这所学校有知道母亲的生日的学生有()名。

A. 440B. 495C. 550D. 6605.下列说法中,正确的是()A. —个游戏中奖的概率是,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A. B. C. D.7.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A. 1120B. 400C. 280D. 808.为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有()个白球.A. 10B. 20C. 100D. 1219.某市社会调查队对城区内一个社区居民的家庭经济状况进行调查。

第五章 用样本推断总体单元测试A卷(含解析)

第五章 用样本推断总体单元测试A卷(含解析)

第五章用样本推断总体单元测试A卷考试时间:90分钟满分:120分姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1. 某校七年级共有1000人,为了了解这些学生的视力情况,抽查了20名学生的视力,对所得数据进行整理.若数据在0.95~1.15这一小组的频率为0.3,则可估计该校七年级学生视力在0.95~1.15范围内的人数有().A. 600B. 300C. 150D. 302. 体育老师对甲、乙两名同学分别进行了8次摸高测试,这两名同学成绩的平均数不相等,甲同学的方差是4.6S2=甲,乙同学的方差是2.8S2=乙,那么这两名同学摸高成绩比较稳定的是()A. 甲B. 乙C. 甲乙一样D. 无法确定3. 黄石农科所在相同条件下经试验发现蚕豆种子的发芽率为97.1%,请估计黄石地区1000斤蚕豆种子中不能发芽的大约有()A. 971斤B. 129斤C. 97.1斤D. 29斤4. 某科研小组为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()A. 8000条B. 4000条C. 2000条D. 1000条5. 为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A. B. C. D.6. 随机抽取某城市30天的空气质量状况如下表,当污染指数≤100时为良,请根据以下记录估计该城市一年(以365天计)中,空气质量达到良以上的天数为( )A. 216天B. 217天C. 218天D. 219天7. 小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A. 1080B. 900C. 600D. 1088. 为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了60株黄瓜,并可估计出这个新品种黄瓜平均每株结出的黄瓜根数是()A. 12 B. 12.5 C. 13 D. 149. 如图是某市某中学八年级(1)班学生参加音乐、美术、体育课外兴趣小组人数的部分条形统计图和扇形统计图,则下列说法错误的是()A. 八年级(1)班参加这三个课外兴趣小组的学生总人数为30人B. 在扇形统计图中,八年级(1)班参加音乐兴趣小组的学生人数所占的圆心角度数为82°C. 八年级(1)班参加音乐兴趣小组的学生人数为6人D. 若该校八年级参加这三个兴趣小组的学生共有200人,那么估计全年级参加美术兴趣小组的学生约有60人10. ( 3分) 2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个不符合题意的是()A. 抽取的学生人数为50人B. “非常了解”的人数占抽取的学生人数的12%C. a=72°D. 全校“不了解”的人数估计有428人α二、填空题(共8题;共24分)11. 红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有________人.12. 甲、乙两台机器分别罐装每瓶标准质量为500克的矿泉水,从甲、乙两台机器罐装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是8.4S2=甲, 6.3S2=乙,则________(填“甲”或“乙”)机器罐装的矿泉水质量比较稳定.13. 某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有________名学生.14. 生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为________只.15. 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号 1 2 3 4 5 6 7 8 9 10 质量(千克)14 21 27 17 18 20 19 23 19 22根据调查,市场上今年樱桃的批发价格为每千克15元,用所学的统计知识估计今年此果园樱桃按批发价格销售所得的总收入约为________元.16. 调查某校七年级学生的体重指数,随机抽取了100名学生的体重指数进行统计,如下表:已知该校七年级有800名学生,那么估计体重状况属于正常的有________人.17. 在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是________.18. 如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有________人.三、解答题(共6题;共46分)19. ( 6分) 某校实验课程改革,初三年级设罝了A,B,C,D四门不同的拓展性课程(每位学生只选修其中一门,所有学生都有一门选修课程),学校摸底调査了初三学生的选课意向,并将调查结果绘制成两个不完整的统计图,问该校初三年级共有多少学生?其中要选修B、C课程的各有多少学生?20. ( 8分) 为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:(1)估计李明家六月份的总用电量是多少度;(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?21. ( 8分) 王老汉为了与顾客签订购销合同,对自己鱼塘中鱼的总质量进行了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号的鱼有20条,王老汉的鱼塘中估计有鱼多少条鱼?总质量为多少千克?22. ( 8分) 红岭中学在“五四青年节”组织九年级全体学生320人进行了一次“爱我中华”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题:(1)表中a=________,b=________,并补全直方图.________(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是________;(3)请估计该年级分数在80≤x<100的学生有多少人?23. ( 8分) 中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a等于多少,b等于多少;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在哪个分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?24. ( 8分) 为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=________,并把频数分布直方图补充完整________.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?四、综合题(共2题;共20分)25. ( 10分) 某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?26. ( 10分) “安全教育,警钟长鸣”,为此,某中学组织全校1200名学生参加安全知识测试,为了解本次测试成绩的分布情况,从中随机抽取了部分学生的成绩,绘制出如下不完整的统计图表:分段数频数频率60≤x<70 30 0.1570≤x<80 60 n80≤x<9090≤x<100 20 0.1合计m 1请根据以上图表提供的信息,解答下列问题:(1)表中m的值为,n的值为;(2)补全频数分布直方图;(3)测试成绩的中位数在哪个分数段?(4)规定测试成绩80分以上(含80分)为合格,请估计全校学生中合格人数约为多少人?答案解析部分一、单选题1.【答案】B【考点】用样本估计总体,频数与频率【解析】【解答】解:该校七年级学生视力在0.95~1.15范围内的人数=1000×0.3=300(人).故答案为:B.【分析】由样本的的频率为0.3,七年级共有1000人,得到该校七年级学生视力在0.95~1.15范围内的人数=1000×0.3.2.【答案】A【考点】方差,分析数据的波动程度【解析】【解答】解:∵6.4<8.2,即S甲2 <S乙2∴甲的摸高成绩比较稳定【分析】根据方差越大数据的波动越大,即可得出答案。

