湖北省高二上学期数学9月月考试卷

合集下载

2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题(含答案)

2024-2025学年湖北省高一年级9月月考数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=02.已知集合A={x|−3≤x≤1},B={x||x|≤2},则A∩B=( )A. {x|−2≤x≤1}B. {x|0≤x≤1}C. {x|−3≤x≤2}D. {x|1≤x≤2}3.下列命题为真命题的是( )A. ∀a>b>0,当m>0时,a+mb+m >abB. 集合A={x|y=x2+1}与集合B={y|y=x2+1}是相同的集合.C. 若b<a<0,m<0,则ma >mbD. 所有的素数都是奇数4.已知−1<a<5,−3<b<1,则以下错误的是( )A. −15<ab<5B. −4<a+b<6C. −2<a−b<8D. −53<ab<55.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:A={x|0<Δx<2},B={x|−3≤x≤5},C={x|0<x<23},然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x∈B是x∈A的必要不充分条件;丙:x∈C是x∈A的充分不必要条件.则“Δ”表示的数字是( )A. 3或4B. 2或3C. 1或2D. 1或36.已知不等式ax2+bx+c<0的解集为{x|x<−1或x>3},则下列结论正确的是( )A. a>0B. c<0C. a+b+c<0D. cx2−bx+a<0的解集为{x|−13<x<1}7.已知m<8,则m+4m−8的最大值为( )A. 4B. 6C. 8D. 108.向50名学生调查对A、B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成;赞成B的比赞成A的多3人,其余的不赞成;另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1人.则下列说法错误的是( )A. 赞成A的不赞成B的有9人B. 赞成B的不赞成A的有11人C. 对A,B都赞成的有21人D. 对A,B都不赞成的有8人二、多选题:本题共3小题,共18分。

湖北省沙市2024-2025学年高三上学期9月月考试题 数学含解析

湖北省沙市2024-2025学年高三上学期9月月考试题 数学含解析

2024—2025学年度上学期2022级9月月考数学试卷(答案在最后)命题人:考试时间:2024年9月25日一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.集合{}215=∈<N M x x ,若{}05⋃=≤<M N x x ,则集合N 可以为()A.{}4 B.{}45≤<x x C.{}05<<x x D.{}5<x x 2.若复数232022202320241i i i i +i i z =-+-++- ,则z =()A.B.C.1D.23.已知2b a = ,若a 与b 的夹角为60︒,则2a b - 在b 上的投影向量为()A .12br B .12b- C .32b- D .32b4.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.155.已知,(0,π)αβ∈,且cos 5α=,sin()10αβ+=,则αβ-=()A .4πB .34πC .4π-D .34π-6.已知函数2()()ln 0f x x ax b x =++≥恒成立,则实数a 的最小值为()A .2-B .1-C .1D .27.函数()ln 1f x x =-与函数()πsin 2g x x =的图象交点个数为()A .6B .7C .8D .98.斐波拉契数列因数学家斐波拉契以兔子繁殖为例而引入,又称“兔子数列”.这一数列如下定义:设{}n a 为斐波拉契数列,()*12121,1,3,N n n n a a a a a n n --===+≥∈,其通项公式为1122n nna⎡⎤⎛⎫⎛⎫⎥=-⎪ ⎪⎪ ⎪⎥⎝⎭⎝⎭⎦,设n是2log1(14(xx x⎡⎤⎣-⎦-<+的正整数解,则n的最大值为()A.5B.6C.7D.8二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分. 9.给出下列命题,其中正确命题为()A.已知数据12310x x x x、、、、,满足:()12210i ix x i--=≤≤,若去掉110x x、后组成一组新数据,则新数据的方差为168B.随机变量X服从正态分布()21,,( 1.5)0.34N P xσ>=,若()0.34P x a<=,则0.5a=C.一组数据()(),1,2,3,4,5,6i ix y i=的线性回归方程为 23y x=+,若6130iix==∑,则6163iiy==∑D.对于独立性检验,随机变量2χ的值越大,则推断“两变量有关系”犯错误的概率越小10.如图,棱长为2的正方体1111ABCD A B C D-中,E为棱1DD的中点,F为正方形11C CDD内一个动点(包括边界),且1//B F平面1A BE,则下列说法正确的有()A.动点FB.1B F与1A B不可能垂直C.三棱锥11B D EF-体积的最小值为13D.当三棱锥11B D DF-的体积最大时,其外接球的表面积为25π211.已知抛物线2:2(0)C y px p=>的焦点为F,准线交x轴于点D,直线l经过F且与C交于,A B 两点,其中点A在第一象限,线段AF的中点M在y轴上的射影为点N.若MN NF=,则()A.lB.ABD△是锐角三角形C.四边形MNDF2D.2||BF FA FD⋅>三、填空题:本题共3小题,每小题5分,共15分.12.若“[]1,4x∃∈使20040x ax-+>”为假命题,则实数a的取值范围为___________.13.在ABC∆中,BC=,∠3Aπ=,D为线段AB靠近点A的三等分点,E为线段CD的中点,若14BF BC=,则AE AF⋅的最大值为________.14.将1,2,3,4,5,6,7这七个数随机地排成一个数列,记第i项为()1,2,,7ia i= ,若47a=,123567a a a a a a++<++,则这样的数列共有个.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若()4sin sin sin -=-A b B c A B .(1)求a 的值;(2)若ABC △的面积为()22234+-b c a ,求ABC △周长的取值范围.16.已知正项数列{}n a 的前n 项和为n S ,且222n n n a a n S +-=.(1)求数列{}n a 的通项公式;(2)设21na nb =-,若数列{}nc 满足11n n n n b c b b ++=⋅,且数列{}n c 的前n 项和为n T ,若()12n T n λ-+≤恒成立,求λ的取值范围.17.如图所示,半圆柱1OO 与四棱锥A BCDE -拼接而成的组合体中,F 是半圆弧BC 上(不含,B C )的动点,FG 为圆柱的一条母线,点A 在半圆柱下底面所在平面内,122,22OB OO AB AC ====.(1)求证:CG BF ⊥;(2)若//DF 平面ABE ,求平面FOD 与平面GOD 夹角的余弦值;(3)求点G 到直线OD 距离的最大值.18.已知双曲线E 的中心为坐标原点,渐近线方程为y =,点(2,1)-在双曲线E 上.互相垂直的两条直线12,l l 均过点()(,0n n P p p >,且)*n ∈N ,直线1l 交E 于,A B 两点,直线2l 交E于,C D 两点,,M N 分别为弦AB 和CD 的中点.(1)求E 的方程;(2)若直线MN 交x 轴于点()()*,0n Q t n ∈N ,设2nn p =.①求n t ;②记n a PQ =,()*21n b n n =-∈N ,求211(1)nkk k k k b b a +=⎡⎤--⎣⎦∑.19.如果函数的导数为()()F x f x '=,可记为()()d f x x F x ⎰=,若()0f x ≥,则()()()baf x dx F b F a =-⎰表示曲线=op ,直线x a x b ==,以及x 轴围成的“曲边梯形”的面积.如:22d x x x C ⎰=+,其中C 为常数;()()2202204xdx C C =+-+=⎰,则表0,1,2x x y x ===及x 轴围成图形面积为4.(1)若()()()e 1d 02xf x x f =⎰+=,,求()f x 的表达式;(2)求曲线2y x =与直线6y x =-+所围成图形的面积;(3)若()[)e 120,xf x mx x ∞=--∈+,,其中Rm ∈,对[)0,a b ∞∀∈+,,若a b >,都满足()()0d d a bf x x f x x >⎰⎰,求m 的取值范围.1.C2.C 【详解】()()32024+1232022022022024241i 1i ()1+1i 1i 1i 11i i iiiii z i =-+----⨯-+====--+-+++C6.B 【详解】∵()0f x ≥恒成立,设2()g x x ax b =++,则当1x >时()0g x ≥,01x <<时()0g x <,∴(1)0g =⎧⎨≤,即101a b a b++=⇒=--⎧⎨≤,∴1a ≥-11.ABD 【详解】由题意可知:抛物线的焦点为,02p F ⎛⎫ ⎪⎝⎭,准线为x 则11,,0,242xy p M N ⎛⎫⎛+ ⎪ ⎝⎭⎝可知MNF 为等边三角形,即且MN ∥x 轴,可知直线则直线:32p l y x ⎛⎫=- ⎪12.【详解】因为“0使00”为假命题,所以“[]1,4x ∀∈,240x ax -+≤”为真命题,其等价于4≥+a x x在[]1,4上恒成立,又因为对勾函数()4f x x x=+在[]1,2上单调递减,在[]2,4上单调递增,而()()145f f ==,所以()max 5f x =,所以5a ≥,即实数a 的取值范围为[5,)+∞.13.11814.360【解析】∵12345621+++++=,∴310S ≤,列举可知:①(1,2,3)……(1,2,6)有4个;②(1,3,4),……,(1,3,6)有3个;③(1,4,5)有1个;④(2,3,4),(2,3,5)有2个;故共有10个组合,∴共计有333310360A A ⨯⨯=个这样的数列。

湖北省黄石市有色一中2014-2015学年高二9月月考数学(文)试题(A卷) Word版无答案

湖北省黄石市有色一中2014-2015学年高二9月月考数学(文)试题(A卷) Word版无答案

f (x )黄石有色一中2014-2015学年度上学期高二九月月考文科数学试题(A 卷)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.若集合2{|22},{|30,}A x x B x x x x N =-<<=-≤∈,则A B 等于A .[0,2)B .(1,2)C .{1}D .{0,1}2. 已知x a x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是 A. 0>a B. 1>a C. 1<a D. 10<<a 3.设0.914y =,0.4828y =, 1.530.5y -=.则(A )312y y y >> (B )213y y y >> (C )123y y y >> (D )132y y y >>. 4.设1(,),sin 2,cos sin 4216ππθθθθ∈=-则的值是( ) A.4 B.4-C .34D .34-5.已知函数()()()f x x a x b =--(其中a b >)的图象如下面右图所示,则函数()x g x a b =+的图象是( )A .B .C .D .6.已知向量,则实数m 的值为( ) A .3B .-3C .2D .-27.等差数列{}n a 的前n 项和为5128,11,186,n S a S a ==则=A .18B .20C .21D .228.函数sin3y x π=在区间[]0,t 上至少取得2个最大值,则正整数t 的最小值是A .10B .9C .8D .79.如果对于任意实数,x x <>表示不小于x 的最小整数,例如 1.12, 1.11<>=<->=-,那么“||1x y -<”是“x y <>=<>”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10. 若点M 是△ABC 所在平面内的一点,且满足53AM AB AC =+,则△ABM 与△ABC的面积比为A .15B .25C .35D .45第Ⅱ卷二、填空题:(本大题共7小题,每小题5分,共35分,把答案填在答题卷中的横线上) 11.已知向量,,为非零向量,若,则k= .12.半圆的直径4,AB O =为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 的中点,则()PA PB PC +⋅的值是 。

湖北省黄冈市2019学年上学期高二年级9月月考试卷【含答案及解析】

湖北省黄冈市2019学年上学期高二年级9月月考试卷【含答案及解析】

湖北省黄冈市2019学年上学期高二年级9月月考试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二总分得分一、选择题1. 下列对于孔子思想的认识,不正确的是A. 孔子的思想在世界文化史上具有重要的影响B. 春秋时期,孔子的思想在中国思想界占绝对统治地位C. 完整的儒家思想体系,是孔子的思想经过历代学者的发扬和统治者的改造而形成的D. 孔子的思想,具有博大精深的文化品格2. 据史料记载,孔子在担任鲁国大司寇期间,大力打击假冒伪劣产品,使市场秩序一片井然。

如羊贩子“吴狱氏不敢朝饮其羊”,也就是不敢再像以前那样早上卖羊前先让羊多喝水增加重量。

材料表明①当时商品经济有一定发展②孔子的思想由儒家变为法家③孔子关注民生④孔子主张“诚信”A. ①②③B. ①②④C. ①③④D. ②③④3. 战国时期墨家思想曾显赫一时,最深刻的社会经济根源是A. 墨子主张兼爱、非攻,深受人民拥护B. 墨子主张选贤任能,深得广大士人支持C. 封建经济发展小生产者队伍壮大,墨子的主张反映了他们愿望D. 当时新兴地主阶级支持墨子4. 韩非子主张治国“以法为本”“法不阿贵”。

他的这种思想①有一定的现实意义②与当今“以法治国”有本质的区别③符合当时社会发展的潮流④强调法律至高无上的地位A. ①②③④B. ②③④C. ①③④D. ①②③5. 墨子、商鞅、韩非子思想的相似之处是A. 反对兼并战争B. 主张互爱互利C. 反对奴隶主贵族世袭特权D. 主张中央集权6. 《史记》载:汉武帝时,“公孙弘以《春秋》白衣为天子三公,封以平津侯。

天下学士靡然乡风矣”。

该材料主要表明A .汉武帝广泛吸纳人才B.平民将相大量涌现C.儒学在民间开始兴起D.儒学地位显著提高7. 明代王守仁研究心学理论得出的结论有①“心外无物,心外无事,心外无理”②人人都有“良知”,“满街都是圣人”③学以致胜的关键是“致良知”④特别强调“知行合一”A. ①②B. ①②③C. ①③④D. ①②③④8. 康熙称赞他说“文章言谈之中,全是天地之正气、宇宙之大道。

湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)

湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)

