第17章勾股定理导学案17.1勾股定理第1课时

合集下载

17.1勾股定理(第一课时)教案

17.1勾股定理(第一课时)教案

商丘市乡村中小学、幼儿园教师优质课评选17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超2016年6月21日17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。

勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

本节课试图通过数学活动,对学生所学知识进行内化与迁移,以发展思维。

同时对勾股定理的学习,对比我国数学家和西方数学家对勾股定理的研究,对学生进行爱国主义的教育,以落实素质教育的目标。

一、教学目标:知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容,会用面积法证明勾股定理。

了解利用拼图验证勾股定理的方法。

数学思考:在勾股定理的探索过程中,让学生经历“观察—猜想—归纳—验证”,培养合情推理能力,体会数形结合和从特殊到一般的思想。

解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,感受数学文化,激发学生的爱国热情,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二、重点、难点1.重点:探索和证明勾股定理。

经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。

2.难点:勾股定理的证明。

经历用不同的拼图方法证明勾股定理。

3.突破方法:发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。

第十七章勾股定理教案

第十七章勾股定理教案

第十七章勾股定理17. 1勾股定理第 1课时勾股定理(1)认识勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.要点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创建情境,引入新课让学生画一个直角边分别为 3 cm和 4 cm的直角△ ABC,用刻度尺量出斜边的长.再画一个两直角边分别为 5 和 12 的直角△ ABC,用刻度尺量出斜边的长.你能否发现了32+42与 52的关系, 52+ 122与 132的关系,即32+ 42= 52,52+ 122= 132,那么就有勾2+股2=弦2.关于随意的直角三角形也有这个性质吗?由一学生朗诵“毕达哥拉斯察看地面图案发现勾股定理”的传说,指引学生察看身旁的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,研究新知1.多媒体课件演示教材第22~ 23 页图 17.1 - 2 和图 17.1 - 3,指引学生察看思虑.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.指引学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这不过猜想,一个数学命题的成立,还要经过我们的证明.概括考证,得出定理(1) 猜想:命题1:假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.(2)能否是全部的直角三角形都有这样的特色呢?这就需要对一个一般的直角三角形进行证明.到当前为止,对这个命题的证明已有几百种之多,下边我们就看一看我国数学家赵爽是如何证明这个定理的.①用多媒体课件演示.②小组合作研究:a.以直角三角形ABC的两条直角边a, b 为边作两个正方形,你能经过剪、拼把它拼成弦图的样子吗?b.它们的面积分别如何表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验先人赵爽的证法.想想还有什么方法?师:经过拼摆,我们证明了命题 1 的正确性,命题 1 与直角三角形的边相关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题解说【例 1】填空题.(1)在 Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在 Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在 Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5) 已知等边三角形的边长为 2 cm,则它的高为________cm,面积为2________cm.【答案】 (1)17(2) 7 (3)68 (4)6 , 8, 10 (5) 33【例 2】已知直角三角形的两边长分别为 5 和 12,求第三边.剖析:已知两边中,较大边 12 可能是直角边,也可能是斜边,所以应分两种状况分别进行计算.让学生知道考虑问题要全面,领会分类议论思想.【答案】119或 13三、稳固练习填空题.在 Rt△ABC中,∠C=90°.(1)假如 a= 7,c= 25,则 b= ________;(2)假如∠ A= 30°, a= 4,则 b= ________;(3)假如∠ A= 45°, a= 3,则 c= ________;(4)假如 c= 10, a- b= 2,则 b= ________;(5)假如 a, b,c 是连续整数,则 a+ b+ c= ________;(6)假如 b= 8,a∶ c= 3∶ 5,则 c= ________.