第五章《用样本推断总体》复习讲义(解析版)

第五章《用样本推断总体》复习讲义(解析版)

第五章 用样本推断总体(考点讲义)1.样本容量:样本中个体的数目叫做样本容量。

2.在用样本特性估计总体特性时,要注意一是样本要有代表性,二是样本容量要足够大。

3.求平均数的公式:123nx x x x x n++++=L【类型一】利用样本平均数估算总体数量【例1】为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对_____名学生进行了抽样调查,m = _____n =_____(2)请将图1和图2补充完整,并求出扇形统计图中小说所对应的圆心角度数;(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢科幻人数约为多少人?【解析】(1)用其它初一它的百分比即可;(2)用360∘乘以所占得百分比;(3)用样本估计总体.解:(1)20÷10%=200(名).由图1,得n=40,m=100-20-10-40=30答:该校对200名学生进行了抽样调查;m=30,n=40(2)如图:小说对应的圆心角度数为360∘×20%=72∘;(3)800×30%=240.答:全校学生中最喜欢小说的人数约为240名.【对应训练1】为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条【答案】A【解析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【对应训练2】我国古代数学名著《九章算术》有“米谷粒分”.粮仓开仓收粮,有人送来谷米1608石,验得其中夹有谷粒.现从中抽取谷米一把,共数得256粒,其中夹有谷粒32粒,则这批谷米内夹有谷粒约是________石.【答案】201【解析】根据256粒内夹谷32粒,可得比例,再乘以1608石,即可得出答案.【解答】解:根据题意,得1608×32=201(石),256∴这批谷米内夹有谷粒约201石.【对应训练3】某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了________名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是________棵、中位数是________棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?【解析】(1)由B类型的人数及其所占百分比可得总人数,总人数乘以D类型的对应的百分比即可求出其人数,据此可补全图形;(2)根据众数和中位数的概念可得答案;(3)先求出样本的平均数,再乘以总人数即可.【解答】(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人);条形图补充如图:(2)植树4棵的人数最多,则众数是4,共有20人植树,其中位数是第10、11人植树数量的平均数,则中位数是4,(3)x=4×48×562×7=5.3(棵),205.3×280=148(棵).答:估计这3280名学生共植树1484棵.【类型二】用样本估计总体【例2】为了提高学生的综合素养,某校开设了五门第二课堂活动课,按照类别分为:A“剪纸”、B“绘画”、C“雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有3000名学生,请你估计全校喜爱“雕刻”的学生人数.解:(1)样本容量为1815%=120,a=120×10%=12,b=120×30%=36.故答案为:120;12;36.(2)组频数:120―18―12―30―36=24(人),补全条形统计图如图所示:(3)3000×30120=750(人),答:该校喜爱“雕刻”约有750人.【跟踪训练1】在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球约有…()A.2个B.4个C.18个D.16个【答案】D【跟踪训练2】质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有________件次品.【答案】20【解析】根据随机抽取100件进行检测,其中有2件是次品,可以计算出这批电子元件中大约有多少件次品.