2024年湖北云学名校联盟高二年级10月联考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项考试时间:2024年10月15日15:00-17:00 时长:120分钟满分:150分是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果.【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i32i 12i 1i 1i1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1C. 0或1D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可. 【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB=⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅ 169912129=++−−+19=.所以PQ =.故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==; B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件; D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误; 对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ==,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2. 故选:D.二、选择题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213APk −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−±.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.【答案】BCD 【解析】【分析】以{},,OA OB OC为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅=.对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+−2133AB AC +()()2133OB OA OC OA =−+−2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA =时,DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− ,又AB OB OA =−,所以13DH AB OC − .故DH ,AB ,OC 共面.故B 正确;对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+−12152336OA OA OB OC OA =+−++− 111336OA OB OC =−++,所以:HG OA ⋅= 111336OA OB OC OA −++⋅ 2111336OA OB OA OC OA =−+⋅+⋅1119660336=−×+×+×=,所以HG OA ⊥ ,故GH OA ⊥,故C 正确;对D :设OH OA λ=,()01λ≤≤.因为:DH OH OD =−()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− .所以DH OH ⋅ 2133OA OB OC OAλλ =−−⋅()2233OA OA OB OA OCλλλ−⋅−⋅296λλ−,()01λ≤≤.当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8. 【答案】ACD 【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假. 【详解】对A :由222382103410a +−×−×−+<⇒8a >. 此时圆C :()()2245x y a −+−=.因为过P 点的弦|AAAA |的最小值为4,所以CP=又CP =⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==,cos ACP ∠==41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角, 所以存在直线l 使得CA CB ⊥.故C 正确; 对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MP NPBP=⇒(4AP BP MP NP ⋅=⋅=−+=.又1sin 2PACS PA PC APC APC =⋅⋅∠=∠ ,PBCS BPC =∠ ,且sin sin APC BPC ∠=∠.所以22sin PAC PBC S S PA PB APC⋅=⋅⋅∠ 28sin APC ∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确. 故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值. 三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______. 【答案】49 【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点, 圆224x y +=的圆心OO (0,0),半径2r =, 则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max 27PA AO r=+=+=, 所以22max749PA==; 故()()2243x y −++的最大值是49. 故答案为:49.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = ,则BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−,sin cos cos sin 2sin cos A B A B C A +=, ()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C >,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =..14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED ,EG ,因为H 为AAAA 上的靠近D 的三分点,所以13DH AD =, 因为E 为AAAA 的中点,所以点E 到AAAA 的距离为点B 到AAAA 的距离的一半, 所以16DEH BAD S S = , 又G 为CCAA 上靠近D 的三分点,所以点G 到平面ABD 的距离为点C 到平面ABD 的距离的13, 所以111119663182G DEH G BAD C BAD V V V −−−==×=×=, 1233BCD FCG BCD BCD BCD BFGD S S S S S S =−=−= 四边形, 所以2211933323E BFGD E BCD A BCD V V V −−−==×=×=, 所以多面体EFGHBD 的体积为17322G DEH E BFGD V V −−+=+=. 故答案为:72. 【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】 样本中男生的人数为:100900601500×=;女生的人数为:1006040−=. 所以总样本的平均数为:6013.24015.214100x ×+×=. 【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=. (1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线0x y −+=上, 所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=, 又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=, .又因为ACB ∠的角平分线所在的直线方程为10x y −+=, 在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=,整理得21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=. 17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠, 因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA A C ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC =, 为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E , 设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅=== 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标;(3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= ,由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】 设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = = , 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+=可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=, 由220,230x y y +−= −=可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°. 所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =−− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB 上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= ++−+=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。

湖北省荆州中学2024-2025学年高二上学期9月月考地理试题

湖北省荆州中学2024-2025学年高二上学期9月月考地理试题

湖北省荆州中学2024-2025学年高二上学期9月月考地理试题(全卷满分100分,考试用时75分钟)一、选择题:本题共15小题,每小题3分,共45分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

2023年5月30日,摄影爱好者王先生在黄山莲花峰观日出时拍摄了一张照片(如下图),太阳正好位于图中黄山松的两枝干之间。

据此完成1-3小题。

1.拍摄该照片时,王先生位于图中黄山松的A.东南方向B.东北方向C.西北方向D.西南方向2.下列日期中,在同一地点也可能拍到上图所示日出景观的是A.5月6日B.7月15日C.8月7日D.9月23日3.王先生看到照片后,认为如果他带着相机从原拍摄地点向右移动一小段距离,此时拍摄太阳与黄山松的相对位置不变,角度比刚才偏移5°,拍摄能达到更好的效果。

要实现这一愿望,王先生应选择再次拍摄的日期最可能是A.6月20日B.7月20日C.8月20日D.9月20日2020年12月27日夜间,山东省A市受天气影响实施交通管制,部分高速公路封闭,该天气现象一直持续到28日夜间才消失。

29日凌晨,A市出现降雪,交通管制持续。

下图为28—29日不同时刻亚洲局部海平面气压场分布图。

完成4-6小题。

4.推测28日高速公路封闭的原因是A.沙尘天气B.大雾C.道路结冰D.大风5.27日夜间到28日夜间,A市A.气压升高B.风向为偏南风C.气温升高D.产生持续性降水6.29日02时和29日14时该区域出现了两次降雪天气,关于这两次降雪天气叙述正确的是A.两者降雪都是冷锋过境形成B.29日14时比02时风速增大C.29日02时暖空气抬升形成降雪D.29日14时偏南风形成降雪非洲大陆有甲、乙、丙三个气象测站,三地纬度大致相当,气候类型相同,但由于所处海拔高度、离海洋远近不同,温度与降水量却存在一定差异。

完成7-9小题。

7.三个气象测站所在地的气候类型是A.北半球的地中海气候B.北半球的热带草原气候C.南半球的地中海气候D.南半球的热带草原气候8.三个测站部分月份降水较多,其主要原因是受到某一气压带或风带的影响。

2023年湖北武汉华中科技大学附属中学高二上学期9月月考数学试题(解析版)

2023年湖北武汉华中科技大学附属中学高二上学期9月月考数学试题(解析版)