【答案】 (1)24(2)4 3 (3)3 2 (4)6(5)12(6)10四、讲堂小结1.本节课学到了什么数学知识?2.你认识了勾股定理的发现和考证方法了吗?3.你还有什么疑惑?本节课的设计关注学生能否踊跃参加研究勾股定理的活动,关注学生可否在活动中踊跃思虑、能够研究出解决问题的方法,可否进行踊跃的联想( 数形联合 ) 以及学生可否有条理地表达活动过程和所获取的结论等.关注学生的拼图过程,鼓舞学生联合自己所拼得的正方形考证勾股定理.第 2 课时勾股定理(2)能将实质问题转变为直角三角形的数学模型,并能用勾股定理解决简单的实质问题.要点将实质问题转变为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实质问题.一、复习导入问题 1:欲登 12 米高的建筑物,为安全需要,需使梯子底端离建筑物 5 米,起码需要多长的梯子?师生行为:学生疏小组议论,成立直角三角形的数学模型.教师深入到小组活动中,聆听学生的想法.生:依据题意,( 如图 )AC 是建筑物,则AC= 12 m, BC= 5 m, AB 是梯子的长度,所以在Rt△ ABC222222m.中, AB= AC+BC= 12 + 5 = 13,则 AB= 13所以起码需 13长的梯子.m师:很好!由勾股定理可知,已知两直角边的长分别为a, b,就能够求出斜边 c 的长.由勾股定理可得2=ac2-b2或 b2=c2- a2,由此可知,已知斜边与一条直角边的长,就能够求出另一条直角边的长,也就是说,在直角三角形中,已知两边便可求出第三边的长.问题 2:一个门框的尺寸以下图,一块长 3 m、宽 2.2 m的长方形薄木板可否从门框内经过?为何?学生疏组议论、沟通,教师深入到学生的数学活动中,指引他们发现问题,找寻解决问题的门路.生 1:从题意能够看出,木板横着进,竖着进,都不可以从门框内经过,只好试一试斜着可否经过.生 2:在长方形 ABCD中,对角线 AC是斜着能经过的最大长度,求出 AC,再与木板的宽比较,就能知道木板能否能经过.师生共析:解:在 Rt△ABC中,依据勾股定理22222= 5. AC= AB+ BC=1+ 2所以 AC=5≈ 2.236.因为 AC>木板的宽,所以木板能够从门框内经过.二、例题解说【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是米,水平距离是________米.剖析:由∠ CAB= 30°易知垂直距离为 2 3米,水平距离是 6 米.【答案】2 36【例 2】教材第25 页例 2三、稳固练习________1.如图,欲丈量松花江的宽度,沿江岸取B, C 两点,在江对岸取一点BC= 50 米,∠ B= 60°,则江面的宽度为________.A,使AC垂直江岸,测得【答案】 50 3米2.某人欲横渡一条河,因为水流的影响,登岸地址 C 偏离欲抵达地址 B 200 米,果他在水中游了520 米,求河流的度.【答案】480 m四、堂小1.自己在的收有哪些?会用勾股定理解决的用;会结构直角三角形.2.本是从出,化直角三角形,并用勾股定理达成解答.是一用,程中要充足学生的主性,鼓舞学生手、,将化直角三角形的数学模型的程,激了学生的学趣,了学生独立思虑的能力.第 3勾股定理(3)1.利用勾股定理明:斜和一条直角相等的两个直角三角形全等.2.利用勾股定理,能在数上找到表示无理数的点.3.一步学将化直角三角形的数学模型,并能用勾股定理解决的.要点在数上找表示2,3,5,⋯的表示无理数的点.点利用勾股定理找直角三角形中度无理数的段.一、复入复勾股定理的内容.本研究勾股定理的合用.:在八年上册,我曾通画获取:斜和一条直角相等的两个直角三角形全等.你能用勾股定理明一?学生思虑并独立达成,教巡指,并.先画出形,再写出已知、求以下:已知:如,在Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求:△ ABC≌△ A′ B′ C′ .22明:在 Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,依据勾股定理,得BC=AB-AC,B′C′=A′ B′2- A′C′2. 又 AB= A′ B′, AC= A′ C′,∴ BC= B′ C′,∴△ ABC≌△ A′ B′C′ ( SSS) .:我知道数上的点有的表示有理数,有的表示无理数,你能在数上表示出13所的点?教可指学生找像度2,3,5,⋯的包括在直角三角形中的段.:因为要在数上表示点到原点的距离2, 3 ,5,⋯,所以只要画出2,3,5,⋯的段即可,我不如先来画出2,3,5,⋯的段.生:2的段是直角都 1 的直角三角形的斜,而5的段是直角 1 和 2 的直角三角形的斜.:13的段可否是直角正整数的直角三角形的斜呢?生: c=13,两直角分a, b,依据勾股定理a2+ b2= c2,即 a2+ b2=13. 若 a, b 正整数,13 必分解两个平方数的和,即13=4+9,a2=4,b2=9,a=2,b=3,所以13的段是直角分2, 3 的直角三角形的斜.:下边就同学在数上画出表示13的点.生:步以下:1.在数上找到点A,使 OA= 3.2.作直l 垂直于 OA,在 l 上取一点B,使 AB= 2.3.以原点O心、以OB半径作弧,弧与数交于点C,点 C 即表示13的点.