数列与函数相结合题型求解方法
概率与数列、导数、函数和方程等知识交汇的创新题型
概率与数列、导数、函数和方程等知识交汇的创新题型ʏ河南省固始县信合外国语高级中学 胡云兵2019年高考全国Ⅰ卷首次把概率题作为压轴题出现,当时引起一片哗然,这是在传递什么信号?概率统计题何去何从?我们要如何备考带着这些问题,我们从近几年全国卷和部分省份的概率高考题,发现概率题增加难度,不是概率知识本身增加难度,而是难在概率与其他数学知识交汇处命题㊂下面通过几道高考题来说明概率与其他数学知识交汇的创新题型㊂一㊁概率与数列的交汇例1 (2019全国Ⅰ卷理数第21题)为治疗某种疾病,研制了甲㊁乙两种新药,希望知道哪种新药更有效,为此进行动物试验㊂试验方案如下:每一轮选取两只白鼠对药效进行对比试验㊂对于两只白鼠,随机选一只施以甲药,另一只施以乙药㊂一轮的治疗结果得出后,再安排下一轮试验㊂当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效㊂为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分㊂甲㊁乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X ㊂(1)求X 的分布列㊂(2)若甲药㊁乙药在试验开始时都赋予4分,p i (i =0,1, ,8)表示 甲药的累计得分为i 时,最终认为甲药比乙药更有效 的概率,则p 0=0,p 8=1,p i =a p i -1+b p i +c p i +1(i =1,2, ,7),其中a =P (X =-1),b =P (X =0),c =P (X =1)㊂假设α=0.5,β=0.8㊂(i )证明:{p i +1-p i }(i =0,1,2, ,7)为等比数列;(i i)求p 4,并根据p 4的值解释这种试验方案的合理性㊂解析:(1)X 的所有可能取值为-1,0,1㊂P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β)㊂故X 的分布列如表1㊂表1X -101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i )已知α=0.5,β=0.8,故由(1)得,a =0.4,b =0.5,c =0.1㊂因此,p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2, ,7)㊂整理得0.1(p i +1-p i )=0.4(p i -p i -1),即p i +1-p i =4(p i -p i -1)㊂又p 1-p 0=p 1ʂ0,故{p i +1-p i }(i =0,1,2, ,7)为公比为4,首项为p 1的等比数列㊂(i i )由(i)可得:p 8=(p 8-p 7)+(p 7-p 6)+ +(p 1-p 0)+p 0=p 1(1-48)1-4=48-13p 1㊂因p 8=1,故p 1=348-1㊂因此,p 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44-13p 1=1257㊂p 4表示最终认为甲药更有效的概率㊂由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257ʈ0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理㊂点评:本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列㊂根据条件推出数列的递推关系是解决本题的关键㊂其本质仍然是常规的概率与统计问题,只是其中涉及了数列问题的应用,一般转化为等差㊁等比数列的定义㊁通项公式或者数列求和问题㊂二㊁概率与函数㊁方程和导数的交汇例2 (2021新高考Ⅱ卷第21题)一种微生物群体可以经过自身繁殖不断生存下63 解题篇 创新题追根溯源 高二数学 2023年4月Copyright ©博看网. All Rights Reserved.来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代, ,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i =0,1,2,3)㊂(1)已知p0=0.4,p1=0.3,p2=0.2,p3 =0.1,求E(X)㊂(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+ p1x+p2x2+p3x3=x的一个最小正实根㊂求证:当E(X)ɤ1时,p=1;当E(X)>1时,p<1㊂(3)根据你的理解,请说明(2)问结论的实际含义㊂解析:(1)E(X)=0ˑ0.4+1ˑ0.3+2ˑ0.2+3ˑ0.1=1㊂(2)设f(x)=p3x3+p2x2+(p1-1)x+p0㊂因为p3+p2+p1+p0=1,所以f(x)= p3x3+p2x2-(p2+p0+p3)x+p0㊂①若E(X)ɤ1,则p1+2p2+3p3ɤ1,故p2+2p3ɤp0㊂f'(x)=3p3x2+2p2x-(p2+p0+p3)㊂因为f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0ɤ0,所以f'(x)有两个不同零点x1,x2,且x1<0<1ɤx2㊂当xɪ(-ɕ,x1)ɣ(x2,+ɕ)时, f'(x)>0;当xɪ(x1,x2)时,f'(x)<0㊂故f(x)在(-ɕ,x1)上为增函数,在(x1,x2)上为减函数,在(x2,+ɕ)上为增函数㊂若x2=1,f(x)在(x2,+ɕ)为增函数且f(1)=0㊂而当xɪ(0,x2)时,因为f(x)在(x1,x2)上为减函数,所以f(x)>f(x2)= f(1)=0,故1为p0+p1x+p2x2+p3x3=x 的一个最小正实根㊂若x2>1,因为f(1)=0且在(0,x2)上为减函数,所以1为p0+p1x+p2x2+p3x3 =x的一个最小正实根㊂综上,若E(X)ɤ1,则p=1㊂②若E(X)>1,则p1+2p2+3p3>1,故p2+2p3>p0㊂此时f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0>0,故f'(x)有两个不同零点x3,x4,且x3<0<x4<1㊂当xɪ(-ɕ,x3)ɣ(x4,+ɕ)时, f'(x)>0;当xɪ(x3,x4)时,f'(x)<0㊂故f(x)在(-ɕ,x3)上为增函数,在(x3,x4)上为减函数,在(x4,+ɕ)上为增函数㊂而f(1)=0,故f(x4)<0㊂又f(0)=p0>0,故f(x)在(0,x4)存在一个零点p,且p<1㊂所以p为p0+p1x+p2x2+p3x3=x的一个最小正实根,此时p<1㊂故当E(X)>1时,p<1㊂(3)结论的实际含义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝;若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1㊂点评:在概率与统计