全等三角形难题题型归类及解析精编版
全等三角形难题(含规范标准答案解析)
全等三角形难题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP ∵DP=DC,DA=DB∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形ADBC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又 EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初中数学全等相似三角形难题汇总(附答案)
1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=.OCD10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l甲、l乙、l丙.已知AB=DE=GH,试猜想l甲、l乙、l丙的大小关系,并说明理由.15.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.【考点】K3:三角形的面积.=S△DEC,【解答】解:∵S△BDE∴BD=DC,=S△ABC=,∴S△ABD∵S=1,S△BDE=S△DEC=S△ACE,△ABC=S△DEC=S△ACE=,∴S△BDE=S△ABD﹣S△BDE=﹣=.∴S△ADE故选B.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.【考点】KE:全等三角形的应用;KM:等边三角形的判定与性质.【解答】解:连接QR,过Q作QD⊥PR,∴∠AQD=45°,∵∠QAR=180°﹣75°﹣45°=60°,且AQ=AR,∴△AQR为等边三角形,即AQ=QR,∵∠AQD=45°∴∠RQD=15°=∠ARP,∠QRD=75°=∠RAP,∴△DQR≌△PRA(ASA),∴QD=PR,即w=h.故选A.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【解答】解:①在AE取点F,使EF=BE.∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=(AB+AD),故①正确;②在AB上取点F,使BE=EF,连接CF.在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360﹣(∠ADC+∠B)=180°,故②正确;③由②知,△ACD≌△ACF,∴CD=CF,又∵CF=CB,∴CD=CB,故③正确;④易证△CEF≌△CEB,∴S△ACE ﹣S△BCE=S△ACE﹣S△FCE=S△ACF,又∵△ACD≌△ACF,∴S△ACF=S△ADC,∴S△ACE ﹣S△BCE=S△ADC,故④正确.故选D.4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD【考点】KD:全等三角形的判定与性质.【解答】解:因为∠A=2∠B,所以∠A>∠B,所以BC>AC.在BC上截取CA′=CE,连接DE′(如图),易证△ACD≌△EC′D,所以AD=ED,且∠CED=∠A=2∠B,又∠CED=∠B+∠EDB,所以∠B=∠EDB,所以AD=ED=EB,所以BC=E′C+E′B=AC+AD,所以AD=BC﹣AC.故此题选B.注意到:若AD=BC﹣CD,则CD=BC﹣AD=A′C=AC,此时∠CDA′=∠CDA=∠A=2∠B,所以∠ADA′=4∠B,又∠ADA′+∠2=4∠B+∠B=180°,所以∠B=36°,所以∠C=72°,与已知矛盾,故A排除,易证BD>BA′=AD,所以PB<BD,PA>AD.所以AD<BC﹣AP,排除C,AD>BC﹣BD,排除D.5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′【考点】S9:相似三角形的判定与性质;KF:角平分线的性质.【解答】解:A、∵∠A′=30°,∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;B、∵∠C′=60°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;C、∠C=60°,无法确定△A′B′C′中各角的度数,故无法证明△ABC∽△A′B′C′,故本选项正确;D、∵∠A′=2∠C′,∠A′+∠C′=90°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误.故选C6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定【考点】S9:相似三角形的判定与性质;K8:三角形的外角性质.【解答】解:由=得=,延长CB至D,使BD=AB,于是CD=a+c,在△ABC与△DAC中,∠C为公共角,且BC:AC=AC:DC,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D+∠BAD=2∠D=2∠BAC.