二、例解【例 1】机在空中水平行,某一刻好到一个男孩正上方 4800 米,了 10 秒后,机距离个男孩 5000 米,机每小行多少千米?剖析:依据意,能够画出如所示的形, A 点表示男孩的地点,C, B 点是两个刻机的地点,∠ C 是直角,能够用勾股定理来解决这个问题.解:依据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得2=AB22222AC+ BC,即 5000= BC+ 4800 ,所以 BC= 1400 米.飞机飞翔 1400 米用了 10 秒,那么它 1 小时飞翔的距离为 1400× 6×60= 504000( 米 ) =504( 千米 ) ,即飞机飞翔的速度为504千米/时.【例 2】在沉静的湖面上,有一棵水草,它超出水面 3 分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草挪动的水平距离为 6 分米,问这里的水深是多少?解:依据题意,获取上图,此中D是无风时水草的最高点, BC为湖面, AB 是一阵风吹过水草的位22222置, CD= 3 分米, CB= 6 分米, AD= AB, BC⊥ AD,所以在Rt△ACB中, AB =AC+ BC,即 (AC+ 3)=AC 222分米.+ 6 , AC+ 6AC+ 9= AC+36,∴ 6AC= 27, AC= 4.5 ,所以这里的水深为【例 3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为 4 和 1 的直角三角形的斜边,所以,在数轴上画出表示17的点,以以下图:师生行为:由学生独立思虑达成,教师巡视指导.此活动中,教师应要点关注以下两个方面:①学生可否踊跃主动地思虑问题;②可否找到斜边为17,此外两条直角边为整数的直角三角形.三、讲堂小结1.进一步稳固、掌握并娴熟运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理获取一些无理数,并理解数轴上的点与实数一一对应.本节课的教课中,在培育逻辑推理的能力方面,做了仔细的考虑和精心的设计,把推理证明作为学生察看、实验、研究得出结论的自然持续,着重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到讲堂教课中间,很好地激发了学生学习数学的兴趣,培育了学生擅长提出问题、敢于提出问题、解决问题的能力.勾股定理的逆定理第 1 课时勾股定理的逆定理( 1)1.掌握直角三角形的鉴别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的研究方法.要点研究勾股定理的逆定理,理解并掌握互抗命题、原命题、抗命题的相关观点及关系.难点概括猜想出命题 2 的结论.一、复习导入活动研究(1)总结直角三角形有哪些性质;(2)一个三角形知足什么条件时才能是直角三角形?生:直角三角形有以下性质: (1) 有一个角是直角; (2) 两个锐角互余; (3) 两直角边的平方和等于斜边的平方; (4) 在含 30°角的直角三角形中, 30°的角所对的直角边是斜边的一半.师:那么一个三角形知足什么条件时,才能是直角三角形呢?生 1:假如三角形有一个内角是90°,那么这个三角形就为直角三角形.生 2:假如一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b 与斜边 c 拥有必定的数目关系即 a2+ b2=c2,我们能否能够不用角,而用三角形三边的关系来判断它能否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:听说古埃及人用以下图的方法画直角:把一根长绳打上等距离的 13 个结,而后以 3 个结、 4 个结、 5 个结的长度为边长,用木桩钉成一个三角形,此中一个角即是直角.这个问题意味着,假如围成的三角形的三边长分别为3, 4, 5,有下边的关系:2223+ 4=5 ,那么围成的三角形是直角三角形.画画看,假如三角形的三边长分别为, 6,,有下边的关系: 2.5 2+ 62= 6.5 2,画cm cm cm出的三角形是直角三角形吗?换成三边分别为4cm,cm, cm,再试一试.生 1:我们不难发现上图中,第 1 个结到第 4 个结是 3 个单位长度即 AC=3;同理 BC=4, AB=5.因为 32+ 42= 52,所以我们围成的三角形是直角三角形.生 2:假如三角形的三边长分别是 2.5 cm, 6 cm, 6.5 cm. 我们用尺规作图的方法作此三角形,经过丈量后,发现 6.5 cm的边所对的角是直角,而且222 2.5 +6 = 6.5 .再换成三边长分别为 4 cm, 7.5 cm, 8.5 cm的三角形,能够发现 8.5 cm的边所对的角是直角,且有 42+ 7.5 2=8.5 2.师:很好!我们经过实质操作,猜想结论.命题 2假如三角形的三边长a, b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.再看下边的命题:命题 1假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.它们的题设和结论各有何关系?师:我们能够看到命题 2 与命题 1 的题设、结论正好相反,我们把像这样的两个命题叫做互抗命题.假如把此中的一个叫做原命题,那么另一个叫做它的抗命题.比如把命题 1 当作原命题,那么命题 2 是命题 1 的抗命题.