的问题中,决策的工具是样本的数字特征或有关概率㊂决策方案的最佳选择是将概率最大(最小)或均值最大(最小)的方案作为最佳方案,这往往借助于函数㊁不等式或数列的有关性质去实现㊂例3(2018年全国Ⅰ卷理数第20题)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品进行检验,如检验出不合格品,则更换为合格品㊂检验时,先从这箱产品中任取20件进行检验,再根据检验结果决定是否对余下的所有产品检验㊂设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立㊂(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0㊂(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值㊂已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用㊂①若不对该箱余下的产品进行检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);73解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验解析:(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2㊃(1-p)18(0< p<1)㊂因此,f'(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p),0<p<1㊂令f'(p)=0,得p=0.1㊂当pɪ(0,0.1)时,f'(p)>0;当pɪ(0.1,1)时,f'(p)<0㊂所以f(p)的最大值点为p0=0.1㊂(2)由(1)知,p=0.1㊂①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X= 20ˑ2+25Y,即X=40+25Y㊂所以E(X)=E(40+25Y)=40+ 25E(Y)=40+25ˑ180ˑ0.1=490㊂②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元㊂由于E(X)>400,故应该对余下的产品作检验㊂点评:解决概率和函数㊁导数的综合问题,关键是读懂题意,将与概率有关的问题(尤其是最值问题)转化为函数问题,再利用函数或导数知识解决,在转化过程中,对已知条件进行适当变形㊁整理,使之与求解的结论建立联系,从而解决问题㊂三、概率与不等式的交汇例4(2017年江苏卷第23题)已知一个口袋有m个白球,n个黑球(m,nɪN*, nȡ2),这些球除颜色外完全相同㊂现将口袋中的球随机地逐个取出,并放入如表2所示的编号为1,2,3, ,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2, 3, ,m+n)㊂表2123 m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)<n(m+n)(n-1)㊂解析:(1)编号为2的抽屉内放的是黑球的概率p=C n-1m+n-1C n m+n=nm+n㊂(2)随机变量X的概率分布如表3㊂表3X1n1n+11n+2 1k 1n+m PC n-1n-1C n m+nC n-1nC n m+nC n-1n+1C n m+nC n-1k-1C n m+nC n-1n+m-1C n m+n随机变量X的期望为:E(X)=ðm+n k=n1k㊃C n-1k-1C n m+n=1C n m+nðm+n k=n1k㊃(k-1)!(n-1)!(k-n)!㊂所以E(X)<1C n m+nðm+n k=n(k-2)!(n-1)!(k-n)!=1(n-1)C n m+nðm+n k=n(k-2)!(n-2)!(k-n)!=1(n-1)C n m+n(1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n-1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1m+n-2+C n-2m+n-2)=C n-1m+n-1(n-1)C n m+n=n(m+n)(n-1)㊂故E(X)<n(m+n)(n-1)㊂点评:本题表面看起来是概率问题,但是它重点恰在不等式,所以对于概率统计问题,我们要有意关注与其他数学知识的整合㊂同时也提醒我们要跳出固定思维模式,学会灵活处理问题的能力㊂(责任编辑徐利杰)8 3解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.。
数列与函数相结合
1.已知不等式11n ++12n ++13n ++ (12)>a 对于一切大于1的自然数n 都成立,求实数a 的取值范围。
解 令f (n )=11n ++12n ++13n ++ (12), 则f (n+1)-f (n )=121n ++122n +-11n +=121n +-122n +>0. ∴f (n+1)>f (n ), ∴ f (n )是递增数列,∴ [f (n )]min = f (2)=7。
∴a<712. 2. 已知{a n }是递增数列,且对任意n ∈N +,都有a n =n 2+λn 是 。
3-+∞(,)。
提示:常见的错解:a n 是一个特殊的二次函数,要保证在n 取自然数时单调递增,只须-2λ≤1, 即λ≥-2。
本题错误的原因在于机械地套用了函数的性质, 忽略了数列的离散性的特点。
3. 已知数列{a n }中,a n =()*15.6nn N n ∈-,求数列{a n }的最大项. 解:考察函数15.6115.615.6x y x x ==+--,因为直线15.6x =为函数图象的渐近线,且函数在(),15.6-∞上单调递减,在()15.6,+∞上单调递减,所以当15.6n >且n 最接近15.6且*n N ∈时,n a 最大,故16a 最大,即第16项最大.4.设向量a =(2,x ),b =(12,-+x n x )(n N +∈),函数=y a ·b 在[0,1]上的最小值与最大值的和为n a ,又数列{nb }满足:1109)109()109(2)1(21121++++=+++-+--- n n n n b b b n nb .(1)求证:1+=n a n ; (2)求n b 的表达式;(3)n n n b a c ⋅-=,试问数列{n c }中,是否存在正整数k ,使得对于任意的正整数n ,都有n c ≤k c 成立?证明你的结论.解 (1)证明:=y a ·b =2)4(2-++x n x ,因为对称轴24+-=n x , 所以在[0,1]上为增函数,∴1)3()2(+=++-=n n a n 。
数列与函数相结合的题型求解方法
所 ,f,~j坐 的 ( 以以n鲁 1 标 点 为 =
1 2 3 … ) 在过 ( , —i 且斜 率 为寺 的 同 , ,, 都 nn )
一
知 识 进 行 解 题 . 文 通 过 具 体 的 例 子 来 说 明 本
‘
+
.