故选B.7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定【考点】S9:相似三角形的判定与性质;K3:三角形的面积.【解答】解:分别构造△ABC与△A1B1C1如下:①作△ABC∽△A1B1C1,显然=>1,即S>S1;②设a=b=,c=20,则h c=1,S=10,a1=b1=c1=10,则S1=×100>10,即S<S1;③设a=b=,c=20,则h c=1,S=10,a1=b1=,c1=10,则h c=2,S1=10,即S=S1;因此,S与S1的大小关系不确定.故选D.8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD【考点】S8:相似三角形的判定.【解答】解:A、因为AD•BC=AB•BD的夹角非∠A,所以不能判定两三角形相似,故本选项错误;B、因为符合两边及夹角法,故可判定两三角形相似,故本选项正确;C、因为无法确定三角形的对应角相等,故无法判定两三角形相似,故本选项错误;D、因为AB•BC=AC•BD的夹角为∠C、∠B,不确定是否相等,无法判定两三角形相似,故本选项错误,故选B.9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=16.8.OCD【考点】K3:三角形的面积.【解答】解:连接DE,如图则有,,将已知数据代入可得S=1.5,△DOE=x,则由,设S△ADE,所以得方程:,解得:x=6.3,所以四边形ADOE的面积=x+1.5=7.8.=2+3+4+7.8=16.8.所以S△ABC故填:16.8.10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于 5.5.【考点】KD:全等三角形的判定与性质.【解答】解:如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,∵M是BC中点,∴BM=CM,∠BMN=∠CMF,∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,又∵∠BAD=∠CAD,MF∥AD,∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,∴AE=AF,BN=BE,∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,∴FC=(AB+AC)=5.5.故答案为5.5.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是5.【考点】KD:全等三角形的判定与性质.【解答】解:作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC=BC=5,∴∠CAB=∠CBA=50°,∵∠OAB=10°,∴∠CAD=∠OAD===20°,∵∠DAB=∠OAD+∠OAB=20°+10°=30°,∴∠DAB=30°=∠DBA,∴AD=BD,∠ADB=120°,在△ACD与△BCD中⇒△ACD≌△BCD⇒∠CDA=∠CDB,∴∠CDA=∠CDB===120°,在△ACD与△AOD中⇒△ACD≌△AOD⇒AO=AC,∴AO=5.故答案为5.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.【考点】KD:全等三角形的判定与性质.【解答】证明:(1)在边BC上截取BE=AB,连接DE,∵BD为∠ABC的平分线,∴∠ABD=∠DBE,∴△ABD≌△DBE,∴AD=DE,∴∠A=∠BED,∵∠A=100°,∴∠BED=100°,∵∠C=50°,∴∠CDE=50°,∴∠C=∠CDE,∴DE=CE,∵BC=BE+CE,∴BC=BA+AD;(2)如图,以BC为边作等边三角形A'BC,在A'C上截取CD'=BD,∴∠ACA′=∠ABD=20°,∵AB=AC,∴△ABD≌△ACD'(SAS),∴AD=AD',∠BAC=∠CAD′=100°,∴∠AD′C=60°,连接AA′,∴∠D'A'A=∠A'AD'=30°,∴A'D'=AD',∴BC=A'C=A'D'+CD'=AD+BD,即BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.【考点】KD:全等三角形的判定与性质.【解答】解:延长BC到F,使CF=DE,连接AF(如图)∵DE+BC=1,∴BF=BC+CF=BC+DE=1∵BE=AC,∠DEB=∠ACF=90°,DE=CF,∴△BDE≌△AFC(SAS),∵BD=,∴AF=BD=,∠B=∠1,∴AF=BF,∵∠B+∠2=90°,∴∠1+∠2=90°,∴∠ABC=30°.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l 甲、l 乙、l 丙.已知AB=DE=GH ,试猜想l 甲、l 乙、l 丙的大小关系,并说明理由.【考点】KD :全等三角形的判定与性质;K6:三角形三边关系.【解答】解:猜想l 甲<l 乙<l 丙.(5分)理由:在甲三角形中,作∠ABF′=65°,交AC 的延长线于点F′.