二、例题解说【例 1】说出以下命题的抗命题,这些命题的抗命题成立吗?(1)同旁内角互补,两条直线平行;(2)假如两个实数的平方相等,那么这两个实数相等;(3)线段垂直均分线上的点到线段两头点的距离相等;(4)直角三角形中 30°角所对的直角边等于斜边的一半.剖析: (1) 每个命题都有抗命题,说抗命题时注意将题设和结论调动即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,抗命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、稳固练习教材第 33 页练习第 2题.四、讲堂小结师:经过这节课的学习,你对本节内容有哪些认识?学生讲话,教师评论.本节课的教课方案中,将教课内容精简化,推行分层教课.依据学生原有的认知结构,让学生更好地领会切割的思想.设计的题型前后响应,使知识有序推动,有助于学生理解和掌握;让学生经过合作、沟通、反省、感悟的过程,激发学生研究新知的兴趣,感觉研究、合作的乐趣,并从中获取成功的体验,真实表现学生是学习的主人.将目标分层后,知足不一样层次学生的做题要求,达到稳固讲堂知识的目的.第 2 课时勾股定理的逆定理( 2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的观点.要点勾股定理的逆定理的证明及互逆定理的观点.难点理解互逆定理的观点.一、复习导入师:我们学过的勾股定理的内容是什么?生:假如直角三角形的两条直角边长分别为a, b,斜边长为c,那么 a2+b2= c2.师:依据上节课学过的内容,我们获取了勾股定理抗命题的内容:假如三角形的三边长 a ,b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.师:命题 2 是命题 1 的抗命题,命题 1 我们已证明过它的正确性,命题 2 正确吗?如何证明呢?师生行为:让学生试着找寻解题思路,教师可指引学生理清证明的思路.师:△ ABC的三边长a, b, c 知足 a2+ b2=c2. 假如△ ABC是直角三角形,它应与直角边是a, b 的直角三角形全等,实质状况是这样吗?我们画一个直角三角形A′ B′ C′,使 B′ C′= a, A′ C′= b,∠ C′= 90° ( 如图 ) ,把画好的△A′ B′ C′剪下,放在△ABC上,它们重合吗?22222222生:我们所画的 Rt△A′B′C′,(A′B′)=a+ b,又因为 c = a + b ,所以 (A′ B′ ) =c,即 A′B′= c.△ABC 和△ A′ B′C′三边对应相等,所以两个三角形全等,∠ C=∠ C′= 90°,所以△ ABC 为直角三角形.即命题 2 是正确的.师:很好!我们证了然命题2 是正确的,那么命题 2 就成为一个定理.因为命题 1 证明正确此后称为勾股定理,命题2 又是命题 1 的抗命题,在此,我们就称定理 2 是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:可能否是原命题成立,抗命题必定成立呢?生:不必定,如命题“对顶角相等”成立,它的抗命题“假如两个角相等,那么它们是对顶角”不行立.师:你还可以举出近似的例子吗?生:比如原命题:假如两个实数相等,那么它们的绝对值也相等.抗命题:假如两个数的绝对值相等,那么这两个实数相等.明显原命题成立,而抗命题不必定成立.二、新课教授【例 1】教材第 32 页例 1【例 2】教材第 33 页例 2【例 3】一个部件的形状以下图,按规定这个部件中∠A 和∠ DBC 都应为直角.工人师傅量出了这个部件各边的尺寸,那么这个部件切合要求吗?剖析:这是一个利用直角三角形的判断条件解决实质问题的例子.2 2 =9+16 2A 是直角.解:在△ ABD 中, AB + AD = 25= BD ,所以△ ABD 是直角三角形,∠2 2 2 2DBC 是直角.在△ BCD 中,BD +BC = 25+ 144= 169=13 = CD ,所以△ BCD 是直角三角形,∠ 所以这个部件切合要求.三、稳固练习1.小强在操场上向东走80 m 后,又走了 60 m ,再走 100 m 回到原地.小强在操场上向东走了80 m 后,又走 60 m 的方向是 ________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海疆,我海军甲、乙两艘巡逻艇立刻从相距 13 海里的 A , B 两个基地前往拦截, 6 分钟后同时抵达 C 地将其拦截.已知甲巡逻艇每小时航行 120 海 里,乙巡逻艇每小时航行 50 海里,航向为北偏西 40°,求甲巡逻艇的航向.11222【答案】解:由题意可知:AC= 120× 6×60= 12, BC= 50× 6×60= 5, 12+ 5=13 . 又 AB=13,222ACB=90°,∴∠ CAB= 40°,航向为北偏东 50° .∴ AC+ BC= AB,∴△ ABC是直角三角形,且∠四、讲堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采纳以学生为主体,指引发现、操作研究的教课方案,切合学生的认知规律和认知水平,最大限度地调动了学生学习的踊跃性,有益于培育学生着手、察看、剖析、猜想、考证、推理的能力,确实使学生在获取知识的过程中获取能力的培育.1、一知半解的人,多不谦逊;见多识广有本事的人,必定谦逊。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标