.
b = + T ÷.
1
。
.
.
口 一 口 2 一 1 6 从 而 数 列 口 ( ), 的 通
( 2)‘ c 一 - ‘
数 列 { , 等 所 是
差 数 列.
c 一 ,
一 再 1
一 1
3 与 指 数 函数 相 结 合
6 ), ( 2 ), ( , ) … , ( ) … 1 P2 d , P3 幽 屯 , P 口 , ,
口+ 2 一 1 6 d ( )一
l 2’
对 每 一 个 自 然 数 , P ( , ) 函 数 — 点 在
_
勰雪
式;
和 直 线 = l的 交 点 横 坐 标 依 次 记 为 d , d , z
4 , , …. 证 : l 3 … +d < l 3… 口 。 求 & +d +口 + 2 ;
() 于 每 一 个 值 , ^。B 已知 函 2对 设 , 为
数 图 象 上 与 轴 距 离 为 l的 两 点 , 证 一取 求 任 意 一 个 正 整 数 时 , ^ 为 直 径 的 圆 都 以 B
维普资讯
20 0 2年 第 5期
中 学 数 学 月 刊
・2 5・
数 列 与 函 数 相 结 合 的 题 型 求 觎 方 法
数列问题与函数问题的转化
数列问题与函数问题的转化
将数列问题转化为函数问题的一种常见方法是使用递归函数。
考虑一个数列的问题,我们可以定义一个函数,该函数接受一个参数n,表示数列的第n个元素。
函数的定义中可以使用数列中的前一些元素的值来计算第n个元素的值。
例如,如果数列满足递推关系an = 2 * an-1 + 1,我们可以定义一个函数来计算数列的第n个元素的值:
def sequence(n):
if n == 1:
return 1
else:
return 2 * sequence(n-1) + 1
对于函数问题的转化,可以考虑将函数问题转化为数列问题。
例如,给定一个函数f(x),我们可以将函数问题转化为数列问题,计算数列f(1),f(2),f(3),...的值。
这种转化可以使问题更易于处理,可以使用类似数列的方法来求解。
例如,可以使用一个循环来计算数列的前n个元素的值。
这些是将数列问题和函数问题互相转化的一些常见方法,具体的转化方法取决于具体的问题。
在解决问题时,可以根据具体情况选择适合的转化方法。
高考数学数列问题的题型与方法
高考数学数列问题的题型与方法Document number【980KGB-6898YT-769T8CB-246UT-18GG08】第11讲 数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
一、知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n 项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 二、方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
2024届高考一轮复习数学教案(新人教B版):数列中的综合问题
§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。
一次函数递推数列求通项的方法
一次函数递推数列求通项的方法一次函数递推数列是指每一项与前一项之间存在一个常数差的数列。
为了求出这个数列的通项公式,我们可以使用以下50个方法进行计算:方法一:观察法1. 观察数列的前几项,看是否能够发现规律。
2. 如果发现数列的差值相等,则可以猜测数列的通项公式为一次函数。
方法二:代入法1. 将数列的前几项逐个代入一次函数的通项公式中,求得方程组。
2. 解方程组得到一次函数的通项公式。
方法三:线性方程法1. 假设数列的通项公式为y = ax + b。
2. 代入数列的前几项,得到若干个方程。
3. 解这些方程,得到a和b的值,进而求得一次函数的通项公式。
方法四:差分法1. 对数列进行差分,得到一个新的数列。
2. 如果新数列是等差数列,则可以猜测原数列为一次函数递推数列,并求得通项公式。
方法五:归纳法1. 假设数列的通项公式为y = ax + b。
2. 假设数列的第n项为An。
3. 利用数学归纳法,证明或推导出An = an + b的表达式。
4. 解方程组得到a和b的值,进而求得一次函数的通项公式。
方法六:解复合型一次函数方程法1. 假设数列的一次函数通项为y = ax + b。
2. 如果出现an+1 = f(an) 或者an+1 = f(an, n)的形式,则可以试着将其转化为一次函数方程。
3. 解一次函数方程,得到a和b的值,进而求得一次函数的通项公式。
方法七:根据数列的性质和条件1. 如果数列满足一定的性质或者给出了一些条件,可以根据这些性质或条件来求解一次函数的通项公式。
2. 如果数列的前几项之和等于某个数,则可以通过求解方程的方法得到一次函数的通项公式。
方法八:逆向推导法1. 对于数列的通项公式y = ax + b,我们可以通过逆向推导的方法来求解常数a和b 的值。
2. 从数列的最后一项开始,逆向推导出倒数第二项、倒数第三项等,直到推导出数列的第一项。
3. 通过推导出的数列项,可以建立方程组来求解常数a和b的值,从而得到一次函数的通项公式。
2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解
专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。
数学解题思路拓展常见题型组合与解答技巧
数学解题思路拓展常见题型组合与解答技巧在学习数学时,解题思路的灵活运用是非常重要的。
不同的题型需要采用不同的解题方法,因此我们需要拓展解题思路,掌握常见题型的解答技巧。
本文将以此为主题,介绍数学解题的思路拓展以及常见题型的组合与解答技巧。
一、解题思路拓展1. 比较思维与判断思维的结合在解题过程中,我们需要将比较思维和判断思维相结合。
比较思维要求我们对题目中各种数据进行比较,并进行逻辑推理。