华科附中2022-2023学年上学期9月月考高二数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足(1i)i z −=,则下列说法正确的是( ) A. z 的虚部为1i 2B. z 的共轭复数为11i 22z =−+ C. z 对应的点在第二象限 D. 1z =【答案】C 【解析】【分析】根据已知条件及复数的除法法则,再利用复数的概念及共轭复数,结合复数的几何意义及复数的摸公式即可求解.【详解】由(1i)i z −=,得()()()i 1i i 1i11i 1i 1i 1i 222z ×+−+====−+−−×+, 对于A ,复数z 的虚部为12,故A 不正确;对于B ,复数z 共轭复数为11i 22z =−−,故B 不正确;对于C ,复数z 对应的点为12 −,所以复数z 对应的点在第二象限,故C 正确; 对于D,z =D 不正确. 故选:C.2. 在下列条件中,一定能使空间中的四点,,,M A B C 共面的是( )A. 2OM OA OB OC −−B. 111532OM OA OB OC =++C. 20MA MB MC ++=D. 0OM OA OB OC +++=【答案】C 【解析】【分析】根据向量共面定理,OM xOA yOB zOC =++,若A ,B ,C 不共线,且A ,B ,C ,M 共面,则其充要条件是1x y z ++=,由此可判断出答案. 的【详解】根据向量共面定理,OM xOA yOB zOC =++,若A ,B ,C 不共线,且A ,B ,C ,M 共面,则其充要条件是1x y z ++=, 由此可得A ,B ,D 不正确,选项C :2MA MB MC −=−,所以,,,M A B C 四点共面, 故选:C.3. 已知向量(2,0,1)n =为平面α的法向量,点(1,2,1)A −在α内,则点(1,2,2)P 到平面α的距离为( )A.B.C. D.【答案】B 【解析】【分析】直接利用点到面的距离的向量求法求解即可 【详解】因为(1,2,1)A −,(1,2,2)P所以(2,0,1)PA =−− ,因为平面α的法向量(2,0,1)n =,所以点P 到平面α的距离||||PA n d n ⋅=.故选:B【点睛】此题考查利用向量求点到面的距离,属于基础题4. 已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】利用存在实数x ,y ,使得DE x AB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解.【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE x AB y AC =+,所以必要性成立;若存在实数x ,y ,使得DE x AB y AC =+ ,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的必要不充分条件,故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.5. 在ABC 中,角,,A B C 的对边分别为,,a b c ,且2sin 0,0,,1,2c b C B b a π−=∈,则ABC 的面积为()A.或14 B.或14C.D.或34 【答案】C 【解析】B ,然后利用余弦定理求得c ,代入三角形面积公式即可. 【详解】因为2sin 0c bC −=,由正弦定理sin 2sin sin 0C B C −=, 因为0,,sin 02C C π∈≠,所以1sin 2B =,因为0,2B π∈,所以6B π=,根据余弦定理得2222cos b c a c a B +−⋅⋅,得1c =或2c =,所以11222ABC S =×=或11122ABC S =×= , 故选:C.6. 为庆祝中国共产党成立100周年,甲、乙、丙三个小组进行党史知识竞赛,每个小组各派5位同学参赛,若该组所有同学的得分都不低于7分,则称该组为“优秀小组”(满分为10分且得分都是整数),以下为三个小组的成绩数据,据此判断,一定是“优秀小组”的是( ) 甲:中位数为8,众数为7乙:中位数为8,平均数为8.4 丙:平均数为8,方差小于2 A. 甲 B. 乙C. 丙D. 无法确定【答案】A 【解析】【分析】根据题意,结合“优秀小组”的定义依次分析选项,综合可得答案.【详解】甲:中位数为8,众数为7,可知甲组的得分依次为:7、7、8、9、10,根据“优秀小组”的概念可知甲组一定是“优秀小组”当乙组得分依次为:6、8、8、10、10时,中位数为8,平均数为8.4,但乙组不符合“优秀小组”的概念,当丙组得分依次为:6、8、8、8、10时,丙:平均数为8,方差为825<,但丙组不符合“优秀小组”的概念. 故选:A.7. 如图,已知电路中有5个开关,开关5S 闭合的概率为13,其它开关闭合的概率都是12,且是相互独立的,则灯亮的概率为( )A. 78B.1516 C. 2324D. 45【答案】A 【解析】【分析】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,由所设事件表示事件灯不亮,利用概率乘法公式求其概率,再利用对立事件概率公式求事件灯亮的概率.【详解】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,则事件灯不亮可表示为12345A A A A A ⋅⋅⋅⋅,由已知12341()()()()2P A P A P A P A ====,51()3P A =, ∴ 1234511121()(1)42238P A A A A A ⋅⋅⋅⋅=−×××=, ∴ 事件灯亮的概率78P =, 故选:A.8. 已知正方体1111ABCD A B C D −的棱长为3,点P 在11A C B △的内部及其边界上运动,且DP =,则点P 的轨迹长度为( )A.B. 2πC.D. 3π【答案】A 【解析】【分析】连接1B D 、11B D 、BD ,1111A C B D E = ,连接BE 交1B D 于O ,证明1B D ⊥平面11A C B 得DO ⊥OP ,求出OP 长度,确定O 的位置,确定P 的轨迹形状,从而可求P 的轨迹长度. 【详解】连接1B D 、11B D 、BD ,则1111AC B D ⊥,111A C DD ⊥,1111B D DD D = , ∴11A C ⊥平面11B DD ,∴111A C B D ⊥, 同理11A B B D ⊥,∴1B D ⊥平面11A C B . 设1111A C B D E = ,连接BE 交1B D 于O ,由△BOD ∽△1EOB 且BD =12B E 可知OD =12B O ,则123OD B D ==,连接OP ,则OD OP ⊥,∴OP可得点P 的轨迹为以点O 为半径的圆在11A C B △内部及其边界上的部分,OB =2OE ,E 为11A C 中点,及△11A BC 为等边三角形可知O 为△11A BC 中心, OE=1133BE =<OF =,OE =,πcos 6OE EOF EOF OF ∠∠==, 则∠OFE =∠1A =π3,∴OF ∥1A B ,同理易知OG ∥11A C , 故四边形1A FOG 是菱形,则π.3FOG ∠=∴ FG长度为π3,故点P的轨迹长度为3π. 故选:A .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. PM 2.5的监测值是用来评价环境空气质量的指标之一.划分等级为:PM 2.5日均值在335/m g µ以下,空气质量为一级:PM 2.5日均值在335~75/m g µ,空气质量为二级:PM 2.5日均值超过375/m g µ为超标.如图是某地12月1日至10日PM 2.5的日均值(单位:3/m g µ)变化的折线图,关于PM 2.5日均值说法正确的是( )的A. 这10天的日均值的80%分位数为60B. 前5天的日均值的极差小于后5天的日均值的极差C. 这10天的日均值的中位数为41D. 前5天的日均值的方差小于后5天的日均值的方差 【答案】BD 【解析】【分析】根据百分位数、极差、中位数、方差等知识确定正确答案. 【详解】10个数据为:30,32,34,40,41,45,48,60,78,80,100.88×=,故80%分位数为6078692+=,A 选项错误. 5天的日均值的极差为413011−=,后5天的日均值的极差为804535−=,B 选项正确. 中位数是4145432+=,C 选项错误. 根据折线图可知,前5天数据波动性小于后5天数据波动性,所以D 选项正确. 故选:BD10. 下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则()()()P A B P A P B =+ ;③若事件A ,B 满足1()3P A =,3()4P B =,1()4P AB =,则A ,B 相互独立;④若事件A ,B 满足()()1P A P B +=,则A 与B 是对立事件.其中错误的命题是( ) A. ① B. ②C. ③D. ④【答案】BD 【解析】【分析】利用互斥事件、对立事件、相互独立事件的定义及概率的基本性质依次判断4个命题作答. 【详解】对于①:对立事件一定是互斥事件,①正确;对于②:若A ,B 为两个随机事件,则()()()()P A B P A P B P A B =+− ,②错误; 对于③:由()()()113434P AB P A P B ==×=,得A ,B 相互独立,③正确; 对于④:记事件A 为抛一枚硬币正面朝上,事件B 为掷一枚骰子出现偶数点,则()0.5P A =,()0.5P B =,满足()()1P A P B +=,显然事件A 与B 可以同时发生,它们不是对立事件,④错误.故选:BD11. 已知空间四点()0,0,0O ,()0,1,2A ,()2,0,1B −,()3,2,1C ,则下列说法正确的是( )A. 2OA OB ⋅=−B. 以OA ,OBC. 点O 到直线BCD. O ,A ,B ,C 四点共面 【答案】AC 【解析】【分析】直接利用空间向量,向量的模,向量垂直的充要条件,共面向量基本定理,向量的夹角,判定A 、B 、C 、D 的结论即可.【详解】空间四点()0,0,0O ,)0,1,2A ,()2,0,1B −,()3,2,1C ,则()0,1,2OA =,()2,0,1OB =− ,所以OA =,OB = ,对于A :2OA OB ⋅=−,故A 正确;对于B :2cos ,5OA OB OA OB OA OB ⋅==−,所以sin AOB ∠=,所以以OA ,OB 为邻边的平行四边形的面积sin SOA OB AOB ∠=,故B 错误;对于C :由于()2,0,1OB =−,()1,2,2BC = ,所以0OB BC ⋅=,故OB BC ⊥ ,所以点O 到直线BC 的距离||d OB ==,故C 正确;对于D :根据已知的条件求出:()0,1,2OA =,()2,0,1OB =− ,()3,2,1OC =,假设,,OA OB OC 共面,则存在实数λ和µ使得OC OA OB λµ=+,所以3=22=1=2µλλµ−,无解,故,,OA OB OC 不共面,故D 错误; 故选:AC .12. 如图,在棱长为1的正方体1111ABCD A B C D −中,E 为侧面11BCC B 的中心,F 是棱11C D 的中点,若点P 为线段1BD 上的动点,则下列说法正确的是( )A. PE PF ⋅的最小值为148B. 若12BP PD =,则平面PAC 截正方体所得截面的面积为98C. PF 与底面ABCD 所成的角的取值范围为0,4πD. 若正方体绕1BD 旋转θ角度后与其自身重合,则θ的最小值是23π【答案】BCD 【解析】【分析】建立空间直角坐标系,设()101BP BD λλ=≤≤ ,得()1,1,P λλλ−−,利用空间向量法求得数量积PE PF ⋅,计算最小值判断A ;由线面平行得线线平行确定截面的形状、位置,从而可计算出截面面积判断B ;过P 作11B D 的垂线,垂足为Q ,连接FQ ,则PFQ ∠为所求角.设=PQ x ,运用余弦定理求出QF ,由tan PQPFQ FQ∠=,计算判断C ;结合正方体的对称性,利用1BD 是正方体的外接球直径判断D . 【详解】以D 为原点,DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D xyz −.由正方体棱长为1,则11,1,22E,()1,1,0B ,()10,0,1D ,10,,12F ,()1,0,0A .对于A ,()11,1,1BD =−−,设()1,,BP BD λλλλ==−− ,()01λ≤≤,所以()1,1,P λλλ−−,11,,22PE λλλ =−− ,11,,12PF λλλ =−−−, ()()211171113()2221248PE PF λλλλλλλ⋅=−−+−+−−=−−, 所以712λ=时,1()48min PE PF ⋅=− ,故A 错误; 对于B ,12BP PD =,则P 是1BD 上靠近1D 的三等分点,112,,333P,取AC 上靠近C 的三等分点G ,则12,,033G,120,,33PG =−.显然PG与平面11CDD C 的法向量()1,0,0DA = 垂直,因此//PG 平面11CDD C ,所以截面PAC 与平面11CDD C 的交线与PG 平行, 作//CM PG 交11D C 于点M ,设()0,,1M k ,则()0,1,1CMk =− ,由//CM PG ,可得()21133k −−=,解得12k =,则M 与F 重合,因此取11D A 中点N ,易得//NF AC , 所以截面为ACFN ,且为等腰梯形,AC =NF =,AN CF ==梯形的高为h ,截面面积为1928S =,故B 正确; 对于C ,过P 作11B D 的垂线,垂足为Q ,连接FQ ,则PFQ ∠为所求角.设=PQ x,则1D Q =,由余弦定理知,222111222424FQ x x x =+−⋅=−+. 因为P 为线段1BD 上的动点,所以01x ≤≤.当=0x时,tan 0PQPFQ FQ∠==.tan PQPFQ FQ∠=, 当01x <≤时,,11x≥, 所以tan 1PFQ ∠≤,故0,4PFQ π∠∈,C 正确;对于D ,()1,0,0A ,()0,1,0C ,()1,1,0B ,()10,0,1D ,()1,1,0AC =−,()11,1,1BD =−−,则11100AC BD ⋅=−+=,1AC BD ∴⊥ ,同理11AB BD ⊥ . 所以1BD是平面1ACB 一个法向量,即1BD ⊥平面1ACB ,设垂足为1O ,则1111123AO C B O C AO B π∠=∠=∠=,1BD 是正方体的外接球的直径,因此正方体绕1BD 旋转θ角度后与其自身重合,至少旋转23π,故D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13. 