人教版八下数学17.1 课时1 勾股定理教案+学案

人教版八下数学17.1 课时1 勾股定理教案+学案

人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。

17.1第1课时勾股定理及验证

17.1第1课时勾股定理及验证

图 17-1-13
第1课时 勾股定理及验证
解:证明:连接 DB,过点 B 作 DE 边上的高 BF,则 BF=b-a. 1 1 ∵S 五边形 ACBED=S 梯形 ACBE+S△AED= (a+b)b+ ab, 2 2 1 1 2 1 又∵S 五边形 ACBED=S△ACB+S△ADB+S△BED= ab+ c + a(b-a), 2 2 2 1 1 1 1 2 1 ∴ (a+b)b+ ab= ab+ c + a(b-a), 2 2 2 2 2 ∴a2+b2=c2.
第1课时 勾股定理及验证
C拓广探究创新练
15.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其 中的“面积法”给了小聪灵感.他惊喜地发现:当两个全等的直角 三角形如图 17-1-12 或图 17-1-13 摆放时, 都可以用“面积法” 来证明.下面是小聪利用图 17-1-12 证明勾股定理的过程: 将两个全等的直角三角形按图 17-1-12 所示的方式摆放,其中 ∠DAB=90° ,求证:a +b =c .
第1课时 勾股定理及验证
14.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的 一种新的证明方法. 如图 17-1-11 所示, 火柴盒的一个侧面 ABCD 倒下到四边形 AB′C′D′的位置,连接 CC′,AC′,AC,设 AB=a, BC=b,AC=c,请利用四边形 BCC′D′的面积验证勾股定理: a2 +b =c .
图17-1-7
第1课时 勾股定理及验证
10.[2018· 凉山州] 如图 17-1-8,数轴上点 A 对应的数为 2, AB⊥OA 于点 A,且 AB=1,以 O 为圆心,OB 长为半径作弧, 交数轴于点 C,则 OC 的长为( D ) A.3 B. 2 C. 3 D. 5

人教版八下数学第17章勾股定理17.1《勾股定理》教案

人教版八下数学第17章勾股定理17.1《勾股定理》教案
-勾股定理的证明方法,特别是几何法和代数法的步骤和逻辑;
-勾股定理在实际问题中的灵活运用;
-通过勾股定理的学习,培养学生的逻辑思维和解决问题的能力。
举例解释:
-重点一:学生需要掌握勾股定理的表达式(a² + b² = c²),并能够识别直角三角形中的勾股数,理解其在三角形中的应用;
-重点二:学生应理解并能够复述勾股定理的几何法和代数法的证明过程,包括如何通过图形或代数公式推导出定理;
在总结回顾环节,我发现大部分同学能够掌握勾股定理的基本概念和应用,但仍有少数同学对某些知识点存在疑问。为了确保每位同学都能跟上教学进度,我决定在课后设置一个答疑环节,鼓励同学们提问,并及时解答他们的疑惑。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和证明这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作直角三角形模型,测量边长,验证勾股定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点二:面对非标准直角三角形问题,学生可能不知道如何将问题转化为勾股定理的应用,需要教师提供多样的解题策略和技巧;
-难点三:学生可能难以将勾股定理与实际生活和其他学科知识联系起来,教师应通过跨学科案例和实际情境来加深学生的理解。

人教版数学八年级下册17.1第1课时《 勾股定理》教案

人教版数学八年级下册17.1第1课时《 勾股定理》教案

人教版数学八年级下册17.1第1课时《勾股定理》教案一. 教材分析《勾股定理》是中学数学中的一个重要定理,它揭示了直角三角形三边之间的一种简单而美妙的关系。

人教版八年级下册第17.1节《勾股定理》主要介绍了勾股定理的证明和应用。

通过这一节的学习,学生可以加深对勾股定理的理解,提高解决几何问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、全等三角形的判定和性质等基础知识。

但勾股定理的证明和应用需要学生具备较强的逻辑思维能力和空间想象能力。

因此,在教学过程中,教师需要关注学生的学习基础,针对不同学生进行有针对性的教学。

三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的内容。

2.能够运用勾股定理解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.勾股定理的证明过程。

2.勾股定理在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实例,引发学生对勾股定理的思考,激发学生的学习兴趣。

2.演示教学法:通过几何画板等软件,直观地展示勾股定理的证明过程。

3.问题驱动法:引导学生通过解决问题,深入理解勾股定理的内涵。

4.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作勾股定理的课件,包括证明过程的动画演示。

2.几何画板:用于展示勾股定理的证明过程。

3.练习题:准备一些有关勾股定理的应用题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如篮球架、自行车等,引导学生思考这些实例中是否存在勾股定理的应用。