判断思维则要求我们凭直觉判断数据的大小关系或出现的规律。
将两种思维相结合,可以更加全面地理解和解决问题。
2. 运算符号的巧妙运用运算符号在数学中起着重要作用,我们可以利用运算符号的特性来简化问题。
比如在求解方程时,可以利用等式两边的性质使用运算符号进行合并整理,或者运用负数等来消去变量。
掌握运算符号的运用技巧可以帮助我们更高效地解题。
3. 数学概念的应用数学概念是解决数学问题的基础,我们需要深入理解各个数学概念并善于灵活运用。
比如在几何题中,要理解各种图形的性质,灵活应用几何定理;在代数题中,要理解各种代数公式和运算规则,灵活运用代数概念。
只有深入理解数学概念,才能更好地解题。
二、常见题型组合与解答技巧1. 数列与函数数列与函数是数学中的重要概念,也是常见的题型。
在解答数列与函数的题目时,我们需要注意以下几点:- 对于等差数列或等比数列,要注意求通项公式,可以利用数列的性质进行递推求解;- 对于函数,要注意求导或积分等操作,根据题目要求的条件进行运算;- 在数列与函数的组合题中,可以通过先建立关系式,再进行逐步推导的方式解答。
2. 几何题几何题是解答数学题目中的重要一环,常见的几何题型有三角形、四边形、圆等。
在解答几何题时,我们需要注意以下几点:- 注意几何定理的运用,如勾股定理、相似三角形的性质等;- 在解决复杂的几何题时,可以通过构造辅助线,利用图形的对称性质或使用几何平移等方法来辅助解题;- 对于解体积、表面积等空间几何题,可以将问题转化为二维几何的题目来解答。
高中数学基本数学思想:函数与方程思想在数列中的应用
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
数列题型的解题技巧
数列题型的解题技巧近几年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中an与Sn之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如an与Sn的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
数列考试题型分析及解题方法指导
数列考试题型分析及解题方法指导浠水一中一、考点回顾1.数列的概念,数列的通项公式与递推关系式;等差等比数列的有关公式和性质。
2.判断和证明数列是等差(等比)数列常用三种方法:(1)定义法:对于n≥2的任意自然数,验证11()nn n n a a a a ---为同一常数。
(2)通项公式法:①若1(1)()=+-=+-n m a a n d a n m d ,则{}n a 为等差数列;②若11n n mn m a a q a q --==,则{}n a 为等比数列。
(3)中项公式法:验证()212122n n n n n n a a a a a a n N +++++=+=∈都成立。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法、分组求和法、累加累乘法、归纳猜想证明法等。
4.数列的综合应用:⑴函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到。
⑵数列与函数、数列与不等式的综合、数列与解析几何的综合等内容。
5.知识网络111111(2)(2)(1)(1)()22()--=≥=←-=≥=+--=+=++=++=+⎧⎪⎨⎪⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩两个基等比数列的定义本数列等比数列的通项公式数列等比数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q 1111(1)(1)11(1)()---=≠=--==+=+⎧⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明n n n n m p q a a q a q q S q qna q a a a a m n p q二、复习建议1.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果2.归纳——猜想——证明体现由具体到抽象,由特殊到一般,由有限到无限的辩证思想.学习这部分知识,对培养学生的逻辑思维能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有重大意义.3.解答数列与函数的综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项等方法来分析、解决问题. 4.数列与解析几何的综合问题解决的策略往往是把综合问题分解成几部分,先利用解析几何的知识以及数形结合得到数列的通项公式,然后再利用数列知识和方法求解. 三、方法总结与2009年高考预测(一)方法总结1. 求数列的通项通常有两种题型:一是根据所给的一列数,通过观察求通项;一是根据递推关系式求通项。
《数列》知识点、题型、解法全方位解析
《数列》知识点、题型、解法全方位解析 内蒙古赤锋阿旗天山一中:尹国玉数列的基础知识与一般性结论:(一)数列的概念:项,项数。
一般式:}{n a 或 ,,,,,4321n a a a a a注:①数列与函数的关系:数列可以看作是一个定义域为正自然数集N 或它的有限子集{1,2,3,……,n}的函数.当自变量从小到大依次取值时对应的一列函数值,通项公式a n =f(n)就是该函数的解析表达式,数列的图象是一个点列.因此在学习数列时还应学会用函数的观点、方法研究数列.②数列分有穷数列与无穷数列。