如图,平行六面体ABCD ﹣A 1B 1C 1D 1中,1||||1===ABAD AA ,∠BAD =∠BAA 1=120°,∠DAA 1=60°,则线段AC 1的长度是_______.的【解析】【分析】利用11AC AB AD AA =++,即可求解. 【详解】 11AC AB AD AA =++,∴22221111222AC AB AD AA AB AD AB AA AD AA =+++++111111211()211()211222=+++×××−+×××−+×××2=,1AC ∴.【点睛】本题考查了空间向量的应用,意在考查学生对这些知识的理解掌握水平.14. 已知向量{},,a b c 是空间的一个基底,向量{},,a b a b c +− 是空间的另一个基底,一向量P在基底{}a b c ,,下的坐标为()1,2,3,则向量P在基底{},,a b a b c +− 下的坐标为__________.【答案】31,,322 −【解析】【分析】设()()()()p x a b y a b zc x y a x y b zc =++−+=++−+,可得 123x y x y z +=−== ,所以解出x ,y ,z 即可.【详解】设()()()()p x a b y a b zc x y a x y b zc =++−+=++−+;123x y x y z +=∴−= =,解得:31,,322x y z ==−=;p ∴ 在基底{},,a b a b c +− 下的坐标为:31,,322 −.故答案为:31,,322 −. 15. 祖冲之是我国南北朝时期杰出的数学家、天文学家.他一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面,特别是在探索圆周率π的精确度上,首次将“π”精确到小数点后第七位,即π=3.1415926…,在此基础上,我们从“圆周率”第三到第八位有效数字中随机取两个数字a ,b ,则事件“||5a b −≥”的概率为_______. 【答案】415【解析】【分析】根据给定条件,列出从4,1,5,9,2,6中任取两个数字的所有结果,再求出两个数字差的绝对值不小于5的个数即可作答.【详解】依题意,“圆周率”第三到第八位有效数字分别是4,1,5,9,2,6,从中任取两个数字a ,b 的不同结果是:(1,2),(1,4),(1,5),(1,6),(1,9),(2,4),(2,5),(2,6),(2,9),(4,5),(4,6),(4,9),(5,6),(5,9),(6,9),共15种,它们等可能,事件“||5a b −≥”记为M ,它含有的结果有:(1,6),(1,9),(2,9),(4,9),共4种,于是得4()15P M =, 所以事件“||5a b −≥”的概率为415. 故答案为:41516. 设空间向量,,i j k 是一组单位正交基底,若空间向量a满足对任意的,,x y a xi y j −− 的最小值是2,则3a k +的最小值是_________.【答案】1 【解析】【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i = ,()0,1,0j = ,()0,0,1k = 设(),,a r s t = 则a xi y j −−=,当,r x s y ==时a xi y j −−的最小值是2, 2t ∴=± 取(),,2a x y = 则()3,,5a k x y +=3a k ∴+=又因为,x y 是任意值,所以3a k +的最小值是5. 取(),,2ax y =− 则()3,,1a k x y +=3a k ∴+=又因为,x y 是任意值,所以3a k +的最小值是1. 故答案为:1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步棸. 17. 已知()3,2,1a =− ,()2,1,2b = . (1)求a 与b夹角的余弦值;(2)当()()ka b a kb +⊥−时,求实数k 的值.【答案】(1(2)32k或23k =− 【解析】【分析】(1)根据空间向量夹角公式求得正确答案.(2)根据()()ka b a kb +⊥−列方程,从而求得k 的值.【小问1详解】cos ,a b a ba b⋅==⋅【小问2详解】由于()()ka b a kb +⊥− ,所以()()0ka b a kb +⋅−=, 所以()22210ka k a b kb +−⋅−= ,()22146190,6560k k k k k +−−=−−=, 解得32k或23k =−. 18. 袋中有6个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是12,得到黄球或绿球的概率是23,试求: (1)从中任取一球,得到黑球.黄球.绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少? 【答案】(1)111,,362;(2)1115【解析】【分析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C ,由于A ,B ,C 为互斥事件,列出方程组,由此能求出从中任取一球,得到黑球、黄球、绿球的概率.(2)黑球、黄球、绿球个数分别为2,1,3,得到的两个球同色的可能有:两个黑球只有1种情况,两个绿球共3种情况,而从6个球中取出2个球的情况共有15种,由此能求出得到的两个球颜色不相同的概率.【详解】(1)解:从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C , 由于A ,B ,C 为互斥事件,根据已知得()()()11()()22()()3P A P B P C P A P B P B P C++=+=+=,解得1()31()61()2P A P B P C===,∴从中任取一球,得到黑球、黄球、绿球的概率分别是111,,362;(2)由(1)知黑球、黄球、绿球个数分别为2,1,3,得到的两个球同色的可能有:两个黑球只有1种情况,两个绿球共3种情况, 而从6个球中取出2个球的情况共有15种, 所以所求概率为1315154+=, 则得到的两个球颜色不相同的概率是41111515−=. 19. 某市为了了解人们对“中国梦”的伟大构想的认知程度,针对本市不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有20人,按年龄分成5组,其中第一组:[)20,25,第二组:[)25,30,第三组:[)30,35,第四组:[)35,40,第五组:[]40,45,得到如图所示的频率分布直方图.(1)根据频率分布直方图,估计这20人的平均年龄和第80百分位数; (2)若第四组宣传使者的年龄的平均数与方差分别为37和52,第五组宣传使者的年龄的平均数与方差分别为43和1,求这20人中35~45岁所有人的年龄的方差. 【答案】(1)32.25,第80百分位数为37.5 (2)10 【解析】【分析】(1)直接根据频率分布直方图计算平均数和百分位数;(2)利用分层抽样得第四组和第五组分别抽取4人和2人,进而设第四组、第五组的宣传使者的年龄的平均数分别为4x ,5x ,方差分别为24s ,25s ,第四组和第五组所有宣传使者的年龄平均数为z ,方差为2s ,进而根据方差公式,代入计算即可得答案. 【小问1详解】设这20人的平均年龄为x ,则22.50.0527.50.3532.50.337.50.242.50.132.25x =×+×+×+×+×=.设第80百分位数为a ,由50.02(40)0.040.2a ×+−×=,解得37.5a =. 【小问2详解】由频率分布直方图得各组人数之比为1:7:6:4:2,故各组中采用分层随机抽样的方法抽取20人,第四组和第五组分别抽取4人和2人, 设第四组、第五组的宣传使者的年龄的平均数分别为4x ,5x ,方差分别为24s ,25s , 则437x =,543x =,2452s =,251s =, 设第四组和第五组所有宣传使者的年龄平均数为z ,方差为2s . 则4542396x x z+=,()(){}222224545142106s s x z s x z =×+−+×+−= , 因此,第四组和第五组所有宣传使者的年龄方差为10,据此,可估计这m 人中年龄在35~45岁的所有人的年龄方差约为10. 20. 已知函数()2sin cos x x f x x +−(1)若123f α = ,且π0,2α ∈,求sin α的值; (2)在锐角ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若122C f=−,求a b 的取值范围. 【答案】(1;(2a b <<【解析】【分析】(1)化简()f x 解析式,由123f α = 得到1sin 3π3α−= ,从而求得cos 3πα −,进而求得sin α.(2)由122C f=−求得C ,利用正弦定理化简a b ,通过tan B 取值范围,求得a b 的取值范围. 【详解】(1)因为()2sin cos x x f x x +1cos 21πsin 2sin 2223x x x −+−=−, 的由123f α = ,得1sin 3π3α −= ,因π0,2α ∈,所以ππ36π3α−<−<,所以πcos 3α−所以ππsin sin 33αα =−+ππππsin cos cos sin 3333αα=−+−1132=×=. (2)由π1sin 232C f C =−=−,因为π0,2C∈ ,所以πππ336C −<−<, 所以ππ36C −=−,即π6C =. 由正弦定理sin sin a bA B=,可得,5πsin sin cos 6sin sin 2sin B a A B b B B B− ===+.因为ABC 是锐角三角形,所以π025ππ062B B <<<−<,即ππ32B <<.所以cos 12sin 2tan aB b B B =+ 由ππ32B <<,得tan B >a b << 21. 如图,在等腰直角三角形PAD 中,90A ∠=°,8AD =,3AB =,B ,C 分别是PA ,PD 上的点,且//AD BC ,M ,N 分别为BP ,CD 的中点,现将BCP 沿BC 折起,得到四棱锥P ABCD −,连结MN .为(1)证明://MN 平面PAD ;(2)在翻折的过程中,当4PA =时,求平面PBC 与平面PCD 夹角的余弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)取AB 的中点E ,连接EM ,EN ,利用面面平行的判定证明平面//MNE 平面PAD ,再利用面面平行的性质即可证明;(2)以点A 为坐标原点,建立空间直角坐标系,求出相关平面的法向量,利用面面角的空间向量求法即可得到答案. 【小问1详解】在四棱锥P ABCD −中,取AB 的中点E ,连接EM ,EN ,因为M ,N 分别为BP ,CD 的中点,//AD BC ,则ME PA //,//EN AD ,因为PA ⊂平面PAD ,ME ⊄平面PAD ,则//ME 平面PAD ,同理可得,//EN 平面PAD , 又ME EN E ∩=,ME ,EN ⊂平面MNE ,故平面//MNE 平面PAD ,因为MN ⊂平面MNE , 故//MN 平面PAD ; 【小问2详解】因为在等腰直角三角形PAD 中,90∠=°,//AD BC , 所以BCPA ⊥,则在四棱锥P ABCD −中,BC PB ⊥,BC AB ⊥,因为//AD BC ,则AD PB ⊥,AD AB ⊥,又PB AB B ∩=,,PB AB ⊂平面PAB , 故AD ⊥平面PAB ,又PA ⊂平面PAB ,故PA AD ⊥,因为8AD =,3AB =,4PA =,则5PB =,所以222AB PA PB +=,故PA AB ⊥. 以点A 为坐标原点,建立空间直角坐标系如图所示,则:(3,0,0)B ,()0,0,4P ,(0,8,0)D ,(3,5,0)C ,故(3,0,4),(3,5,4),(0,8,4)PB PC PD =−=−=−,设平面PBC 的法向量为(,,)n x y z = ,则3403540n PB x z n PC x y z ⋅=−= ⋅=+−= , 令4x =,则3z =,故(4,0,3)n = ;设平面PCD 的法向量为(,,)m a b c = ,则8403540m PD b c m PC a b c ⋅=−= ⋅=+−= , 令1b =,则1a =,2c =,故(1,1,2)m = ,所以|||cos ,|||||m n m n m n ⋅== , 故平面PBC 与平面PCD. 22. 如图,三棱柱111ABC A B C 中,AB ⊥侧面11BB C C ,已知13BCC π∠=,1BC =,12AB C C==,点E 是棱1C C 的中点.(1)求证:1C B ⊥平面ABC ;(2)在棱CA 上是否存在一点M ,使得EM 与平面11A B E,若存在,求出CM CA 的值;若不存在,请说明理由.【答案】(1)见解析;(2)存在,13CM CA =或523CM CA = 【解析】【分析】(1)利用余弦定理解得1BC =1BC BC ⊥,证得AB ⊥侧面11BB C C , 1AB BC ⊥,继而可证1C B ⊥平面ABC ; (2)以B 为原点,分别以BC ,1BC 和BA 的方向为x ,y 和z 轴的正方向建立空间直角坐标系,假设存在点M ,设(),,M x y z ,由EM 与平面11A B E,可求解.【详解】(1)由题意,因为1BC =,12CC =,13BCC π∠=,利用余弦定理2221112cos 60BC BC CC BC CC =+−×°,解得1BC =22211BC BC CC ∴+=,1BC BC ∴⊥,AB ⊥ 侧面11BB C C ,1AB BC ∴⊥. 又AB BC B ∩= ,AB ,BC ⊂平面ABC ,∴直线1C B ⊥平面ABC .(2)以B 为原点,分别以BC ,1BC 和BA 的方向为x ,y 和z 轴的正方向建立如图所示的空间直角坐标系,则有(0,0,2)A,1(B −,12E,1(2)A −,设平面11A B E 的一个法向量为(,,)m x y z = ,11(0,0,2)A B =−,13,22A E =−, 11100m A B m A E ⋅= ⋅=,203202z x y z −= ∴ −=,令y =1x =,m ∴= , 假设存在点M ,设(),,M x y z ,CM CA λ=,[0,1]λ∈, (1,,)(1,0,2)x y z λ∴−=−,(1,0,2)M λλ∴−,1,22EM λλ ∴=−利用平面11A B E的一个法向量为m =,2693850λλ−+=.即(31)(235)0λλ−−=,13λ∴=或523λ=,13CM CA ∴=或523CM CA =. 【点睛】本题考查了空间向量和立体几何综合问题,考查了学生逻辑推理,空间向量和数学运算能力,属于中档题.。