让学生感受到勾股定理在现实生活中的重要性。

2.呈现(10分钟)利用几何画板,演示勾股定理的证明过程。

首先,展示一个直角三角形,然后通过动态变化,引导学生发现直角三角形三边之间存在的关系。

最后,给出勾股定理的数学表达式。

3.操练(10分钟)让学生分组讨论,运用勾股定理解决一些实际问题。

《17.1勾股定理》教学设计(第1课时)

《17.1勾股定理》教学设计(第1课时)

《17.1 勾股定理》教学设计(第1课时)一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:假如直角三角形的两条直角边长分别为a、b,斜边长为c,那么.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就能够求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从专门的等腰直角三角形动身,到网格中的直角三角形,再到一样的直角三角形,表达了从专门到一样的探探究、发觉和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探究去发觉图形的性质,提出一样的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,关于勾股定理的研究确实是一个突出的例子.教学中能够介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的奉献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.基于以上分析,确定本节课的教学重点:探究并证明勾股定理.二、目标和目标解析1.教学目标(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定明白得决一些简单问题.2.目标解析(1)学生通过观看直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.明白得赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,明白我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的运算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个专门的结论.在正方形网格中比较容易发觉以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一样直角三角形,提出合理的猜想,学生有较大困难.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积.因此,在教学中需要先引导学生观看网格背景下的正方形的面积关系,然后摸索没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发觉和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学过程设计1. 创设情境复习引入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2021年在北京召开了第24届国际数学家大会.右图确实是大会会徽的图案.你见过那个图案吗?它由哪些我们学过的差不多图形组成?那个图案有什么专门的意义?前面我们学习了有关三角形的知识,我们明白,三角形有三个角和三条边.问题1三个角的数量关系明确吗?三条边的数量关系明确吗?师生活动教师引导,学生回答。

最新人教版八年级下册数学十七章17.1勾股定理(第一课时)教学设计

最新人教版八年级下册数学十七章17.1勾股定理(第一课时)教学设计

17.1 勾股定理(第一课时)【教学目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感。

2.能用勾股定理解决一些简单问题。

【重点难点】重点:探索和证明勾股定理。

难点:应用勾股定理解决实际问题。

【教学过程设计】【活动一】(一)创设问题情境1、你听说过“勾股定理”吗?(1)勾股定理古希腊数学家毕达哥拉斯发现的,西方国家称勾股定理为“毕达哥拉斯”定理(2)在中国,相传4000多年前,大禹曾在治理洪水的过程中,利用勾股定理来测量两地的地势差(3)我国著名的《算经十书》最早的一部《周髀算经》。

书中记载有“勾广三,股修四,径隅五。

”这作为勾股定理特例的出现。

2、毕答哥拉斯是古希腊著名的数学家。

相传在2500年以前,他在朋友家做客时,发现朋友家用的地砖铺成的地面反映了直角三角形的某写特性。

(1)现在请你一观察一下,你能发现什么?(2)一般直角三角形是否也有这样的特点吗?(二)师生行为教师讲故事(勾股定理的发现)、展示图片,参与小组活动,指导、倾听学生交流。

针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积等于两个小正方形的面积之和。

学生听故事发表见解,分组交流、在独立思考的基础上以小组为单位,采用分割、拼接、数格子的个数等等方法。

阐述自己发现的结论。

(三)设计意图①通过讲故事,让学生了解历史,培育学生爱国主义情操,激发学习的积极性。

②渗透从特殊到一般的数学思想,为学生提供参与数学活动的时间与空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