(二)数列的有关公式:(注:并不是所有的数列都有各种公式,)1.递推公式:如)(1n n a f a =+或),(12n n n a a f a ++=等,即由数列的前若干项表示后一项的关系式,2.通项公式:a n =f(n)即由项数来表示项的关系式,即第n 项,3.前n 项和公式:①有穷数列和:即用n 表示前n 项和的式子,(有时也用售含有项和项数的混合式子表示,如2)(1n n a a n S +=)注:掌握数列的通项n a 与前n 项和n S (前项积n G )之间的关系式n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .n a =11(1)(2)n n G n G n G -=⎧⎪⎨≥⎪⎩②*无究数列和(前n 项和的极限): n n S lin S →+∞=(三)定义数列的方式方法:1.用递推公式定义:①简单一阶线性递归数列:等差等比数列等. ②简单一阶分式递归数列(倒数成等差数列) ③简单的周期数列; ④其它形式:2.用通项公式定义:3.用和或和与项的关系定义. (四)数列的图象(五)数列的单调性及最值 (六)数列的分类1.从项的个数上分:有穷数列,无穷数列.2.从”函数”类型及项与项的关系分:①简单数列:等差数列;等比数列;调和数列;幂级数.②复杂数列(数列的组合):复合数列;组合数列;分段数列;子数列. 3.从数列的性质分:单调数列;摆动数列;周期数列;不规则数列。
数列典型习题及解题方法
数列典型习题及解题方法数列典型习题及解题方法高中数学数列基本题型及解法这部分内容需要掌握的题型主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
一、知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.二、方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证an an 1(an/an 1)为同一常数。
(2)通项公式法:①若②若=+(n-1)d=+(n-k)d ,则an 为等差数列;,则an 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列an 中,有关Sn的最值问题――常用邻项变号法求解:am 0(1)当a10,d0时,满足的项数m使得Sm取最大值.a 0 m 1(2)当a10,d0时,满足am 0的项数m使得am 1 0取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
数列题型及解题方法归纳总结
知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n+d及a n+1=qa n(d,q为常数)例1、 已知{a n}满足a n+1=a n+2,而且a1=1。
求a n。
例1、解 ∵a n+1-a n=2为常数 ∴{a n}是首项为1,公差为2的等差数列∴a n=1+2(n-1) 即a n=2n-1例2、已知满足,而,求=?(2)递推式为a n+1=a n+f(n)例3、已知中,,求.解: 由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★说明 只要和f(1)+f(2)+…+f(n-1)是可求的,就可以由a n+1=a n +f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q(p,q 为常数)例4、中,,对于n>1(n∈N)有,求.解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1)因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为an+1=p a n +q n(p,q 为常数)由上题的解法,得: ∴(5)递推式为思路:设,可以变形为:,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
数列与函数相结合的题型求解方法
数列与函数相结合的题型求解方法在解数列综合题中经常碰到与函数相结合的题目,对于这类题目不少学生感到难度较大,其主要原因是有的学生难以运用函数知识进行解题。
本文通过具体的例子来说明这类题型的求解方法。
1.与一次函数相结合例1.设数列{an}的前n项之和是,a, b是常数,且b≠a。
(1)证明:数列{an}是等差数列;(2)证明:以为坐标的点Pn(n=1,2,3,……)都在同一直线上,并写出此直线方程。
(1993年上海高考题)分析:要证数列{an }是等差数列,只要证an=kn+t (其中k, t是常数),即数列的通项是关于n的一次函数即可,∵ Sn=an+bn(n-1),∴即∴an =a+2(n-1)b,从而数列an的通项是关于n的一次函数,所以数列{an}是等差数列。
(2)要证以为坐标的点Pn(n=1,2,3,……)都在同一直线上,只要证Pn(n≥2且n∈N)与第一点连线的斜率为定值即可。
因为,所以,以为坐标的点Pn(n=1,2,3,……)都在过(a, a-1)且斜率为的同一直线上,所以所求的直线方程为,即x-2y+a-2=0。
2.与二次函数相结合例2.在直角坐标平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3),……,Pn(an,bn),……,对每一个自然数n,点P n (an,bn)在函数y=x2的图象上,且点Pn(an,bn),点A(n,0),点B(n+1,0),构成一个以点Pn(an,bn)为顶点的等腰三角形。
(1)求对每一个自然数n,以点Pn 纵坐标构成的数列bn的通项公式;(2)令,求的值。
分析:(1) 由Pn A=PnB可得。
又∵ Pn (an,bn)在函数y=x2的图象上,∴.(2)∵ ,∴3.与指数函数相结合例3.在xOy平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3),……,Pn(an,bn),……对每一个自然数n,点P n (an,bn)在函数y=的图象上,且点Pn(an,bn),点(n,0)与点(n+1,0)构成一个以点P n (an,bn)为顶点的等腰三角形。
函数与方程的思想方法在解题中的应用