2023-2024学年湖北省高二上学期11月期中月考数学质量检测模拟试题(含解析)

2023-2024学年湖北省高二上学期11月期中月考数学质量检测模拟试题(含解析)

2023-2024学年湖北省高二上册11月期中联考数学模拟试题一、单选题1.若(2,1,2)a b +=-- ,(4,3,2)a b -=-- ,则a b ⋅等于()A .5B .5-C .7D .1-【正确答案】B【分析】利用空间向量的四则运算与数量积的坐标表示即可求解.【详解】∵(2,1,2)a b +=-- ,(4,3,2)a b -=--,∴两式相加得2(2,4,0)a =- ,∴(1,2,0)a =-,∴(3,1,2)b a b a =+-=- ,∴1(3)(2)1025a b ⋅=⨯-+-⨯+⨯=-,故选:B .2.已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于()AB .2C 1D 1【正确答案】C【分析】根据点到直线得距离公式即可得出答案.1=.解得1a =-+1a =-0a > ,1a ∴=-故选:C.3.如图是根据某市1月1日至1月10日的最低气温(单位:℃)的情况绘制的折线统计图,由图可知这10天的最低气温的第40百分位数是()A .2℃B .-1℃C .-0.5℃D .2-℃【正确答案】C【分析】通过折线图,将这10天的最低气温按从小到大顺序,第4,第5个数据的平均数为第40百分位数.【详解】由折线图可知,这10天的最低气温按照从小到大排列为:3-,2-,1-,1-,0,0,1,2,2,2,因为共有10个数据,所以1040%4⨯=是整数,则这10天的最低气温的第40百分位数是100.52-+=-(℃).故选:C4.设直线:3l y kx =+与椭圆22:194x yC +=相交于A B 、两点,且AB 的中点为11,3M ⎛⎫- ⎪⎝⎭,则k =()A .43B .427C .13-D .34【正确答案】A【分析】设()()1122,,A x y B x y 、,进而根据点差法求解即可.【详解】解:设()()1122,,A x y B x y 、,故有2211194x y +=①,2222194x y +=②,所以,两式作差得22222121094x x y y --+=,即()()()()21212121094x x x x y y y y +--+=+,所以,()()1221211249AB x x y y k x x y y +-==--+,因为AB 的中点为11,3M ⎛⎫- ⎪⎝⎭,所以121222,3x x y y +=-+=,所以()21214242393AB y y k x x ⨯--==-=-⨯故选:A5.从2名男同学和3名女同学中任选3人参加社区服务,则选中的3人中恰有2名女同学的概率为()A .0.6B .0.5C .0.3D .0.2【正确答案】A【分析】用列举法结合古典概型的概率公式求解即可【详解】设2名男生为,a b ,3名女生为,,A B C ,则任选3人的种数为abA abB abC aAB aAC ,,,,,aBC bAB bAC bBC ABC ,,,,,共10种,其中恰有2名女生的有aAB aAC ,,aBC bAB bAC bBC ,,,,共6种,故恰有一名女同学的概率60.610P ==.故选:A .6.已知四面体ABCD ,所有棱长均为2,点E ,F 分别为棱AB ,CD 的中点,则AF CE ⋅=()A .1B .2C .-1D .-2【正确答案】D【分析】在四面体ABCD 中,取定一组基底向量,表示出AF ,CE,再借助空间向量数量积计算作答.【详解】四面体ABCD 的所有棱长均为2,则向量,,AB AC AD不共面,两两夹角都为60 ,则22cos 602AB AC AC AD AD AB ⋅=⋅=⋅=⨯⨯=,因点E ,F 分别为棱AB ,CD 的中点,则1()2AF AC AD =+ ,12CE AE AC AB AC =-=-,211()(2)(22)44AF CE AC AD AB AC AC AB AD AB AC AC AD ⋅=+⋅-=⋅+⋅--⋅ 21(222222)24=+-⨯-⨯=-,所以2AF CE ⋅=-.故选:D7.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,PB 与底面ABCD 所成的角为π4,底面ABCD 为直角梯形,,22π,1ABC BAD AD PA BC ∠=∠====,点E 为棱PD 上一点,满足()01PE PD λλ=≤≤ ,下列结论错误的是()A .平面PAC ⊥平面PCD ;B .点P 到直线CD 3C .若二面角E ACD --的平面角的余弦值为33,则13λ=;D .点A 到平面PCD 52.【正确答案】D【分析】A 选项,作出辅助线,证明出AC ⊥BC ,结合PA ⊥平面ABCD 可得线线垂直,从而证明线面垂直,最后证明出面面垂直;B 选项,求出点P 到直线CD 的距离即为PC 的长度,利用勾股定理求出答案;C 选项,建立空间直角坐标系,利用空间向量进行求解;D 选项,过点A 作AH ⊥PC 于点H ,证明AH 的长即为点A 到平面PCD 的距离,求出AH 的长.【详解】A 选项,因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD ,故∠PBA 即为PB 与底面ABCD 所成的角,π4PBA ∠=,因为π2∠=∠=ABC BAD ,所以PA =AB =1,因为2,1AD PA BC ===,取AD 中点F ,连接CF ,则AF =DF =AB =CF =BC ,则四边形ABCF 为正方形,∠FCD =∠FCA =45°,所以AC ⊥CD ,又因为AP AC A ⋂=,所以CD ⊥平面PAC ,因为CD ⊂平面PCD ,所以平面PAC ⊥平面PCD ,A 正确;由A 选项的证明过程可知:CD ⊥平面PAC ,因为PC ⊂平面PAC 所以CD ⊥PC ,故点P 到直线CD 的距离即为PC 的长度,其中1PA AB BC ===由勾股定理得:222,3AC PC AC PA ==+B 正确;以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立空间直角坐标系,则()0,0,0A ,()1,1,0C ,()0,0,1P ,()0,2,1E λλ-,其中平面ACD 的法向量为()0,0,1m =,设平面ACE 的法向量为(),,n x y z = ,则()2100n AE y z n AC x y λλ⎧⋅=+-=⎨⋅=+=⎩ ,令1y =得:2,11z x λλ==--,所以21,1,1n λλ⎛⎫=- ⎪-⎝⎭,设二面角E AC D --的平面角为θ,显然cos θ=33其中()220,0,11,1,31cos ,32111m n λλλλ⎛⎫⋅- ⎪-⎝⎭=⎛⎫++ ⎪-⎝⎭,解得:13λ=或1λ=-,因为01λ≤≤,所以13λ=,C正确;过点A作AH⊥PC于点H,由于CD⊥平面APC,AH⊂平面APC,所以AH⊥CD,因为PC CD C⋂=,所以AH⊥平面PCD,故AH即为点A到平面PCD的距离,因为PA⊥AC,所以3AP ACAHPC⋅==,D选项错误故选:D8.已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左,右焦点,A是C的左顶点,点P在过A且斜率为6的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为A.23B.12C.13D.14【正确答案】D【详解】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为12PF F△为等腰三角形,12120F F P∠=︒,所以PF2=F1F2=2c,由AP222tan sin cosPAF PAF PAF∠=∴∠∠=由正弦定理得2222sinsinPF PAFAF APF∠=∠,所以22214,π54sin()322c a c ea c PAF=∴==+-∠,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、多选题9.以下四个命题表述正确的是()A .直线4120()+-=∈R mx y m 恒过定点(0,3)B .已知直线0x y m +-=与直线(32)0+-=x m y 互相垂直,则2m =C .圆22:28130C x y x y +--+=的圆心到直线4330x y -+=的距离为2D .两圆22440x y x y ++-=与222120x y x ++-=的公共弦所在的直线方程为260x y ++=【正确答案】AB【分析】将直线4120()+-=∈R mx y m 转化为()430mx y +-=对m R ∈恒成立,即可判断A 是否正确;根据直线垂直的关系可知(32)=011+1m ⋅-⋅,解出m 的值,即可判断B 是否正确;求出圆心坐标,再根据点到直线的距离公式即可判断C 是否正确;将两圆方程联立作差,即可求解两个圆的公共弦方程,进而判断D 是否正确;【详解】直线4120()+-=∈R mx y m ,即()430mx y +-=对m R ∈恒成立,所以直线恒过定点(0,3),所以A 正确;因为0x y m +-=与直线(32)0+-=x m y 互相垂直,所以(32)=011+1m ⋅-⋅,所以2m =,所以B 正确;因为圆22:28130C x y x y +--+=的圆心坐标为()1,4,所以圆心()1,4到直线4330x y -+=的距离为412315-+=,所以C 错误;将两圆22440x y x y ++-=与222120x y x ++-=方程联立,作差可得260x y -+=,所以D 错误.故选:AB.10.已知圆M :22(1cos )(sin )1x y θθ--+-=,直线l :0kx y k --=,下面命题中正确的是()A .对任意实数k 与θ,直线l 和圆M 有公共点;B .对任意实数k 与θ,直线l 与圆M 都相离;C .存在实数k 与θ,直线l 和圆M 相交;D .对任意实数k ,必存在实数θ,使得直线l 与圆M 相切.【正确答案】ACD【分析】由题意求得圆M 与直线l 有公共点()1,0;求得圆心到直线l 的距离为d r ≤;即可得出答案.【详解】解:对于A ,圆M :22(1cos )(sin )1x y θθ--+-=的圆心为()1cos ,sin θθ+,半径为=1r ;无论θ取何值,都有22(11cos )(sin )1θθ--+=,∴圆过定点()1,0;又直线l :0kx y k --=可化为()10k x y --=,过定点()1,0;∴直线l 和圆M 有公共点()1,0,A 正确;对于B ,圆心M 到直线l 的距离为()sin 1d r θα==-≤=,其中tan k α=;∴d r ≤,故B 错误;根据B 的分析,可得C 、D 正确.故选:ACD11.某颗人造地球卫星的运行轨道是以地球的中心F 为一个焦点的椭圆,如图所示,已知它的近地点A (离地面最近的点)距地面m 千米,远地点B (离地面最远的点)距地面n 千米,并且F A B、、三点在同一直线上,地球半径约为R 千米,设该椭圆的长轴长、短轴长、焦距分别为222a b c 、、,则A .a c m R -=+B .a c n R +=+C .2a m n =+D .b =【正确答案】ABD【分析】根据条件数形结合可知m a c Rn a c R =--⎧⎨=+-⎩,然后变形后,逐一分析选项,得到正确答案.【详解】因为地球的中心是椭圆的一个焦点,并且根据图象可得m a c Rn a c R =--⎧⎨=+-⎩,(*)a c m R ∴-=+,故A 正确;a c n R +=+,故B 正确;(*)两式相加22m n a R +=-,可得22a m n R =++,故C 不正确;由(*)可得m R a c n R a c+=-⎧⎨+=+⎩,两式相乘可得()()22m R n R a c++=-222a c b -= ,()()2b m R n R b ∴=++⇒=,故D 正确.故选ABD本题考查圆锥曲线的实际应用问题,意在考查抽象,概括,化简和计算能力,本题的关键是写出近地点和远地点的方程,然后变形化简.12.在正方体1111ABCD A B C D -中,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当λμ=时,1//A P 平面1ACD B .当1μ=时,三棱锥1P A BC -的体积为定值C .当1λ=时,PBD △的面积为定值D .当1λμ+=时,直线1A D 与1D P 所成角的范围为,32ππ⎡⎤⎢⎥⎣⎦【正确答案】ABD【分析】对于A 选项,确定P 点在面对角线1BC 上,通过证明面面平行,得线面平行;对于B 选项,确定P 点在棱11B C 上,由等体积法,说明三棱锥1P A BC -的体积为定值;对于C 选项,确定P 点在棱1CC 上,PBD △的底BD 不变,高PE 随点P 的变化而变化;对于D 选项,通过平移直线1A D ,找到异面直线1A D 与1D P 所成的角,在正11D B C △中,确定其范围.【详解】对于A 选项,如下图,当λμ=时,P 点在面对角线1BC 上运动,又P ∈平面11A C B ,所以1A P ⊂平面11A C B ,在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,则四边形11ABC D 为平行四边形,所以,11//AD BC ,1AD ⊄ 平面11A BC ,1BC ⊂平面11A BC ,1//AD ∴平面11A BC ,同理可证//AC 平面11A BC ,1AD AC A = ,所以,平面11//AC B 平面1ACD ,1A P ⊂ 平面11A BC ,所以,1//A P 平面1ACD ,A 正确;对于B 选项,当1μ=时,如下图,P 点在棱11B C 上运动,三棱锥1P A BC -的体积111113P A BC A BC P PBC V V S B A --==⋅⋅为定值,B 正确;对于C 选项,当1λ=时,如图,P 点在棱1CC 上运动,过P 作PE BD ⊥于E 点,则12PBD S BD PE =⋅△,其大小随着PE 的变化而变化,C 错误;对于D 选项,如图所示,当1λμ+=时,P ,C ,1B 三点共线,因为11//A B CD 且11A B CD =,所以四边形11A B CD 为平行四边形,所以11//A D B C ,所以11D PB ∠或其补角是直线1A D 与1D P 所成角,在正11D B C △中,11D PB ∠的取值范围为,32ππ⎡⎤⎢⎥⎣⎦,D 正确.故选:ABD.三、填空题13.若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______.【正确答案】13和3-.【分析】根据题意,设正方形一边所在直线的倾斜角为α,得到tan k α=,得出对角线所在直线的斜率为tan()4πα+,结合两角和的正切公式,求得1tan 3α=,再结合两直线的位置关系,即可求解.【详解】设正方形一边所在直线的倾斜角为α,其斜率tan k α=,则其中一条对角线所在直线的倾斜角为4πα+,其斜率为tan()4πα+,根据题意值tan()24πα+=,可得tan tantan 1421tan 1tan tan 4πααπαα++==--,解得1tan 3α=,即正方形其中一边所在直线的斜率为13,又由相邻边与这边垂直,可得相邻一边所在直线的斜率为3-.故13和3-.14.若向量()2,4,a m =-,()1,1,2b =-r ,()0,2,3c =- 共面,则m =______.【正确答案】7【分析】根据a b c λμ=+可构造方程组求得结果.【详解】,,a b c共面,(),a b c R λμλμ∴=+∈ ,204223m λλμλμ=+⎧⎪∴-=-+⎨⎪=-⎩,解得:217m λμ=⎧⎪=-⎨⎪=⎩,m 7∴=.故答案为.715.已知函数()()2f x k x =--有两个不同的零点,则常数k 的取值范围是___________.【正确答案】⎛⎤⎥ ⎝⎦【分析】先求函数的定义域,再将原问题转换为半圆与直线存在2个交点.【详解】()f x 的定义域为210,11x x -≥-≤≤,原问题等价于()g x =与()()2k x k x =-有两个交点,求k 的取值范围,()k x 为过定点()2,0的直线,()()221,0g x x g x +=≥,所以()g x 为圆心在原点,半径为1的圆的x 轴的上半部分,()g x 与()k x的大致图像如下:考虑直线()k x 与半圆()g x相切的情况:1=,解得21,3k k ==(舍)或k =,∴k ⎛⎤∈ ⎥ ⎝⎦.故⎛⎤ ⎥ ⎝⎦.16.已知直线l 与圆22:4O x y +=交于()()1122,,,A x y B x y 两点,且2AB =,则112244x y x y +++++的最大值为___________.【正确答案】8+8,A B 到直线40x y ++=的距离之和,根据梯形中位线知其最大值是AB 的中点M 到直线40x y ++=的距离的2倍.求出M 的轨迹即可求得该最大值.,A B 到直线40x y ++=的距离之和,其最大值是AB 的中点M 到直线40x y ++=的距离的2倍.由题可知,OAB 为等边三角形,则OM ,∴AB 中点M 的轨迹是以原点O故点M 到直线40x y ++==+(2,∴112244x y x y +++++的最大值为(28+.故答案为.8+四、解答题17.已知直线l 过点(2,2)P .(1)若直线l 与360x y -+=垂直,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【正确答案】(1)380x y +-=;(2)y x =或40x y +-=【分析】(1)由垂直斜率关系求得直线l 的斜率,再由点斜式写出方程;(2)分别讨论截距为0、不为0,其中不为0时可设为0x y m ++=,代入点P ,即可求得参数m【详解】(1)直线360x y -+=的斜率为3,则直线l 的斜率为13-,则直线l 的方程为()1223y x -=--,即380x y +-=;(2)当截距为0时,直线l 的方程为y x =;当截距不为0时,直线l 设为0x y m ++=,代入(2,2)P 解得4m =-,故直线l 的方程为40x y +-=.综上,直线l 的方程为y x =或40x y +-=18.如图,在棱长为1的正方体1111ABCD A B C D -中,E ,F 分别为1DD ,BD 的中点,点G 在CD 上,且14CG CD =.(1)求证:1EF B C ⊥;(2)求EF 与C 1G 所成角的余弦值.【正确答案】(1)证明见解析;(233【分析】(1)建立空间直角坐标系,直接利用向量法证明1EF B C ⊥;(2)直接利用向量法求EF 与CG 所成角的余弦值【详解】(1)建立以D 点为坐标原点,1,,DA DC DD 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则1(0,0,)2E ,11(,,0)22F ,1(1,1,1)B ,(0,1,0)C ,则111(,,)222EF =-uu u r ,1(1,0,1)B C =--,所以()()111101022EF B C ⎛⎫⋅=⨯-++-⨯-= ⎪⎝⎭,即1EF B C ⊥ ,所以1EF B C ⊥.(2)由(1)知,3(0,,0)4G ,1(0,,0)4CG =- ,则110024cos ,||||EF CG EF CG EF CG ⎛⎫+⨯-+ ⎪⋅<>==⋅,因为EF 与CG 所成角的范围为0,2π⎡⎤⎢⎥⎣⎦19.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮,否则被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第二轮考核的概率.【正确答案】(1)36125;(2)1325.【分析】(1)把该选手进入第三轮才被淘汰的事件视为三个相互独立事件的积,再用概率的乘法公式计算即可;(2)把该选手至多进入第二轮考核的事件拆成两个互斥事件的和,再用互斥事件的加法公式计算即得.【详解】记“该选手正确回答第i 轮问题”为事件(1,2,3)i A i =,则14()5P A =,23()5P A =,32()5P A =,(1)该选手进入第三轮才被淘汰的事件为123A A A ,其概率为123123()()()()P A A A P A P A P A ==43236(1)555125⨯⨯-=;(2)该选手至多进入第二轮考核的事件为112A A A +,其概率为11211244313()()()()(1)(1)55525P A A A P A P A P A +=+=-+⨯-=.20.第19届亚运会将于2022年9月在杭州举行,志愿者的服务工作是亚运会成功举办的重要保障.某高校承办了杭州志愿者选拔的面试工作.现随机抽取了100名候选者的面试成绩,并分成五组:第一组[)45,55,第二组[)55,65,第三组[)65,75,第四组[)75,85,第五组[)85,95,绘制成如图所示的频率分布直方图.已知第三、四、五组的频率之和为0.7,第一组和第五组的频率相同.(1)求a ,b 的值;(2)计算本次面试成绩的众数和平均成绩;(3)根据组委会要求,本次志愿者选拔录取率为19%,请估算被录取至少需要多少分.【正确答案】(1)0.005,0.025a b ==;(2)众数为70,平均成绩为69.5分;(3)78分.【分析】(1)先算出第五组频率,可得a .后由前两组频率和为0.3可得b .(2)由众数,平均数计算公式可得答案.(3)中位数对应录取率为50%,本题即是求频率0.81所对应分数.【详解】(1)由题图可知组距为10.第三组,第四组频率之和为()0.0450.020100.65+⨯=,又后三组频率和为0.7,则第五组频率为0.05,第一组频率也为0.05,故第二组频率为0.25.得0.005,0.025a b ==.(2)由题图可知第三个矩形最高,故众数为6575702+=.平均数为()10500.005600.025700.045800.020900.00569.5⨯⨯+⨯+⨯+⨯+⨯=.(3)前三组频率之和为()100.0050.0250.0450.75⨯++=0.81<.前四组频率之和为0.75100.020.950.81+⨯=>.故频率0.81对应分数在75到85之间.设分数为x ,则有()750.020.750.81x -⨯+=,解得78x =.故若要求选拔录取率为19%,至少需要78分.21.已知椭圆2222:1(0)x y E a b a b+=>>右焦点为(2,0)F ,离心率6e =(1)求椭圆E 的方程;(2)过焦点F 且倾斜角为锐角的直线l 与圆222x y b +=相切,与椭圆E 相交于M 、N 两点,求椭圆的弦MN 的长度.【正确答案】(1)2213x y +=【分析】(1)根据离心率和焦点即可求解a =b ,(2)根据直线与圆相切求解得1k =,进而联立直线与椭圆方程,由弦长公式即可求解.【详解】(1)由题意可知:3c c a ===,解得a =1b ==,所以椭圆的方程为2213x y +=(2)设直线l的方程为(0y k x ,k =->,由于直线l 与圆221x y +=1=,解得1k =,1k =-(舍去),故直线l的方程为y x =-联立直线与椭圆的方程22243013y x x x y ⎧=⎪⇒-+=⎨+=⎪⎩,设()()1122,,,M x y N x y ,所以1212,324x x x x +=⋅=,由弦长公式得12MN x x =-22.已知半径为C 的圆心在y 轴的正半轴上,且直线20x y ++=与圆C 相切.(1)求圆C 的标准方程.(2)若圆C 的一条弦经过点()0,2M ,求这条弦的最短长度.(3)已知()0,2A -,P 为圆C 上任意一点,试问在y 轴上是否存在定点B (异于点A ),使得PB PA为定值?若存在,求点B 的坐标;若不存在,请说明理由.【正确答案】(1)22(8)50x y +-=;(2)(3)存在,点B 的坐标为(0,3).【分析】(1)由题意圆心坐标为(0,)(0)b b >,可设出圆标准方程,根据圆心到直线的距离等于半径(2)先判断点M 在圆内,由圆的集合性质可得直线CM 与这条弦垂直时,这条弦的长度最短从而可得出答案.(3)设(0B ,)(2)m m ≠-,(,)P x y ,分别表示出||PB ,||PA ,由||||PB PA 为定值得出答案.【详解】(1)由题意设圆心坐标为(0,)(0)b b >,则圆C 的方程为22()50(0)x y b b +-=>.因为直线20x y ++=与圆C 相切,所以点(0,)C b 到直线20x y ++=的距离d =因为0b >,所以8b =,故圆C 的标准方程为22(8)50x y +-=;(2)因为6CM =<,所以当直线CM 与这条弦垂直时,这条弦的长度最短,故所求最短弦长为=(3)假设存在定点B ,设(0B ,)(1)m m ≠-,(,)P x y ,则22250(8)1614x y y y =--=-+-,则PB PA=当21416201020m m--=>-,即3(2m m ==-舍去)时,||||PB PA 为定值,且定值为12,故存在定点B ,且B 的坐标为(0,3).。