③鼓励学生用语免得数学活动的困难,尝试从不同角度去寻求解决问题的有效方法。

并通过方法的反思,获得解决问题的经验。

在本次活动中教师用重点关注:①学生能否将实际问题(地砖图形在三个正方形围成的一个直角三角形)转化成数学问题(探索直角三角形的特性三边关系)。

人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例

人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例
3.小组合作:教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。这种小组合作的方式不仅能够提高学生的团队合作精神,还能够培养学生的创新思维和问题解决能力。
4.总结归纳:教师组织学生进行总结,让学生分享自己在学习勾股定理过程中的收获和感悟。通过总结归纳,教师帮助学生巩固所学知识,构建知识体系,提高学生的知识运用能力。
2.教师设计具体情境,如测量未知边长的直角三角形,让学生面临实际问题,引出勾股定理的学习需求。
3.教师利用多媒体课件,展示勾股定理的动态演示,帮助学生直观理解勾股定理的含义和应用。
(二)讲授新知
1.教师引导学生从特殊到一般,思考直角三角形边长之间的关系,引导学生发现勾股定理的规律。
2.教师给出勾股定理的定义,解释勾股定理的表达式,并通过几何图形的演示,帮助学生理解勾股定理的含义。
(三)小组合作
1.教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。
2.教师设计合作任务,如共同制作勾股定理的演示道具,让学生在实践中深化对勾股定理的理解。
3.教师组织小组竞赛,激发学生的竞争意识和团队合作精神,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如在学习勾股定理的过程中遇到了哪些困难,如何克服等。
2.学生通过教师引导,运用数学归纳法证明勾股定理,培养逻辑思维与推理能力。
3.学生通过解决实际问题,运用勾股定理,提高问题解决能力,培养创新实践能力。
(三)情感态度与价值观
1.学生感受数学文化的魅力,了解勾股定理的历史背景,提高对数学学科的兴趣。
2.学生在探究过程中,培养克服困难、勇于探索的精神,增强自信心。
五、案例亮点

17.1《勾股定理》教案(第1课时)

17.1《勾股定理》教案(第1课时)

勾股定理
教学设计说明
“勾股定理”是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,它有着丰富的历史背景,在理论上占有重要地位.整节课以“问题情境——分析探究——得出猜想——实践验证——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.
本节课运用的教学方法是“启发探索”式,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去探究知识,从而形成自觉实践的氛围,达到收获的目的.。

人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例

人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例
2.利用合作交流、讨论探究等学习方式,培养学生解决问题的能力,提高学生的团队协作精神。
3.教师引导学生运用数形结合的思想,将抽象的数学问题具体化,提高学生的数学思维能力。
(三)情感态度与价值观
1.激发学生对古代数学文化的兴趣,培养学生对数学的热爱,提高学生的学科素养。
2.通过赞美勾股定理的美,让学生感受数学的严谨、精确,树立正确的数学观念。
5.人文素养培养:教师在教学过程中注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。这种教学方式使学生在学习数学知识的同时,也能够提升自己的综合素质,培养自己的审美情趣。
本节课的案例亮点体现了教学的实用性、互动性和人文性,充分调动了学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示古代中国建筑中的勾股定理应用,如赵州桥、故宫等,让学生感受数学与实际生活的紧密联系。
2.创设有趣的问题情境,如“勾股定理是如何被发现的?”、“你能用勾股定理解决生活中的问题吗?”等,激发学生的好奇心,引发学生的思考。
3.教师总结并提出本节课的学习目标,引导学生明确本节课的学习内容。
(四)反思与评价
1.教师引导学生对所学知识进行总结,让学生明确勾股定理的定义、证明方法及其应用。
2.学生通过自我评价、同伴评价等方式,反思自己在探究过程中的表现,发现自身的不足,提高自我调控能力。
3.教师针对学生的学习情况,给予及时的反馈和评价,关注学生的成长过程,激发学生的学习动力。
在整个教学过程中,教师应以引导者、组织者、合作者的角色,关注学生的个体差异,充分调动学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
1.使学生认识到数学在生活中的广泛应用,增强学生学习数学的信心和兴趣。
2.培养学生严谨、细致的学习态度,养成科学的学习方法。
3.引导学生体会数学的简洁美、逻辑美,提高学生的审美情趣。
4.培养学生团队合作意识,学会倾听、尊重他人的意见,形成良好的沟通能力。
二、学情分析
八年级下册的学生已经具备了一定的数学基础,掌握了直角三角形的基本概念和性质,能够进行简单的几何图形的推理和计算。在此基础上,他们对勾股定理这一章节的学习将更加深入地理解直角三角形的内在联系。然而,学生在解决实际问题时,可能仍存在以下困难:对勾股定理的理解不够深入,不能灵活运用;在计算过程中容易出现粗心大意的情况;对于定理的证明过程,可能感到困惑。因此,在教学过程中,教师应关注学生的个体差异,提供充足的实践机会,引导学生通过自主探究、合作交流等方式,逐步提高解决问题的能力,增强数学思维能力。同时,注重激发学生的学习兴趣,培养他们面对困难的勇气和毅力,使学生在轻松愉快的氛围中学习数学。
3.拓展提高题:针对学有余力的学生,设计一道涉及勾股定理与其他数学知识相结合的题目,鼓励学生进行思考和探究。
4.小组合作作业:布置一道小组合作完成的作业,要求学生相互讨论、分工合作,共同解决一个较为复杂的勾股定理问题。培养学生团队合作意识,提高交流沟通能力。
5.思考题:提出一个关于勾股定理的思考题,引导学生深入思考定理的本质和内涵,激发学生的求知欲。
2.创设情境:展示一个实际情境,如一块直角三角形的土地,要求学生计算斜边的长度。让学生意识到勾股定理在实际生活中的应用,为新课的学习奠定基础。
(二)讲授新知
1.勾股定理的概念:通过导入环节的实际问题,引导学生观察直角三角形的边长关系,发现勾股定理。用数学符号表示勾股定理,并解释定理的含义。