【跟踪训练3】书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.解:(1)12÷30%=40(名).(2)如图所示,由图知,众数为5,中位数为5.(3)∵抽查的样本中,课外阅读5册书的学生人数占14×100%=35%,40∴估计该校学生课外阅读5册书的学生人数约占35%,∴该校1200名学生中课外阅读5册书的学生人数约为1200×35%=420(人).【类型三】用样本频率估计总体频率【例3】中长跑(男生1000m,女生800m)是河南省某市中招体育考试的必考项目.甲、乙两校为了解本校九年级学生的训练情况,各随机抽取了20名九年级学生的中长跑模拟测试成绩(满分:30分),将成绩进行统计、整理与分析,过程如下:【收集数据】【整理数据】整理以上数据,得到模拟测试成绩x(分)的频数分布表.【分析数据】根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)填空:a= ________,b=_________, m=________, n=________;(2)综合上表中的统计量,推断________校学生中长跑成绩更好,理由为________(写出一条即可)(3)若甲、乙两校各有800名学生,请估计两校中长跑模拟测试成绩不低于25分的学生一共有多少名?解:(1)由数据可得,a=7,b=8,m=24.75,n=23.4. 故答案为:7;8;24.75;23.4.(2)甲校学生成绩的平均数比乙校学生成绩的平均数高,且甲校学生成绩的方差比乙校学生成绩的方差小,成绩较稳定.(答案不唯一,合理即可)故答案为:甲.=720(名),(3)(800+800)×1082020答:估计两校中长跑模拟测试成绩不低于25分的学生一共有720名.【跟踪训练】今年是建党100周年,为了让全校学生牢固树立爱国爱党的崇高信念,某校开展了形式多样的党史学习教育活动,八、九年级(各有500名学生)举行了一次党史知识竞答(满分为100分),然后随机各抽取20名同学的成绩进行了收集、统计与分析,过程如下:【收集数据】两个年级抽取的20名同学的成绩如下表:八年级:7968878985598997898998938586899077898379九年级:8688979194625194877194789255979294948598【整理数据】将两个年级的抽样成绩进行分组整理:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100八年级113114九年级2a b411【分析数据】抽样的平均数、众数、中位数、方差和优秀率(90分及以上为优秀)如下表:年级统计量平均数众数中位数方差优秀率八年级8589c80.420%九年级859491.5192d请根据以下信息,回答下列问题:(1)填空:a=________,b= ________,c=________,d=________;(2)请估计此次知识竞答中,八年级成绩优秀的学生人数;(3)小李同学认为九年级的整体成绩更好,请从至少两个方面分析其合理性.解:(1)由表中数据可知,九年级落在60≤x<70内的只有62,故a=1;九年级落在70≤x<80内的有71,78,故b=2;八年级成绩按照从小到大的顺序排列后,落在第10,11的数为87,89,∴中位数为88,故c=88;九年级90分及以上的学生有11人,∴九年级的优秀率为1120×100%=55%.故答案为:1;2;88;55%.(2)∵500×20%=100,∴估计此次知识竞答中,八年级成绩优秀的学生人数为100人.(3)九年级抽样成绩的众数,中位数和优秀率均高于八年级,说明九年级平均成绩更高,高分更多,因此九年级整体成绩更好.【类型四】用样本推断总体的实际应用【例4】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:鞋的号码35.53636.53737.5人数4616122现在该经销商要进200双上述五种运动鞋,你认为应该怎样进货比较合理?解析:先求出各鞋码所占比例,再乘200,即可得到所需进货数.解:由表中数据可知各鞋码的女生的比例,根据比例进货.需要进35.5码运动鞋:200×440=20(双),需要进36码运动鞋:200×640=30(双)需要进36.5码运动鞋:200×1640=80(双),需要进37码运动鞋:200×1240=60(双)需要进37.5码运动鞋:200×240=10(双)。