函数与方程的思想方法在解题中的应用何登文数列、解析几何、立体几何、不等式及实际应用问题是高中数学的几个重要内容,在高考试题中占了较大的比例,能否顺利的解答这几类问题,直接影响到学生的高考成绩。
函数与方程思想从某些方面来说,给我们指出了解决这些问题的思路和方法。
将这些问题转化为相应的函数或方程,我们就可以应用函数和方程的性质来解决问题了。
下面,我们通过例题来说明它们的应用。
一、利用函数与方程的思想解答数列问题例1、已知数列的通项公式n a =-2n +6n+2,这个数列的最大项的值是多少?从第几项起以后的项均为负值?分析:数列是以自然数n 为变量的点列函数,因此,我们在处理数列问题是,往往将其转化函数问题,利用相应函数的性质来求解。
解:∵ n a =-2n +6n+2,∴n a 可以看作是关于n 的二次函数,利用二次函数的性质,当n=-62--=3时,n a 有最大值11。
令-2n +6n+2≤0 解得 n ≥7∴从第七项起以后的项均为负值。
此题利用了数列的函数特性求解,使得问题简单化,使用了化未知为已知的思维方法。
例2、已知数列﹛n a ﹜是等差数列,若n s =10,2n s =50,求3n s 。
分析:本题我们可以用“等差数列中,依次取每k 项作和,其和仍成等差数列”的性质来求解,即ns、2ns-ns、3ns-2ns成等差数列,此时公差d=50-20=30,所以3ns=2ns-ns+2ns+d=50-10+50+30=120.这样很直接。
另外,在等差数列中211()22()22n d dn d d n n n n a s a +-==+-是关于n 的一次函数,因此,我们可以利用一次函数的点共线的性质求解。
解:∵﹛n a ﹜是等差数列,∴n n s ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭也是等差数列,是关于n 的一次函数,∴ 23,,2,,3,23n n n n n n n n n s s s ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三点共线,∴35010102323n n n n n n n n n s --=-- 解得3n s =120。
数列综合题型
(一)数列和函数综合1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n 项和S n.2.已知:f n(x)=a1x+a2x2+…+a n x n,且数列{a n}成等差数列.(1)当n为正偶数时,f n(﹣1)=n,且a1=1,求数列{a n}的通项;(2)试比较与3的大小.3.已知f(x)在(﹣1,1)上有定义,,且满足x,y∈(﹣1,1)有.对数列{x n}有(1)证明:f(x)在(﹣1,1)上为奇函数.(2)求f(x n)的表达式.(3)是否存在自然数m,使得对于任意n∈N*且<成立?若存在,求出m的最小值.(二)数列与不等式综合4.(2011•湖南)已知函数f(x)=x3,g (x)=x+.(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;(Ⅱ)设数列{ a n}(n∈N*)满足a1=a(a>0),f(a n+1)=g(a n),证明:存在常数M,使得对于任意的n∈N*,都有a n≤M.5.如图:假设三角形数表中的第n行的第二个数为a n(n≥2,n∈N*)(1)归纳出a n+1与a n的关系式并求出a n的通项公式;(2)设a n b n=1求证:b2+b3+…+b n<2.6.已知正项等差数列{a n}的前n项和为S n,其中a1≠a2,a m、a k、a h都是数列{a n}中满足a h﹣a k=a k﹣a m的任意项.(Ⅰ)证明:m+h=2k;(Ⅱ)证明:S m•S h≤S k2;(III)若也成等差数列,且a 1=2,求数列的前n项和.(三)数列和向量综合7.已知点集,其中=(2x﹣b,1),=(1,b+1),点列P n(a n,b n)在L中,P1为L与y轴的交点,等差数列{a n}的公差为1,n∈N*.(I)求数列{b n}的通项公式;(Ⅱ)若,令S n=f(1)+f(2)+f(3)+…+f(n);试写出S n关于n的函数解析式;8.已知一列非零向量,n∈N*,满足:=(10,﹣5),,(n32 ).,其中k是非零常数.(1)求数列{||}是的通项公式;(2)求向量与的夹角;(n≥2);(3)当k=时,把,,…,,…中所有与共线的向量按原来的顺序排成一列,记为,,…,,…,令,O为坐标原点,求点列{B n}的极限点B的坐标.(注:若点坐标为(t n,s n),且,,则称点B(t,s)为点列的极限点.)9.我们把一系列向量(i=1,2,…,n)按次序排成一列,称之为向量列,记作{}.已知向量列{}满足:,=(n≥2).(1)证明数列{||}是等比数列;(2)设θn表示向量,间的夹角,若b n=2nθn﹣1,S n=b1+b2+…+b n,求S n;(3)设||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.10.从原点出发的某质点M,按向量=(0,1)移动的概率为,按向量=(0,2)移动的概率为,设可达到点(0,n)的概率为P n,求:(1)求P1和P2的值.(2)求证:P n+2=P n+P n+1.(3)求P n的表达式.(四)数列和三角函数综合11.已知点列B1(1,y1)、B2(2,y2)、…、B n(n,y n)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、A n(x n,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点A n、B n、A n+1构成一个顶角的顶点为B n的等腰三角形.(1)求数列{y n}2的通项公式,并证明{y n}3是等差数列;(2)证明x n+2﹣x n5为常数,并求出数列{x n}6的通项公式;(3)问上述等腰三角形A n8B n9A n+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.12.