湖北省武汉市武昌实验中学2024-2025学年高二上学期10月月考数学试卷

湖北省武汉市武昌实验中学2024-2025学年高二上学期10月月考数学试卷

湖北省武汉市武昌实验中学2024-2025学年高二上学期10月月考数学试卷一、单选题1.已知()()1,2,,,1,2a y b x =-=r r,且()2a b +r r ∥()2a b -r r ,则( ) A .1,13x y ==B .1,42x y ==-C .12,4x y ==D .1,1x y ==- 2.已知空间向量()1,1,2a =-r ,()1,2,1b =-r ,则向量b r 在向量a r上的投影向量是( )A .⎝⎭B .()1,1,1-C .555,,663⎛⎫- ⎪⎝⎭D .111,,424⎛⎫- ⎪⎝⎭3.将一枚质地均匀的骰子连续抛掷8次,得到的点数分别为1,2,3,,4,5,5,6x ,则这8个点数的中位数为4的概率为( )A .23B .12C .13 D .164.如图,空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r ,OC c =u u u r r,点M 在OA 上,且23OM OA =u u u u r u u u r ,点N 为BC 中点,则MN u u u u r等于( )A .111222a b c +-r r rB .211322a b c -++r r rC .221332a b c +-r r rD .221332a b c -+-r r r5.如图,在平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,侧面11A ADD 是正方形,且1120A AB ∠=︒,60DAB ∠=︒,2AB =,若P 是1C D 与1CD 的交点,则异面直线AP 与DC 的夹角的余弦值为( )A B C D 6.小刚参与一种答题游戏,需要解答A ,B ,C 三道题.已知他答对这三道题的概率分别为a ,a ,12,且各题答对与否互不影响,若他恰好能答对两道题的概率为14,则他三道题都答错的概率为( )A .12B .13C .14D .167.阅读材料:数轴上,方程()00Ax B A +=≠可以表示数轴上的点;平面直角坐标系xOy 中,方程0Ax By C ++=(A B 、不同时为0)可以表示坐标平面内的直线;空间直角坐标系O xyz -中,方程0Ax By Cz D +++=(A B C 、、不同时为0)可以表示坐标空间内的平面.过点()000,,P x y z 一个法向量为(),,n a b c =r平面α方程可表示为()()()0000a x x b y y c z z -+-+-=.阅读上面材料,解决下面问题:已知平面α的方程为10x y z -++=,直线l 是两平面20x y -+=与210x z -+=的交线,则直线l 与平面α所成角的正弦值为( )A B C D 8.三棱锥A BCD -满足4+=+=BC AC BD AD ,二面角C AB D --的大小为60︒,CD AB ⊥,AB =1CD =,则三棱锥A BCD -外接球的体积为( )A .7πB .28π3C .27D二、多选题9.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是( ) A .若A 与B 相互独立,则()12P A B =U B .若()14P AB =,则事件A 与B 相互独立C .若A 与B 互斥,则()12P A B =U D .若B 发生时A 一定发生,则()14P AB =10.若三棱锥M ABC -的体积是三棱锥P ABC -体积的13,且23PM PA PB PC λ=-+u u u u r u u u r u u u r u u u r ,则λ的值可能为( )A .13B .23C .13-D .32-11.如图,四棱锥P ABCD -中,面PAB ⊥面ABCD ,且AD ∥,22BC AD BC ==,1,AP BP Q ==是棱PD 的中点,π2APB ADC BCD ∠∠∠===,则( )A .CQ ∥平面PAB B .CQ ⊥平面PADC .CQ 和平面PBCD .四面体Q BCD -外接球的表面积为5π2三、填空题12.直线1l 过点()4,A a ,()1,3B a -两点,直线2l 过点()2,3C ,()1,2D a --两点,若12l l ⊥,则a =.13.已知集合{}1,3M =,在M 中可重复地依次取出三个数,,a b c ,则“以,,a b c 为边长恰好构成三角形”的概率是.14.已知21,e e u r u u r 是空间单位向量,1212e e ⋅=u r u u r .若空间向量b r满足1252,2b e b e ⋅=⋅=u r u u r r r ,且对于任意,R x y ∈,()()()120102001,R b xe ye b x e y e x y -+≥-+=∈u r u r u r u r r r ,则0y =,b =r.四、解答题15.已知平面内两点()6,6A -,()2,2B .(1)求过点()1,3P 且与直线AB 垂直的直线l 的方程.(2)若ABC V 是以C 为顶点的等腰直角三角形,求直线AC 的方程.16.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为()1101p p <<,收到0的概率为11p -;发送1时,收到0的概率为()2201p p <<,收到1的概率为21p -.现有两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码(例如,若收到1,则译码为1,若收到0,则译码为0);三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1,若依次收到1,1,1,则译码为1).(1)已知1223,34p p ==.①若采用单次传输方案,重复发送信号0两次,求至少收到一次0的概率;②若采用单次传输方案,依次发送0,0,1,证明:事件“第三次收到的信号为1”与事件“三次收到的数字之和为2”相互独立.(2)若发送1,采用三次传输方案时译码为0的概率大于采用单次传输方案时译码为0的概率,求2p 的取值范围.17.如图,已知斜三棱柱111ABC A B C -中,π2BAC ∠=,12π3BAA ∠=,1π3CAA ∠=,1AB AC ==,12AA =,点O 是1B C 与1BC 的交点.(1)用向量AB u u u r,AC u u u r ,1AA u u u r 表示向量AO u u u r ;(2)求异面直线AO 与BC 所成的角的余弦值; (3)判定平面ABC 与平面11B BCC 的位置关系.18.如图1,直角梯形ABED 中,1,2,,AB AD DE AD DE BC DE ===⊥⊥,以BC 为轴将梯形ABED 旋转180︒后得到几何体W ,如图2,其中,GF HE 分别为上下底面直径,点,P Q 分别在圆弧,GF HE 上,直线//PF 平面BHQ .(1)证明:平面BHQ ⊥平面PGH ;(2)若直线GQ 与平面PGH P 到平面BHQ 的距离; (3)若平面BHQ 与平面BEQ 夹角的余弦值为13,求HQ .19.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R .A 、B 、C 为球面上三点,劣弧BC 的弧长记为a ,设0O 表示以O 为圆心,且过B 、C 的圆,同理,圆32,O O 的劣弧AC 、AB 的弧长分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.若设二面角,,C OA B A OB C B OC A ------分别为α,β,γ,则球面三角形的面积为()2πABC S R αβγ=++-V 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设123,,AOC BOC AOB θθθ∠=∠=∠=.则: ①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,(],0,1BE BD λλ=∈u u u r u u u r,S 为AC 中点,T 为BC 中点,设平面OBC 与平面EST 的夹角为θ,求sin θ的最小值,及此时平面AEC 截球O 的面积.。

2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷(含答案)

2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷(含答案)

2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线y=1−x tan72∘的倾斜角为( )A. 108∘B. 72∘C. 118∘D. 18∘2.向量a=(1,2,3),b=(−2,−4,−6),|c|=14,若(a+b)⋅c=−7,则a与c的夹角为( )A. 30∘B. 60∘C. 120∘D. 150∘3.已知直线l1:mx+y−1=0,l2:(3m−2)x+my−2=0,若l1//l2,则实数m的值为( )A. 2B. 1C. 1或2D. 0或134.将一枚均匀的骰子抛掷2次,事件A=“没有出现1点”,事件B=“出现一次1点”,事件C=“两次抛出的点数之和是8”,事件D=“两次掷出的点数相等”,则下列结论中正确的是( )A. 事件A与事件B是对立事件B. 事件A与事件D是相互独立事件C. 事件C与事件D是互斥事件D. 事件C包含于事件A5.已知点M是直线y=x+1上一点,A(1,0),B(2,1),则|AM|+|BM|的最小值为( )A. 2B. 22C. 1+2D. 106.已知在矩形ABCD中,AB=1,BC=3,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则|BD|=( )A. 102B. 62C. 52D. 27.在棱长为2的正方体ABCD−A1B1C1D1中,E为AB的中点,则点A1到平面ECC1的距离为( )A. 15B. 55C. 255D. 258.古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上.下底面均为半圆形的柱体.若AA1垂直于半圆柱下底面半圆所在平面,AA1=3,AB=4,CD=2,E为弧A1B1的中点,则直线CE与平面DEB1所成角的正弦值为( )A. 39921B. 27321C. 24221D. 4221二、多选题:本题共3小题,共18分。

湖北省荆州中学2024-2025学年高二上学期9月月考化学试卷(含答案)

湖北省荆州中学2024-2025学年高二上学期9月月考化学试卷(含答案)

荆州中学2024~2025学年高二上学期九月月考化学试题(全卷满分100分 考试用时75分钟)可能用到的相对原子质量:H-1 C-12 N-14 O-16一、单选题:本题共15小题,每小题3分,共45分。

1.化学与生活密切相关,下列做法与化学反应速率控制无关的是( )A .使用含氟牙膏防龋齿B .洗衣服时使用加酶洗衣粉C .夏天将牛奶放在冰箱保存D .在月饼包装内放置抗氧化剂2.反应在四种不同情况下的反应速率分别为:①;②③;④该反应进行的快慢顺序为( )A .①>②=③>④B .④>③=②>①C .②>①=④>③D .①>④>②=③3.下列离子方程式书写正确的是()A .酸性溶液与溶液反应:B .少量气体通入足量NaClO 溶液中:C .和HI 的反应:D .向溶液中通入少量:4.可逆反应:的图像如图甲所示;若其他条件都不变,只是在反应前加入合适的催化剂,则其图像如图乙所示。

现有下列叙述:甲 乙①;②;③;④;⑤;⑥;⑦甲图与乙图中阴影部分的面积相等;⑧图乙中阴影部分面积更大。

则以上所述各项正确的组合为( )A .②④⑤⑦B .②④⑥⑧C .②③⑤⑦D.②④⑤⑧()()()()A g 3B g 2C g 2D g ++A()11A 0.45mol L min v --=⋅⋅()11B 0.6mol L s v --=⋅⋅()11C 0.4mol L s v --=⋅⋅()11D 0.45mol L sv --=⋅⋅4KMnO 224H C O 22424222MnO 5C O 16H 2Mn 10CO 8H O --++++=+↑+2SO 2224SO H O ClO Cl SO 2H---+++=++()3Fe OH ()323Fe OH 3H Fe3H O+++=+2FeI 2Cl 222I Cl I 2Cl --+=+()()()()A g B g C g D g m n p g ++Av t -v t -21a a =21a a <21b b =21b b <21t t >21t t =5.下列事实不能用勒夏特列原理来解释的是( )A .实验室中常用排饱和食盐水的方法收集B .鼓入过量空气有利于转化为C .、、HI 三者的平衡混合气,加压(缩小容器体积)后颜色变深D .开启啤酒瓶后,压强变小,瓶中立刻泛起大量泡沫6.下列热化学方程式中说法正确的是()A .CO 的燃烧热是,则:B .已知1g 液态肼和足量液态过氧化氢反应生成氮气和水蒸气时放出20.05kJ 的热量,则C .,则含20gNaOH 的稀溶液与过量浓硫酸完全反应,放出的热量为28.7kJ D . ,在密闭容器中充入、,充分反应后放出47.2kJ 的热量7.下列实验方案的设计和实验目的都正确的是( )选项实验方案实验目的A向等体积等浓度的溶液中分别加入5滴等浓度的和溶液,观察气体产生的速度比较和的催化效果B,在平衡体系中加入KCl 晶体探究生成物浓度对化学平衡的影响C 分别向盛有2g 锌粒(大小基本相同)的锥形瓶中加入40mL1mol/L 和40mL18mol/L 的硫酸,比较两者收集10mL 气体所用的时间探究硫酸浓度对反应速率影响D 将球分别浸泡在冰水和热水中探究温度对化学平衡的影响A .AB .BC .CD .D8.和CO 是环境污染性气体,可在表面转化为无害气体,其反应为,有关化学反应的物质变化过程如图1,能量变化过程如图2。

湖北省襄阳市第五中学2023-2024学年高二上学期9月月考数学试卷

湖北省襄阳市第五中学2023-2024学年高二上学期9月月考数学试卷

湖北省襄阳市第五中学2023-2024学年高二上学期9月月考数学试卷一、单选题1310y ++=的倾斜角是( ) A .30︒B .60︒C .120︒D .150︒2.若事件A 与B 相互独立,P (A )=23,P (B )=14,则P (A ∪B )=( )A .16B .712 C .34D .11123.盒子中有四张卡片,分别写有“笔墨纸砚”四个字,有放回地从中任取一张卡片,直到“纸”“砚"两个字都取到就停止,用随机模拟的方法估计恰好在第三次取到卡片后停止的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“笔墨纸砚”这四个字,以每三个随机数为一组,表示三次的结果,经随机模拟产生了以下20组随机数: 343 432 314 134 234 132 243 331 112 324 342 241 244 342 124 431 233 214 344 434由此可以估计,恰好第三次结束时就停止的概率为( ) A .220B .15C .14D .354.关于直线l 、m 及平面α、β,下列命题中正确的是( ) A .若//l α,m αβ=I ,则//l m B .若l α⊥,//m α,则l m ⊥ C .若//l α,//m α,则//l mD .若//l α,m l ⊥,则m α⊥5.已知一个足球场地呈南北走向.在一次进攻时,某运动员从A 点处开始带球沿正北方向行进16米到达B 处,再转向北偏东60°方向行进了24米到达C 处,然后起脚射门,则A ,C 两点的距离为( )A .B .C .32米D .6.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,若从甲校和乙校报名的教师中各任选1名,则选出的2名教师性别相同的概率是( ) A .29B .49C .59D .237.若{,,}a b c r r r构成空间的一个基底,则下列向量共面的是( )A .,2,a b a c b c ---r r r r r rB .2,,22b c a b a b c +---r r r r r r rC .2,2,2a b a c b c +-+r r rr r rD .23,,a b c a b a c ++++r r r r r r r8.若动点A 、B 分别在两条平行直线1l :260x ny +-=和2l :50x y +-=上移动,则直线1l 与2l 的距离以及AB 中点M 到原点距离的最小值分别为( )A B .C D二、多选题9.给出下列四个命题,其中正确的命题有( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B .抛掷一颗质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则A 与B 互为对立事件C .抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D .随机事件发生的频率不一定是这个随机事件发生的概率 10.以下命题正确的是( )A .直线l 的方向向量()1,1,2a =-r ,直线m 的方向向量()1,2,1b =r,则l m ⊥ B .直线l 的方向向量()0,1,1a =-r ,平面α的法向量()1,1,1n =--r,则//l α C .两个不同平面,αβ的法向量分别为()()122,1,0,4,2,0n n =-=-u r u u r,则//αβD .平面α经过三点()()()1,0,1,0,1,0,1,2,0A B C --,向量()1,,=rn u t 是平面α的法向量,则1,0u t ==11.(多选)若圆上的点()2,1关于直线0x y +=的标准方程可能是( )A .225x y +=B .()2215x y -+=C .()2215x y ++=D .()()22115x y -++=12.在正方体1111ABCD A B C D -中,M ,N ,R 分别为BC ,1CC ,1BB 的中点,则下列说法正确的是( )A .1BB AN ⊥B .1//A R 平面AMNC .设1AB =,且P ,Q 分别在线段11AC 与BD 上,则PQ 的最小值为1 D .设点E 在平面11BB C C 内,且1//A E 平面AMN ,则1A E 与平面11BB C C 所成角的正弦三、填空题13.设,R x y ∈,向量(),1,1a x =r ,()1,,1b y =r ,()1,2,1c =-r ,且a c ⊥r r ,b c r r∥,则+=r r a b .14.()1,0,2a =-r在()1,2,2b =r 方向上的投影向量的坐标为. 15.经过点(2,3)P ,并且在y 轴上的截距是在x 轴上的截距的两倍的直线方程为.16.已知D 是ABC V 的边BC 上一点,且3BC BD =u u u r u u u r ,2AD =,tan BAC ∠则2AC A B +的最大值为.四、解答题17.如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =.(1)试用,,OA OB OC u u u r u u u r u u u r 表示向量OG u u u r ;(2)若4,6,8,6090OA OB OC AOC BOC AOB ===∠=∠=︒∠=︒,,求OG AB ⋅u u u r u u u r的值.18.矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方程为360x y --=,点()1,1T -在AD 边所在直线上.(1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆E 的方程.19.甲乙丙三人独立地破译一份密码,已知各人能破译的概率分别为()1,,014p p p <<.(1)当13p =时,求三人中恰好两个人成功破译的概率; (2)设事件A =“密码被三人中恰好一人成功破译”,求()P A 的最大值.20.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin 2cos A A =(1)求B ;(2)若2a c =,ABC V b . 21.设直线l 的方程为()()1520R a x y a a ++--=∈. (1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(,0)A A x ,(0,)B B y ,当A O B V 面积最小时,求此时的直线方程;(3)当直线l 在两坐标轴上的截距均为正整数且a 也为正整数时,求直线l 的方程. 22.如图,在三棱柱111ABC A B C -中,底面是边长为2的等边三角形,12,,CC D E =分别是线段1,AC CC 的中点,1C 在平面ABC 内的射影为D .(1)求证:1AC ⊥平面BDE ; (2)若点F 为棱11B C 的中点,求点F 到平面BDE 的距离;(3)若点F 为线段11B C 上的动点(不包括端点),求锐二面角F BD E --的余弦值的取值范围.。