第5章 用样本推断总体

第5章 用样本推断总体

第5章用样本推断总体新城学校曹双飞5.1总体平均数与方差的估计学习目标:1、理解总体与样本的关系,认识并体会统计估计的意义,实施办法及在实际问题中的应用。

2、理解用样本平均数、方差推断总体平均数与方差。

重点、难点体会统计思想,并会用样本平均数和方差估计总体平均数和方差。

教学过程:一、旧知回顾:1、在调查研究过程中,总体是,个体是,样本是,样本容量是2、平均数的计算公式是3、方差的计算公式是二快乐自学:阅读教材P140-144 完成下列练习。

1、在总体中抽取样本,通过对样本的分析,去推断总体的情况,这就是思想。

2、用样本平均数、方差去估计总体的然后再对事件发展做出决断、预测。

3、在“说一说”及“动脑筋”中,分别是可以用样本的去估计总体的、4、例题是通过计算零件直径的方差来得到机器两个时段的运作性能是否稳定正常的。

三、巩固练习:1、P144 练习T1-- 22.为估计一个月家中使用管道煤气的开支情况,小强从15日起,连续八天每天晚上记录了家的煤气表显示的读数,如下表(注:煤气表上先后两次显示的读数之差就是这段时间内使用煤气的数量.单位:m3)如果每立方煤气2.2元,请你估计小强家一个月(按30天计)使用管道煤气的费用是_____元(精确到0.1元).3.农科院对甲,乙两种甜玉米各用10块试验田进行试验,得到两个品种每公顷产量的两种数据:根据这些数据,应为农科院选择甜玉米种子提出怎样的建议?解:用计算器算得样本数据的平均数是:X甲≈7.54 X乙≈7.52说明在试验田中,甲,乙两种甜玉米的平均产量相差不大,由此估计在这个地区种植这两种甜玉米,它们的平均产量相差不大.用计算器算得样本数据的方差是:S2甲≈0.01, S2乙≈0.002 得出 S2甲>S2乙说明在试验田中,乙种甜玉米的产量比较稳定,进而可以推测要这个地区种植乙种甜玉米的产量比甲的稳定.综合考虑甲乙两个品种的产量和产量的稳定性,可以推测这个地区更适合种植乙种甜玉米.四、归纳小结本节课你有什么收获?还有什么问题?五、达标检测1. 为了让人们感受丢塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个)33,25,28,26,25,31.如果该班有45名学生,那么根据提供的数据,估计本周全班同学各家总共丢弃塑料袋的数量约()A.900个B.1080个C.1260个D.1800个2. 某食品店购进2000箱苹果,从中任选10箱,称得重量分别为(单位:千克):16,16.5,14.5,13.5,15,16.5,15.5,14,14,14.5若每千克苹果售价为2.8元,则利用样本平均数估计这批苹果的销售额是元________.3.从总体中抽取一个样本,计算出样本方差为2,可以估计总体方差()A.一定大于2 B.约等于2C.一定等于2 D.与样本方差无关4.为了了解市场上甲、乙两种手表日走时误差的情况,从这两种手表中各随机抽取10块进行测试,两种手表日走时误差的数据如下(单位:秒)(1)计算甲、乙两种手表日走时误差的平均数;(2)你认为甲、乙两种手表中哪种手表走时稳定性好?说说你的理由.日期一二三四五六七八九十类型甲种手表-3 4 2 -1 -2 -2 1 -2 2 1乙种手表-4 1 -2 1 4 1 -2 -1 2 -2(2)由可知:甲种手表走时稳定性好。