设数列{a n}是首项为0的递增数列,(n∈N),,x∈[a n,a n+1]满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根.(1)试写出y=f1(x),并求出a2;(2)求a n+1﹣a n,并求出{a n}的通项公式;(3)设S n=a1﹣a2+a3﹣a4+…+(﹣1)n﹣1a n,求S n.13.(理)已知复数,其中A,B,C是△ABC的内角,若.(1)求证:;(2)当∠C最大时,存在动点M,使|MA|,|AB|,|MB|成等差数列,求的最大值.(五)数列和解析几何综合14.在xoy平面上有一系列点P1(x1,y1),P2(x2,y2)…,P n(x n,y n),…,(n∈N*),点P n在函数y=x2(x≥0)的图象上,以点P n为圆心的圆P n与x轴都相切,且圆P n与圆P n+1又彼此外切.若x1=1,且x n+1<x n x1=1.(I)求数列{x n}的通项公式;(II)设圆P n的面积为S n,,求证:.15.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式,并求的最小值(其中O为坐标原点,n∈N*).16.如图,在直角坐标系xOy中,有一组底边长为a n的等腰直角三角形A n B n C n(n=1,2,3,…),底边B n C n依次放置在y轴上(相邻顶点重合),点B1的坐标为(0,b),b>0.(1)若A1,A2,A2,…,A n在同一条直线上,求证:数列{a n}是等比数列;(2)若a1是正整数,A1,A2,A2,…,A n依次在函数y=x2的图象上,且前三个等腰直角三角形面积之和不大于,求数列{a n}的通项公式.17.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式(n∈N*).答案与评分标准1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n项和S n.考点:数列与函数的综合;等比数列的通项公式;数列的求和;数列递推式。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列与函数相结合的题型求解方法在解数列综合题中经常碰到与函数相结合的题目,对于这类题目不少学生感到难度较大,其主要原因是有的学生难以运用函数知识进行解题。
本文通过具体的例子来说明这类题型的求解方法。
1.与一次函数相结合例1.设数列{an}的前n项之和是,a, b是常数,且b≠a。
(1)证明:数列{an}是等差数列;(2)证明:以为坐标的点Pn(n=1,2,3,……)都在同一直线上,并写出此直线方程。
(1993年上海高考题)分析:要证数列{an }是等差数列,只要证an=kn+t (其中k, t是常数),即数列的通项是关于n的一次函数即可,∵ Sn=an+bn(n-1), ∴即∴an =a+2(n-1)b,从而数列an的通项是关于n的一次函数,所以数列{an}是等差数列。
(2)要证以为坐标的点Pn(n=1,2,3,……)都在同一直线上,只要证Pn(n≥2且n∈N)与第一点连线的斜率为定值即可。
因为,所以,以为坐标的点Pn(n=1,2,3,……)都在过(a, a-1)且斜率为的同一直线上,所以所求的直线方程为,即x-2y+a-2=0。
2.与二次函数相结合例2.在直角坐标平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3),……,Pn(an,bn),……,对每一个自然数n,点P n (an,bn)在函数y=x2的图象上,且点Pn(an,bn),点A(n,0),点B(n+1,0),构成一个以点Pn(an,bn)为顶点的等腰三角形。
(1)求对每一个自然数n,以点Pn 纵坐标构成的数列bn的通项公式;(2)令,求的值。
分析:(1) 由Pn A=PnB可得。
又∵ Pn (an,bn)在函数y=x2的图象上,∴.(2)∵ ,∴3.与指数函数相结合例3.在xOy平面上有一点列P1(a1,b1),P2(a2,b2),P3(a3,b3),……,Pn(an,bn),……对每一个自然数n,点P n (an,bn)在函数y=的图象上,且点Pn(an,bn),点(n,0)与点(n+1,0)构成一个以点P n (an,bn)为顶点的等腰三角形。
(1)求点Pn(an, bn)的纵坐标bn的表达式;(2)若对每一个自然数n, 以bn, bn+1, bn+2为边长能构成一个三角形,求a的范围;(3)设Bn=b1b2b3……bn(n∈N+),若a是(2)中确定的范围内的最小整数时,求{Bn}的最大项是第几项?分析:(1)由于三角形为等腰三角形,所以点Pn (an,bn)在两点(n, 0)与(n+1, 0)连线的中垂线上,从而。
又因为点Pn (an, bn)在函数y=的图象上,所以bn=。
(2) 因为函数y=是单调递减函数,所以对每一个自然数n有bn >bn+1>bn+2。
又因为以bn , bn+1, bn+2为边长能构成一个三角形,所以bn+2+bn+1>bn,从而,即,解得(3) 因为且a是整数,所以a=7,因此bn=2000。
又因为Bn =bnBn-1, 于是当bn≥1时,Bn≥Bn-1;当bn+1<1时,Bn>Bn+1,所以{Bn}的最大项的项数n满足bn≥1且bn+1<1,即2000≥1且2000<1,解得19.8<n<20.8, 又n∈N+,所以n=20,从而{Bn}的最大项是第20项。
4.与对数函数相结合例4.已知函数,(1)n=1,2,3,……时,把已知函数的图象和直线y=1的交点横坐标依次记为a1,a2,a3,……,an,……。
求证:a1+a2+a3+……+an<1;(2)对于每一个n值,设An ,Bn为已知函数图象上与x轴距离为1的两点,求证n取任意一个正整数时,以AnBn为直径的圆都与一条定直线相切,求出这条定直线的方程和切点坐标。