湖北新高考联考协作体2024年高一上学期9月月考数学试题及答案

湖北新高考联考协作体2024年高一上学期9月月考数学试题及答案

2024年湖北省高一9月月考高一数学试卷命制单位:新高考试题研究中心考试时间:2024年9月26日下午14:00-16:00 试卷满分:150分注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“2,10x x x ∃∈+−=R ”的否定为()A.2,10x x x ∃∉+−=RB.2,10x x x ∃∈+−≠RC.2,10x x x ∀∈+−≠RD.2,10x x x ∀∉+−=R 2.已知集合{}{}31,2A x x B x x =−≤≤=≤∣∣,则A B ∩=()A.{}21xx −≤≤∣ B.{}01x x ≤≤∣C.{}32xx −≤≤∣ D.{}12x x ≤≤∣3.下列命题为真命题的是()A.0a b ∀>>,当0m >时,a m a b m b+>+B.集合{}21A x y x ==+∣与集合{}21B y y x ==+∣是相同的集合.C.若0,0b a m <<<,则m m a b>D.所有的素数都是奇数4.已知15,31a b −<<−<<,则以下错误的是()A.155ab −<<B.46a b −<+<C.28a b −<−<D.553a b−<< 5.甲、乙、丙、丁四位同学在玩一个猜数字游戏,甲、乙、丙共同写出三个集合:{0Δ2}A x x =<<∣,{}235,03B x x C x x =−≤≤=<<∣,然后他们三人各用一句话来正确描述“Δ”表示的数字,并让丁同学猜出该数字,以下是甲、乙、丙三位同学的描述,甲:此数为小于5的正整数;乙:x B ∈是x A ∈的必要不充分条件;丙:x C ∈是x A ∈的充分不必要条件.则“Δ”表示的数字是( )A.3或4B.2或3C.1或2D.1或36.已知不等式20ax bx c ++<的解集为{1x x <−∣或3}x >,则下列结论正确的是()A.0a >B.0c <C.0a b c ++<D.20cx bx a −+<的解集为113x x−<<7.已知8m <,则48m m +−的最大值为()A.4 B.6 C.8 D.108.向50名学生调查对A B 、两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对,A B 都不赞成的学生数比对,A B 都赞成的学生数的三分之一多1人.则下列说法错误的是( )A.赞成A 的不赞成B 的有9人B.赞成B 的不赞成A 的有11人C.对,A B 都赞成的有21人D.对,A B 都不赞成的有8人二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错得0分9.巴黎奥运会已经结束,但是中国运动健儿们在赛场上为国拼搏的精神在我们的心中永存.某学校组织了以“奥运赛场上最难忘的瞬间”为主题的作文大赛,甲、乙、丙、丁四人进入了决赛.四人在成绩公布前作出如下预测:甲预测说:我不会获奖,丙获奖:乙预测说:甲和丁中有一人获奖:丙预测说:甲的猜测是对的:丁预测说:获奖者在甲、乙、丙三人中.成绩公布后表明,四人的预测中有两人的预测与结果相符,另外两人的预测与结果不符,已知有两人获奖,则获奖者可能是( ),A.甲和乙B.乙和丙C.甲和丙D.乙和丁10.中国古代重要的数学著作《孙子算经》下卷有题:“今有物,不知其数,三三数之,剩二:五五数之,剩三;七七数之,剩二.问:物几何?”现有如下表示:已知{}*32,A xx n n ==+∈N ∣,{}{}**53,,72,B xx n n C x x n n ==+∈==+∈N N ∣∣,若()x A B C ∈∩∩,则下列选项中符合题意的整数x 为( )A.8 B.23 C.37 D.12811.已知,,a b c ∈R ,则下列结论中正确的有()A.若0ab ≠且a b <,则11a b >B.若22ac bc >,则a b>C.若0a b >>,则11a b a b −>−D.()221222a b a b ++≥−−三、填空题:本题共3小题,每小题5分,共15分.12.已知2x =在不等式()2140k x kx −−−≥的解集中,则实数k 的取值范围是__________.13.已知66M x x=∈∈ −N N ,则集合M 的子集的个数是__________.14.知0x y >>,则()29x y x y +−的最小值为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设R 为全集,集合{}{}2121,22,02A x a x a B y y x x x =+≤≤+==+−≤≤∣∣.(1)若3a =,求(),A B A B ∩∩R ;(2)若A B ⊆,求实数a 的取值范围.16.(本小题满分15分)(1)已知集合{}{}11,13A xa x a B x x =−≤≤+=−≤≤∣∣,若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.(2)命题:p m ∈R 且10m +≤,命题2:,10q x x mx ∀∈++≠R ,若p 与q 不同时为真命题,求m 的取值范围.17.(本小题满分15分)已知函数()223f x ax ax =−−.(1)已知0a >,且()0f x ≥在[)3,∞+上恒成立,求a 的取值范围;(2)若关于x 的方程()0f x =有两个不相等的正实数根12,x x ,求2212x x +的取值范围.18.(本小题满分17分)学习了不等式的内容后,老师布置了这样一道题:已知0,0a b >>,且1a b +=,求12y a b=+的最小值. 李雷和韩梅梅两位同学都“巧妙地用了1a b +=”,但结果并不相同.李雷的解法:由于1a b +=,所以1212121111y a b a b a b a b a b=++−=+++−=+++−,而122,a b a b +≥+≥.那么211y ≥+=+则最小值为1+韩梅梅的解法:由于1a b +=,所以()121223b a y a b a b a b a b =+=++=++ ,而2333b a a b ++≥+=+则最小值为3+. (1)你认为哪位同学的解法正确,哪位同学的解法有错误?(错误的需说明理由)(2)为巩固学习效果,老师布置了另外两道题,请你解决:(i )已知0,0,0a b c >>>,且1a b c ++=,求证:1119a b c++≥(ii )已知0,0,21a b a b >>+=,求212b a ab++的最小值19.(本小题满分17分)学习机是一种电子教学类产品,也统指对学习有辅助作用的所有电子教育器材.学习机较其他移动终端更注重学习资源和教学策略的应用,课堂同步辅导、全科辅学功能、多国语言学习、标准专业词典以及内存自由扩充等功能成为学习机的主流竞争手段,越来越多的学习机产品全面兼容网络学习、情境学习、随身学习机外教、单词联想记忆、同步教材讲解、互动全真题库、权威词典、在线图书馆等多种模式,以及大内存和SD/MMC 卡内存自由扩充功能根据市场调查,某学习机公司生产学习机的年固定成本为20万元,每生产1万部还需另投入16万元.设该公司一年内共生产该款学习机x 万部并全部销售完,每万部的销售收入为()R x 万元,且()24,010,5300,10.a x x R x b x xx −<≤ = −> 当该公司一年内共生产该款学习机8万部并全部销售完时,年利润为1196万元;当该公司一年内共生产该款学习机20万部并全部销售完时,年利润为2960万元. (1)写出年利润W (万元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款学习机的生产中所获得的利润最大?并求出最大利润.2024年湖北省高一9月月考高一数学答案一、单选题 12 3 4 5 6 7 8 C A C D C D A B二、多选题910 11 AC BD BCD4.【详解】因为15,31a b −<<−<<,所以13b −<−<,对于A ,当05,01a b ≤<≤<时,05ab ≤<;当05,30a b ≤<−<<时,03b <−<,则015ab ≤−<,即150ab −<≤;当10,01a b −<<≤<时,01a <−<,则01ab ≤−<,即10ab −<≤;当10,30a b −<<−<<时,01,03a b <−<<−<,则03ab <<;综上,155ab −<<,故A 正确;对于B ,314156a b −−=−<+<+=,故B 正确;对于C ,112358a b −−=−<−<+=,故C 正确;对于D ,当14,2a b ==时,8a b=,故D 错误, 5.【详解】因为此数为小于5的正整数,所以2{02}0A x x x x =<∆<=<< ∆∣,.因为x B ∈是x A ∈的必要不充分条件,x C ∈是x A ∈的充分不必要条件,所以C 是A 的真子集,A 是B 的真子集,所以25≤∆且223>∆,解得235≤∆<,所以“∆”表示的数字是1或2,故C 正确. 6.【详解】由已知可得2y ax bx c ++开口向下,即0a <;1,3x x =−=是方程20ax bx c ++=的两个根,即1322,313b a b a c a c a−=−+= ⇒=−=− =−× ,显然220;2340;0320c a b c a a a a c bx a ax ax a >++=−−=−>−+<⇒−++<()()21321311013x x x x x ⇒−−=+−<⇒−<<,故D 正确.7.【详解】因为8m <,则80m −<,可得()44888488m m m m−+=−+−≥−=− −− ,即448m m +≤−,当且仅当488m m −=−,即6m =时,等号成立,所以48m m +−的最大值为4. 8.【详解】赞成A 的人数为350305×=,赞成B 的人数为30333+=.记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ,赞成事件B 的学生全体为集合B.如图所示,设对事件A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成的学生人数为13x +.赞成A 而不赞成B 的人数为30x −,赞成B 而不赞成A 的人数为33x −.依题意()()30331503x x x x −+−+++=,解得21x =. 所以赞成A 的不赞成B 的有9人,赞成B 的不赞成A 的有12人,对A ,B 都赞成的有21人,对A ,B 都不赞成的有8人.9.【详解】 “甲预测说:我不会获奖,丙获奖”,而“丙预测说:甲的猜测是对的”∴甲和丙的说法要么同时与结果相符,要么同时与结果不符.若甲和丙的说法同时与结果相符,则丁的说法也对,这与“四人的预测中有两人的预测与结果相符,另外两人的预测与结果不符已知有两人获奖”相矛盾,故错误;若甲和丙的说法与结果不符,则乙、丁的预测成立所以甲获奖,丁不获奖;丙或乙获奖.10.【详解】因为23372543732=×+=×+=×+,故()23A B C ∈∩∩;128342252537182=×+=×+=×+,故()128A B C ∈∩∩;因8711=×+,则8;373121C ∉=×+,则37A ∉11.【详解】对A :当0a b <<时,结论不成立,故A 错误;对于B 因为22ac b >,所以20c >,所以,a b >故B 正确;对于()1111:C a b a b a b b a −−−=−+−,因为0a b >>,所以1111,0b a b a >−>,所以()110a b b a −+−> ,即11a b a b −>−,故C 正确;对D :()221222a b a b ++≥−−等价于22(1)(2)0a b −++≥,成立,故D 正确.三、填空题12.4k ≥或[)4,+∞或{}4kk ∣ 13.16 14.1212.【详解】因为2x =在不等式的解集中,把2x =带入不等式得:4(1)240k k −−− ,解得4k 13.【详解】解:因为66x∈−N ,所以61,2,3,6x −=, 又x ∈N ,所以0,3,4,5x =,所以集合{}0,3,4,5M =,所以集合M 的子集个数为4216=个14.【详解】()()2222299362x x x y x y x y x y +≥+=+− +−,当且仅当2x y =的时候取“=”,又223612x x +≥=,当且仅当2x =的时候取“”=.综上,当22x y ==的时候,不等式取“=”条件成立,此时最小值为12四、解答题15.(1)由题意可得{}26B yy =−≤≤∣,当3a =时,{}47Ax x =≤≤∣,所以{}46A B xx ∩=≤≤∣,因为{4A x x =<R ∣ ,或7}x >,所以(){24}A B xx ∩−≤<R ∣ (2)由(1)知,B {}26yy =−≤≤∣,若A =∅,即121a a +>+,解得0a <,此时满足A B ⊆;若A ≠∅,要使A B ⊆,则12112216a a a a +≤+ +≥− +≤ ,解得502a ≤≤, 综上,若A B ⊆,所求实数a 的取值范围为52a a ≤. 16.(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A 真包含于,B 而[]1,1A a a =−+,显然,A B ≠于是1113a a −≥− +≤ ,解得02a ≤≤, 所以a 的取值范围为[]0,2(2)当命题p 为真命题时,1,m ≤−当命题q 为真命题时,240m ∆=−<,即22m −<<,所以p 与q 同时为真命题时有122m m ≤− −<<,解得21,m −<≤− 故p 与q 不同时为真命题时,m 的取值范围是(](),21,−∞−∪−+∞.17.(1)()()[)2223(1)30,3,f x ax ax a x a a x =−−=−−−>∈+∞则二次函数()f x 图象的开口向上,且对称轴为1,x =()f x ∴在[)3,+∞上单调递增,()min ()333,f x f a ∴==−()0f x ≥在[)3,+∞上恒成立,转化为min ()0f x ≥,330a ∴−≥,解得1a ≥,故实数a 的取值范围为[)1,+∞;(2)关于x 的方程()0f x =有两个不相等的正实数根12,x x ,()2121223,0,0,f x ax ax x x x x −−+>>0a ∴≠且2121241202030a a x x x x a ∆=+> +=> ⋅=−>,解得3a <−, ()222121212624,x x x x x x a∴+=+−=+令()64(3)g a a a=+<−,()g a 在(),3−∞−上单调递减,()()()62,0,2,4g a a∴∈−∴∈故2212x x +的取值范围为()2,4.18.(1)韩梅梅的解法正确;李雷的解法错误 在李雷的解法中,12a a+≥,等号成立时1a =;2b b+≥b =,那么取得最小值1+1a b +=这与已知条件1a b +=是相矛盾的.(2)0,0,0a b c >>> ,且1a b c ++=,111a b c a b c a b c a b c a b c++++++∴++=++. 33b a c a c b a b a c b c =++++++≥+++32229=+++=,当且仅当a b c ==时取等号.(3)因为21a b +=,所以12ab −=即21111121111122224224422b a b a a b ab a b ab a b ab a b b a ++−+=++=++=−+++()51151152344442b a a b a b a b a b=+−=++−=++33≥+=+,当且仅当5221b a a b a b = +=,即a b = =时,等号成立.所以2min132b a ab ++=+ 19.解:(1)因为当生产该款学习机8万部并全部销售完时,年利润为1196万元,所以()488208161196a −××−−×=,解得200a =当该公司一年内共生产该款学习机20万部并全部销售完时,年利润为2960万元, 所以253002020201629602020b −×−−×= ,解得40000b =. 当010x <≤时,()()()()2162020041620418420;W xR x x x x x x x =−+=−−+=−+−当10x >时,()()()25300400004000016201620165280W xR x x x x x x x x =−+=−−+=−+ 综上2418420,010,40000165280,10.x x x W x x x −+−< = −−+>(2)①当时2010,4(23)2096x W x <≤=−−+单调递增,所以()max 101420W W ==;.. ②当10x >时,40000165280W x x=−−+,由于40000161600x x += ,当且仅当4000016x x =,即()5010,x =∈+∞时取等号,所以此时W 的最大值为3680综合①②知,当50x =时,W 取得最大值为3680万元..。