《统计学原理》第5章:抽样推断

《统计学原理》第5章:抽样推断
lim P( x X ) 1
n
抽样推断的基本原理
统计推断的理论基础—样本的概率分布
按一定方法随机抽取样本时,所有可能样本的 特征值及其所对应的概率分布情况
学生 A B C D E F G 成绩 30 40 50 60 70 80 90
按随机原则考虑顺序重复抽样抽选出4名学生。
抽样推断的一般问题
样本可能数目
按照一定的抽样方法和组织方式,从总体N中抽取n个 单位构成样本,一共可以抽出的不同样本的数量,一般 用M表示.
考虑顺序的不重复抽样 考虑顺序的重复抽样
M N! (N n)!
M Nn
不考虑顺序的不重复抽样 不考虑顺序的重复抽样
M N! n!(N n)!
全及指标与样本指标
•根据全及总体中各单位的标志值或标志属性计算得 来,反映总体某种特征的指标 •根据样本总体中各单位的标志值或标志属性计算得 来的综合指标.
抽样推断的一般问题
抽样方法
•重复抽样和不重复抽样
•考虑顺序的抽样和不考虑顺序的抽样
抽样推断的一般问题
抽样方法—重复抽样
从总体N个单位中随机抽取一个容量为n的样本,每 次抽取一个单位,把结果登记后再放回到总体中,重新 参加下一次的抽取.
抽出个体
登记特征
放回总体
继续抽取
抽样推断的一般问题
抽样方法—不重复抽样
从总体N个单位中随机抽取一个容量为n的样本, 每次抽取一个单位,把结果登记后不再放回到 总体参加下一次的抽取.
抽出 个体
登记 特征
继续 抽取
抽样推断的一般问题
抽样方法—考虑顺序的抽样
从总体N个单位中抽取n个单位构成样本,不但考虑样本 各单位成分的不同,而且还要考虑样本各单位的中选顺 序.

第五章 统计推断5-2 - 新

第五章  统计推断5-2 - 新

第五章 统计推断统计推断的意义和内容统计推断是据统计数的分布和概率理论,由样本统计数推论总体参数的方法。

先根据试验目的,对试验总体提出两种彼此对立的假设,然后由样本的实际结果,经过一定的估算,做出在概率意义上应接受那种假设的推断。

由于种测验首先对总体提出假设又叫统计假设测验。

统计推断的前提条件:资料必须来自随机样本;统计数的分布规律必须已知。

&5.1 统计假设测验概述统计假设:在科学研究中,往往首先要提出一个有关某一总体参数的假设。

这种假设称为统计假设。

一、数据结构从服从正态分布N(μ0=300,σ=75)的原品种总体中,随机抽取n 个个体构成样本,则样本观察值可表示为 xi = μ0 + εi (i=1,2 ,… ,n)而从新品系总体中随机抽取的样本观察值,则为 xi = μ + εi (i=1,2 ,… ,n) (5.2) 新品系与原品种的产量差异为τ = μ - μ0 (5.3) 将(5.3)代入(5.2)得xi = μ0 + τ + εi (i=1,2 ,… ,n) (5.4) 二、统计假设测验的基本原理 对一个样本的n 个观察值xi 求平均数因x i = μ0 + τ + εi (i=1,2 ,… ,n)iix x εμμμετμ+-=-++=∴)()(0上式说明,x 与 μ0的表面差异(x - μ0)是由真实差异(μ- μ0 )和试验误差εi 构成。