解:(1)∵ 原函数可化为,∴ 由,可得, 即。
∴ a1+a2+a3+……+an=。
(2) ∵ An , Bn为曲线上的点与x轴距离为1的点,∴ An (2n, -1), Bn(2-n, 1)。
∴ ,又An Bn中点C到y轴的距离为,∴ 以C为圆心,|An Bn|为直径的圆与y轴相切,所以这条定直线为x=0,又因为圆心C()在x轴上,所以切点为(0,0)。
5.与分式函数相结合例5.对任意函数f(x),x∈D,可按图示构造一个数列发生器,其工作原理如下:①输入数据x0∈D,经数列发生器输出x1=f(x);②,则发生器结束工作;若x1∈D,则将x1反馈回输入端,再输入x2=f(x1),并依此规律继续下去。
现定义:f(x)=。
(I)若输入,则由发生器产生数列{xn },请写出数列{xn}的所有项;(II)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x的值;(III)(理)若输入x0时,产生的无穷数列{xn}满足:对任意正整数n,均有xn<xn+1,求x的取值范围。
(文)是否存在x0,在输入数据x时,该数列发生器产生一个各项均为负数的无穷数列?若存在,求出x的值;若不存在,请说明理由。
(2001年上海高考题)。
分析:(I) ∵ f(x)定义域,∴数列{xn}只有三项:(II) ∵ ,∴ x2-3x+2=0,即x=1或x=2,∴ 当x0=1或x=2时,,故x0=1时,xn=1;x=2时,xn=2(n∈N+)。
(III)(理)解不等式,得或1<x<2。
∴ 要使x1<x2,则x1<-1或1<x1<2。
又f(x)=,∴ 若x1<-1,则x2=f(x1)>4, x3=f(x2)=4-<x2,故不合题意。
若1<x1<2,则x2=f(x1)=,且1<x2<2,依次类推,可得数列{xn }的所有项都有xn+1>xn(n∈N+)。
综上所述,x1∈(1,2)由x1=f(x)得x∈(1,2)。
(文)设x0<0 (n∈N+),由得-1<x<;由得;由得。
∵,∴同时使x1,x2,x3为负数的x不存在,故所求x不存在。
6.与分段函数相结合例6.设函数y=f(x)的图象是自原点出发的一条折线。
当n≤y≤n+1(n=0,1,2,……)时,该图象是斜率为bn的线段(其中正常数b≠1)。
设数列{xn }由f(xn)=n(n=1,2,3,……)定义。
(1) 求x1, x2和xn的表达式;(2) 求f(x)的表达式,并写出定义域。
(1999年全国高考题)解:(1) f(0)=0, f(x1)=1。
当0≤y≤1时,函数y=f(x)的图象斜率为b=1的线段,由得x1=1。
又f(x2)=2, 当1≤y≤2时,函数的图象是斜率为b1的线段,故由,即x2-x1=,得x2=1+。
记x0=0,由函数y=f(x)图象中的第n段线段斜率为bn-1可得又∵ f(xn )=n, f(xn-1)=n-1,∴ xn -xn-1=()n-1,∴ {xn-xn-1}是首项为1,公比为的等比数列。
∵b≠1,∴ xn=(2) 当0≤y≤1,由(1)知y=x,即当0≤x≤1时,f(x)=x;当n≤y≤n+1时,即xn ≤x≤xn+1时,由(1)知f(x)=n+b n(x-xn)(xn≤x≤xn+1,n=1,2,3,……),故n=1,2,3……为求定义域,须对进行讨论:当b>1时,;当0<b<1时,xn→∞(n→∞)。
∴ 当b>1时,y=f(x)的定义域为;当0<b<1时,y=f(x)的定义域为[0,+ ∞)。
7.与反函数相结合例7.已知函数f(x)=(x≥2)的反函数为y=f-1(x),若数列{an }的前n项之和为Sn(n∈N+)。
对所有大于1的自然数n都有Sn =f-1(Sn-1),且a1=2,求数列{an}的通项公式。
分析:因为, 又x≥2,所以(x≥0), 所以。
因此,所以Sn =2n2, 所以, 即an=4n-2。
故数列{an }的通项公式为an=4n-2。
【例7】已知数a n=(a2-1)(n3-2n)(a=≠±1)是递增数列,试确定a的取值范围.解法一∵数列{a n}是递增数列,∴a n+1>a na n+1-a n=(a2-1)[(n+1)3-2(n+1)]-(a2-1)(n3-2n)=(a2-1)[(n+1)3-2(n+1)-n3+2n]=(a2-1)(3n2+3n-1)∵(a2-1)(3n2+3n-1)>0又∵n∈N*,∴3n2+3n-1=3n(n+1)-1>0∴a2-1>0,解得a<-1或a>1.解法二∵{a n}是递增数列,∴a1<a2即:(a2-1)(1-2)<(a2-1)(8-4)化简得a2-1>0∴a<-1或a>1说明本题从函数的观点出发,利用递增数列这一已知条件,将求取值范围的问题转化为解不等式的问题例4已知函数= (x≠0).中,= 2,=,求数列的通项公式.⑴由= x,得= x,即(x+1)+(x-1)= x(x+1)-x(x-1),的实不动点为x =-1或x = 1.=.= 4·=3,即= 3,点拨:解函数“不动点”问题,就是解对应方程的根,这是典型的函数与方程思想的具体体现.另外,此题运用函数与数列知识之间的交叉和组合,是基础性与综合性的最佳表现形式.例5已知= (x-1),= 10(x-1),数列满足= 2,(-+= 0,=(n+2)(-1).求证:数列{-1}是等比数列.证明:∵(-+= 0,= (-1),= 10(-1),∴(-×10(-1)+(-1)= 0,即(-1)(10--1) = 0.又= 2,可知对任何n N*,-1≠0,所以10--1 = 0,即=+.∵==,∴{-1}是-1 = 2为首项,公比为的等比数列.例6(1)已知数列中,,求的最大值.(2)已知函数的反函数为,在数列中,,,如果,求数列的通项公式.解:(1),当时,递增,当,是递减的,所以最大值为(2),,又,是首项为1,公差为1的等差数列,.点拨:欲求的最大值,可先确定数列的单调性,只须比较与大小.要求的通项公式,可先确定与的递推关系.数列是一类特殊的函数,在解决某些问题时,可借助函数知识和方法求解.。