2022年湖北省孝感新高考联考协作体9月高二月考考试(数学)试卷

2022年湖北省孝感新高考联考协作体9月高二月考考试(数学)试卷
2022年湖北省孝感新高考联考协作体9月高二月考考试
高二数学试卷
考试时间:2022年 9月8 日下午 试卷满分:150分
一、单选题(本题共8小题,每小题5分,共40分.每小题只有一个选项是符合题目要求的.)
A. B. C. D.
2.已知i为虚数单位,z= ,则复数z的虚部为()
A.-iB.iC.1D.-1
3.设a,b∈R,则“(a-b)a2< 0”是“a<b”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
4.已知 , , ,则()
A. B. C. D.
A. B. C. C,若C关于y轴对称,
则 的最小值是()
A. B. C. D.
(1)求频率分布直方图中a的值以及物理、化学、生物三科总分成绩的中位数;
(2)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);
(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用按比
例分配的分层随机抽样方法抽取了7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.
14.已知圆台的两个底面半径分别为2、4,截得这个圆台的圆锥的高为6,则这个圆台的体积是.
15.已知x>3,则函数 的最小值为.
16.已知球 的球面上的四点A、B、C、D, , , ,则球 的表面积等于.
四、解答题(本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)
17.(10分)设复数z1=1-ai(a∈R),z2=3-4i.
21.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2bsinCcosA+asinA=2csinB.

湖北省随州市广水市第二高级中学2024-2025学年高三上学期9月月考数学试题

湖北省随州市广水市第二高级中学2024-2025学年高三上学期9月月考数学试题

湖北省随州市广水市第二高级中学2024-2025学年高三上学期9月月考数学试题一、单选题1.若“[]1,2x ∃∈,使2210x x λ-+<成立”是假命题,则实数λ的取值范围是( )A.(-∞B.92⎡⎤⎢⎥⎣⎦ C .(],3-∞ D .9,2⎡⎫+∞⎪⎢⎣⎭2.已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( )A .c b a <<B .b a c <<C .a c b <<D .a b c <<3.若1201x x <<<,则 ( ) A .2121ln ln x x e e x x ->- B .2121ln ln x x e e x x -<- C .1221x x x e x e >D .1221x x x e x e <4.已知函数()sin()f x x ωϕ=+(0,||)2πωϕ><的部分图象如图所示,则()f x 的表达式为( )A .()sin(2)6f x x π=+B .()sin(2)6f x x π=-C .()sin()6f x x π=+D .()sin()3f x x π=+5.若n S 为数列{}n a 的前n 项和,且1n nS n =+,则51a =( )A .56B .65C .130D .306.在空间四边形ABCD 中,E ,F 分别是AB ,BC 上的点.若::1:2AE EB CF FB ==,则AC 和平面DEF 的位置关系是 A .平行 B .相交 C .在平面内D .不能确定7.直线()2110x a y +++=的倾斜角的取值范围是( )A .0,4⎡⎤⎢⎥⎣⎦πB .3,4ππ⎡⎫⎪⎢⎣⎭C .0,,42πππ⎡⎤⎛⎫ ⎪⎢⎥⎣⎦⎝⎭UD .3,,424ππππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭8.为调查某地区中学生每天睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9小时,方差为1,抽取高中生1200人,其每天睡眠时间均值为8小时,方差为0.5,则估计该地区中学生每天睡眠时间的方差为( ) A .0.96B .0.94C .0.79D .0.75二、多选题9.若0a b a >>>-,0c d <<,则下列结论正确的是( ) A .ad bc > B .0a b d c+< C .a c b d ->-D .()()a d c b d c ->-10.下列结论正确的是( )A .sin1cos1>B .2117cos cos54ππ⎛⎫-< ⎪⎝⎭ C .()()tan 52tan 47-︒>-︒D .sin sin 1210ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭11.如图所示的是水平放置的三角形直观图,D '是A B C '''V 中B 'C '边上的一点,且D 'C '<D 'B ',A 'D '∥y '轴,那么原ABC V 的AB 、AD 、AC 三条线段中( )A .最长的是AB B .最长的是AC C .最短的是ACD .最短的是AD三、填空题12.若实数λ∈R ,不等式e 1xx x x λλλ++>ln x 在(1,+∞)上恒成立,则λ的取值范围是.13.如图,在ABC V 中1cos 4BAC ∠=,点D 在线段BC 上,且3BD DC =,AD =,则ABC V 的面积的最大值为.14.若已知21()n i i y y =-∑是21()n i i x x =-∑的4倍,1()()n i i i x x y y =--∑是21()ni i x x =-∑的1.5倍,则样本相关系数r 的值为.四、解答题15.已知函数()()24log 23f x ax x =++.(1)若(1)1f =,求()f x 的单调区间; (2)若()f x 的最小值为0,求a 的值.16.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,2,2sin 3sin2c b A C ==. (1)求sin C ; (2)若ABC VAB 边上的中线CD 的长. 17.已知数列{}n a 的前n 项和为n S ,且11a =,11n n a S +=+. (1)求数列{}n a 的通项公式; (2)设()()122n n n n a b S S +=++,数列{}n b 前n 项和为n T ,求证:16n T <.18.已知双曲线224x y -=,直线:(1)l y k x =-,试确定实数k 的取值范围,使: (1)直线l 与双曲线有两个公共点; (2)直线l 与双曲线有且只有一个公共点; (3)直线l 与双曲线没有公共点.19.如图,半圆O 的直径为2cm ,A 为直径延长线上的点,2OA cm =,B 为半圆上任意一点,以AB 为一边作等边三角形.ABC 设AOB α∠=.(1)当π3α=时,求四边形OACB 的周长; (2)克罗狄斯⋅托勒密()Ptolemy 所著的《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当对角互补时取等号,根据以上材料,则当线段OC 的长取最大值时,求.AOC Ð (3)问:B 在什么位置时,四边形OACB 的面积最大,并求出面积的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省高二上学期数学 9 月月考试卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 4 题;共 8 分)
1. (2 分) (2016 高一上·成都期末) 要得到函数 y=log2(2x+1)的图象,只需将 y=1+log2x 的图象( )
A . 向左移动 个单位
B . 向右移动 个单位
C . 向左移动 1 个单位
D . 向右移动 1 个单位
2. (2 分) 若等差数列 和等比数列 满足

,则
()
A.5
B . 16
C . 80
D . 160
3. (2 分) (2020 高一下·陕西月考) 在

面积为
,则
A.
中,内角 , , 的对边分别为 , , , 面积 的最大值为( )
B.
C.
D.
4. (2 分) (2020 高三上·海淀期末) 已知等边
边长为 ,点 在 边上,且

第 1 页 共 19 页


.下列结论中错误的是( )
A.
B. C.
D.
二、 填空题 (共 12 题;共 12 分)
5. (1 分) (2018 高三上·三明期末) 已知向量

,若
,则
________.
6. (1 分) (2016 高一下·海珠期末) 已知关于 x 的不等式 ax2﹣bx+c≥0 的解集为{x|1≤x≤2},则 cx2+bx+a≤0 的解集为________.
7. (1 分) (2016·安徽模拟) 若 f(x)=log3a[(a2﹣3a)x]在(﹣∞,0)上是减函数,则实数 a 的取值 范围是________.
8. (1 分) (2016 高一上·黑龙江期中) 设方程 x+2x=4 的根为 m,方程 x+log2x=4 的根为 n,则 m+n=________.
9. (1 分) 在平行四边形 ABCD 中,E 为 BC 的中点,F 在线段 DC 上,且 CF=2DF.若 =λ +μ μ 均为实数,则 λ+μ 的值为________
, λ,
10. (1 分) (2019 高一下·马鞍山期中) 若对任意 值范围是________.
,不等式
恒成立,则 的取
11. (1 分) (2016 高二上·翔安期中) 在公差不为零的等差数列{an}中,a1=8,且 a1、a5、a7 成等比数列, 则 Sn 最大时,Sn=________.
12. (1 分) (2019 高三上·无锡月考) 已知菱形
的边长为 2,
上,

.若
,则 的值为________.
,点
分别在边
13. (1 分) (2020·江西模拟) 定义新运算:
,已知数列 满足
,且

若对任意的正整数 n,不等式
总成立,则实数 m 的取值范围为________.
第 2 页 共 19 页


14. (1 分) 已知函数 f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则 a+b= ________ 15. (1 分) (2016 高一上·西安期末) 已知实数 x,y 满足(x﹣3)2+(y﹣3)2=8,则 x+y 的最大值为________.
16. (1 分) (2020 高一上·天津月考) 已知

,当 ________时,最大值是________
三、 解答题 (共 5 题;共 60 分)
17. (10 分) (2019 高二下·柳州期中) 已知 .
的内角
的对边分别为
,若
(1) 若
,求

(2) 若

,求
的面积.
18. (10 分) (2020·日照模拟) 已知函数

.
(1) 若函数 (2) 求证:
有唯一的极小值点,求实数 的取值范围; .
19.(10 分)(2020 高三上·山东期中) 在①
,②

的周长为 8,③

的外接圆半径为 2,这三个条件中任选一个,补充到下面的问题中,并加以解答.

中,角 , , 的对边分别是 , , ,
,______?求
.
20. (15 分) (2019 高一上·杭州期中) 已知函数
(1) 判断函数
的奇偶性,并求函数
, 的值域;
(2) 若实数 满足
,求实数 的取值范围.
21. (15 分) (2020 高一下·宜宾期末) 若数列
满足
.
(1) 求

的通项公式;
第 3 页 共 19 页


(2) 若 ①求 ; ②对于任意
,数列{ }的前项和 . ,均有
恒成立,求 的取值范围.
第 4 页 共 19 页


一、 单选题 (共 4 题;共 8 分)
答案:1-1、 考点:
参考答案
解析: 答案:2-1、 考点: 解析:
答案:3-1、 考点: 解析:
第 5 页 共 19 页


答案:4-1、 考点:
第 6 页 共 19 页


解析:
二、 填空题 (共 12 题;共 12 分)
答案:5-1、 考点:
解析:
第 7 页 共 19 页


答案:6-1、 考点: 解析:
答案:7-1、 考点:
第 8 页 共 19 页


解析: 答案:8-1、 考点: 解析:
答案:9-1、 考点:
第 9 页 共 19 页


解析: 答案:10-1、 考点:
解析:
第 10 页 共 19 页


答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、
考点:
解析:
三、解答题 (共5题;共60分)答案:17-1、
答案:17-2、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、
考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、答案:21-2、
考点:解析:。

相关文档
最新文档