17.1 勾股定理导学案

17.1 勾股定理导学案

第17章 勾股定理第1课时 17.1 勾股定理导学案(1)【学习目标】1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.养成在实际生活中发现问题总结规律的意识和能力。

【学习重点】勾股定理的内容及证明。

【学习难点】勾股定理的证明。

一、学前准备1、每位同学准备四个全等的直角三角形。

2、查阅资料,网络搜索有关勾股定理的知识。

3、自主阅读课本P22-24,P30。

二、探索思考1、思考:由P22图17.1-1,你发现直角三角形的三边有怎样的关系?2、探究一:等腰直角三角形三边关系3、探究二:一般的直角三角形三边关系三、证明猜想猜想的结论: 已知: 求证: 方法:利用拼图来验证勾股定理四、当堂反馈1、求下列图中字母所表示的正方形的面积2、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A ,B ,C ,D 的面积之和为___________cm2。

3、求出下列直角三角形中未知边的长度五、学习反思:(1)知识点:(2)数学方法:A 的面积(单位面积)B 的面积(单位面积)C 的面积(单位面积) 图1 图2 A 、B 、C 面积关系直角三角形三边关系 A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积) 图3 图4A 、B 、C 面积关系 直角三角形三边关系A B CA B C(图中每个小方格代表一个单位面积) 图1图2 AB C 图3 ABC图4 c a bc acac a bc abb cabc AD225 400 A 225 81B A BC D7cm 6 8 x 5 x 13第2、3课时 17.1 勾股定理导学案(2)【学习目标】1.会用勾股定理进行简单的计算。

会用勾股定理解决简单的实际问题。

2.会用勾股定理解决简单的实际问题。

3. 树立数形结合的思想。

【学习重点】勾股定理的应用。

【学习难点】实际问题向数学问题的转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
B A
勾股定理第1课时
【学习目标】1、能用在方格纸上计算面积的方法探索勾股定理。

2、通过用拼图的方法验证勾股定理,经历观察、猜想、归纳和验证的数学发现过程获得数学知识,发展数形结合的数学思想。

3、能对勾股定理和它的变形简单应用。

【学习重点】勾股定理的探索和证明 【学习难点】勾股定理的证明
预 习 案
知识链接
我们学过的直角三角形有哪些性质?(每个同学自制4个大小完全一样的直角三角形) 边: 角:
探 究 案
探究一:直角三角形的三边关系
1、如图,在正方形瓷砖拼成的地面中,观察图中用阴影画出的三个正方形,两个小正方形P 、 Q 的面积与大正方形R 的面积有什么关系?
用图中的线段表示为: 即:在等腰直角三角形中,三边的长度之间存在关系: 。

2、如图,每一小方格表示1平方厘米,那么: 正方形P 的面积= 平方厘米;
正方形Q 的面积= 平方厘米;
正方形R 的面积= 平方厘米.
我们发现,正方形P 、 Q 、 R 的面积之间的关系是: .
用图中的线段表示为:
(每一小方格表示1平方厘米)
即:在一般直角三角形中,三边的长度之间存在关系: 。

由此,对于任意的直角三角形,若它的两条直角边分别为a 、b ,斜边为c ,则一定有:
勾股定理:直角三角形 的平方和等于 的平方。

探究二:勾股定理的证明
每个同学拿出自制的4个直角三角形拼图,能否拼出下列图形。

(利用面积证明勾股定理)
如左图,∵ S 大正方形= ,S 小正方形= ,
S 三角形= ,又∵S 大正方形-S 小正方形= ∴ ∴
即: 勾股定理符号语言:
∵在ABC Rt ∆中,090=∠C
∴ (勾股定理)
探究三:勾股定理的简单变形
对于勾股定理:2
2
2
c b a =+,可以有哪些变形?
训 练 案
1.在∆Rt ABC 中,∠A 、∠B 、∠C 的对边分别为c b a ,,,∠C =90°.回答下列问题:
①若43
==b a ,,则c = ②若817==a c ,,则b = ; ③若1312==c b ,,则a = .(提示:根据题意先画出草图辅助分析。


2.如图是美国总统Garfield 于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)
3.如图所示,AC =10,BC =17,CD ⊥AB 于点D ,CD =8,求△ABC 的面积.
4.设a ,b ,c ,d 都是正数.求证:
+
>。

相关文档
最新文档