小机率原理:概率很小的事件,在一次试验中是不至于发生的。

统计假设测验:是指据某种需要,对末知的或不完全清楚的总体提出一些假设,由样本实际结果经过一定的概率测验,作出接受或否定假设的推论。

三、统计假设测验的基本步骤例5.1 设某地区的当地小麦品种一般亩产300kg ,多年种植结果获得标准差为75kg 。

现有某新品种n=25,平均数330kg ,问新品种样本所属总体与当地品种这个总体是否差异显著。

第一步 统计假设H0:0μμ=第二步 计算统计量225/75300330/0=-=-=n x u σμu=2> u0.05=1.96,即对应的概率p <0.05。

用样本推断总体(知识点汇总 湘教9上)

用样本推断总体(知识点汇总 湘教9上)

第五章 用样本推断总体(一)平均数的计算方法(1)定义法:一般地,如果有n 个数,,,,21n x x x 数据比较分散,那么,)(121n x x x n x +++=叫做 这n 个数的平均数,x 读作“x 拔”。

(2)加权平均数法:如果所给数据重复出现,即n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21)那么,根据平均数的定义,这n 个数的平均数可以表示为 nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。

其中,常数a 通常取接近这组数据平均数的较“整”的数,(a x x -=11',a x x -=22',…, a x x n n -='。

)'''(1'21n x x x nx +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据, ,',,','21n x x x 叫做新数据)。

(二)、统计学中的几个基本概念1、总体:所有考察对象的全体叫做总体。

2、个体:总体中每一个考察对象叫做个体。

3、样本:从总体中所抽取的一部分个体叫做总体的一个样本。

4、样本容量:样本中个体的数目叫做样本容量。

5、样本平均数:样本中所有个体的平均数叫做样本平均数。

6、众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

7、中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数) 叫做这组数据的中位数。

(三)总体平均数和方差的估计1、总体平均数:总体中所有个体的平均数叫做总体平均数; 统计中,通常用样本平均数估计总体平均数。

2、方差:在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的 方差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年月日第周星期第节
课题 5.2统计的简单应用(一)课型新授
教学目标知识
与技能
通过实例,使学生体会用样本估计总体的思想,能够根据统计结果作出合理的判
断和推测,能与同学进行交流,用清晰的语言表达自己的观点..
过程
与方法
加深对统计知识的理解,增强主动应用数学的意识和综合运用所学知识解决问题
的能力.
情感
态度
价值观
进一步理解用样本去估计总体的统计思想,培养从一般到特殊,再从特殊到一般
的认识规律.
教学重点根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测.
教学难点用样本的平均数和方差,从而对总体有个体有个合理的估计和推测.
教具准备多媒体课件
教学过程
教师活动学生活动
一、课前准备
问题:2002年北京的空气质量情况如何?请用简单随机抽样方法选取该年
的30天,记录并统计这30天北京的空气污染指数,求出这30天的平均空气
污染指数,据此估计北京2002年全年的平均空气污染指数和空气质量状况。

请同学们查询中国环境保护网,网址是。

二、新课
1、师生用随机抽样的方法选定如下表中的30天,通过上网得知北
京在这30天的空气污染指数及质量级别,如下表所示:
教学过程
教师活动学生活动
这30个空气污染指数的平均数为107,据此估计该城市2002年的平均空气污染
指数为107,空气质量状况属于轻微污染。

讨论:同学们之间互相交流,算一算自己选取的样本的污染指数为多少?根据样
本的空气污染指数的平均数,估计这个城市的空气质量。

2、体会用样本估计总体的合理性
下面是老师抽取的样本的空气质量级别、所占天数及比例的统计图
和该城市2002年全年的相应数据的统计图,同学们可以通过比较两张统计图,
体会用样本估计总体的合理性。

经比较可以发现,虽然从样本获得的数据与总体的不完全一致,但
这样的误差还是可以接受的,是一个较好的估计。

练习:同学们根据自己所抽取的样本绘制统计图,并和2002年全年的相应
数据的统计图进行比较,想一想用你所抽取的样本估计总体是否合理?
显然,由于各位同学所抽取的样本的不同,样本的污染指数不同。

但是,正如我
们前面已经看到的,随着样本容量(样本中包含的个体的个数)的增加,由样本
得出的平均数往往会更接近总体的平均数,数学家已经证明随机抽样方法是科学
而可靠的. 对于估计总体特性这类问题,数学上的一般做法是给出具有一定可靠
程度的一个估计值的范围,将来同学们会学习到有关的数学知识。

3、加权平均数的求法
问题1:在计算20个男同学平均身高时,小华先将所有数据按由小到大的顺序
排列,如下表所示:
教学过程
教师活动学生活动小强这样计算全年级男同学的平均身高:
小强这样计算平均数可以吗?为什么?
例题学习(学生自学教材P146—147例1和例2)
练习:1、在一个班的40学生中,14岁的有5人,15岁的有30人,16岁
的有4人,17岁的有1人,求这个班级学生的平均年龄。

2、P148 练习 1、2题
课堂小结用样本估计总体时,样本容量越大,样本对总体的估计也就越精确。

相应地,搜集、整理、计算数据的工作量也就越大,随机抽样是经过数学证明了的可靠的方法,它对于估计总体特征是很有帮助的.
布置作业
P152 A组1、2题
板书设计5.2统计的简单应用(一)
一、利用样本次品率估计总体次品率例1 教材p146例1
二、利用样本频率估计总体频率
例2 教材p147例2
教学后记
4
7.
160
8.
160
3.
162
2.
161+


图28.1.3
而使用非该厂牙膏的人群却是成年人,那么所得的结论就不可信了.
第三,我们也不知道样本容量有多大,如果只调查了10个人,那么所得的结论
从这个很小的例子可以看出,数据虽然给我们带来了有利于
但有些时候也可能误导我们.所以,比较规范的统计报告应该
例3.某环保小组为了解世博园的游客在园 区内购买瓶装饮料数量的情况,一天,他 们分别在B 、C 三个出口处,对离开园区 的游客进行调查,其中在A 出口调查所得
的数据整理后绘成图2. (1)在A 出口的被调查游客中,购买2瓶
(2)及2瓶以上饮料的游客人数占A 出口
(3)的被调查游客人数的__________%.
(2)试问A 出口的被调查游客在园区内人均购买了多少瓶饮料?
例4.某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:


管理人员 普通工作人员 人员结

总经理 部门经理 科研人员 销售人员 高级技工 中级技工 勤杂工 员工数
/名
1 3
2
3 ■ 2
4 1
每人月
工资/
元 21000 8400 2025 2200 1800 1600 950 请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有
____________名;
(2)所有员工月工资的平均数为
2500元,中位数为 元,
众数为 ;
(3)小张到这家公司应聘普通工
作人员,请你回答右图中小张的问
题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.
例5.(1)某牙膏厂的广告称:“据调查统计,使用本厂牙膏可以使蛀牙率减少30%.”你怎样看待这则广告?
(2)某个学生网站进行的一次网上调查显示:中学生经常吃肯德鸡的比例超过80%,这个数据可信吗?为什么?
(3)某高校在招生广告上称:本校研究生毕业就业率为100%,本科毕业生就业率为96%,专科毕业生就业率为90%,总的毕业生就业率为95%.你怎样看待这则广告?
四、归纳总结:
五、作业
教材 P155—157 复习题5
1.52
2.5
3101234人数(万人)
饮料数量(瓶) 图2。

相关文档
最新文档