在△DEF 和△BAF′中,∵∠D=∠ABF′=65°,DE=BA ,∠E=∠A=55°,∴△DEF ≌△BAF′(ASA ).(3分)∵F′C +F′B >BC ,∴△BAF′的周长大于l 甲.即 l 甲<l 乙.(3分)同理可说明l 乙<l 丙.(3分)∴l 甲<l 乙<l 丙.15.已知等腰直角三角形ABC ,BC 是斜边.∠B 的角平分线交AC 于D ,过C 作CE 与BD 垂直且交BD 延长线于E ,求证:BD=2CE .【考点】KD:全等三角形的判定与性质.【解答】证明:如图,分别延长CE,BA交于一点F.∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.【考点】KD:全等三角形的判定与性质.【解答】证明:作∠OBF=∠OAE交AD于F,∵∠BAD=∠ABE,∴OA=OB.又∠AOE=∠BOF,∴△AOE≌△BOF(ASA).∴AE=BF.∵AE=BD,∴BF=BD.∴∠BDF=∠BFD.∵∠BDF=∠C+∠OAE,∠BFD=∠BOF+∠OBF,∴∠BOF=∠C.∵∠BOF=∠BAD+∠ABE=2∠BAD,∴∠BAD=∠C,。
全等三角形题型归类及解析
全等三角形题型归类及解析文章已经没有格式错误和明显问题的段落了,但为了更好的表达,可以对每段话进行简单的改写:1.角平分线型利用角平分线的轴对称性,我们可以通过截取线段或作垂线来构造全等三角形。
同时,掌握角平分线与平行线或垂线构成等腰三角形的结论。
例如,在已知条件下求线段BC的长度,就可以通过构造全等三角形来解决问题。
2.中点型中点型题目中,我们可以联想到中线、中心对称图形、直角三角形的中线和中位线等概念。
例如,通过构造8字型全等三角形或利用中点对称性来求证等式等问题。
3.多个直角型多个直角型题目中,我们需要注意各个直角之间的关系,例如利用勾股定理或相似三角形来解决问题。
同时,也可以通过构造全等三角形来简化问题。
1.已知在三角形ABC中,AD是BC的中线,且DF=DE。
证明BE∥CF。
在三角形ABC中,由中线定理可知AD=DC。
又因为DF=DE,所以AD+DF=DC+DE,即AF=CE。
根据平行线的性质,BE∥CF。
2.已知在三角形ABC中,XXX于B,EF⊥AC于G,DF⊥BC于D,BC=DF。
证明AC=EF。
由题意可知,三角形DEF与三角形ABC相似,且比例系数为1:2.因此,DE=AC/2,EF=BC/2=DF/2=BC/2=AC/4.又因为EF⊥AC,所以三角形AEF与三角形ABC相似,且比例系数为1:2.因此,AC=2EF。
3.在直角三角形ABC中,AB=BC,BP为一条射线,AD⊥BP,CE⊥PB,且AD=4,EC=2.求DE的长。
由题意可知,三角形ABP与三角形CBP相似,且比例系数为1:2.因此,BP=2AB=2BC。
又因为AD⊥BP,CE⊥PB,所以三角形ADE与三角形CEB相似,且比例系数为AD/CE=2.因此,DE=CE/2=2,答案为2.4.在三角形ABC中,AD和BE是两条高,且AD=BD。
证明:(1)∠DBH=∠DAC;(2)三角形BDH与三角形ADC全等。
由高的性质可知,∠ABD=∠XXX°。
全等三角形难题(含答案.解析)
∴∠D=∠CFE
又∵∠DCE=∠FCE
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
8. 已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
ED
C
F
AB
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
1<AD<3
∴AD=2
1
2.已知:D是AB中点,∠ACB=90°,求证:
CDAB
2
A
D
CB
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A
2
1
F
C
D
E
B
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
全等三角形的重难点模型(八大题型)(解析版)—八年级数学上册(浙教版)
全等三角形的重难点模型(八大题型)【题型01:平移型】【题型02:翻折型】【题型03:旋转型】【题型04:一线三等角型(三类型)】【题型05:手拉手模型(四大类型)】【题型06:半角模型】【题型07:对角互补模型】【题型08:平行+线段中点构造全等模型】【题型1 平移型】【方法技巧】【典例1】如图,点E,C在线段BF上,AB=DE,BE=CF,AC=DF.(1)求证:△ABC≌△DEF;(2)若∠B=45°,∠F=85°,求∠A的度数.【答案】(1)见解析(2)50°【分析】本题考查全等三角形的判定与性质,三角形内角和定理,解题的关键是熟练运用全等三角形的判定.(1)首先根据BE=CF可得BC=EF,即可判定△ABC≌△DEF;(2)首先根据(1)中两三角形全等,可得∠ACB=∠F=85°,在△ABC中根据三角形内角和定理即可求出∠A.【详解】(1)证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∴在△ABC和△DEF中,AB=DE AC=DF BC=EF,∴△ABC≌△DEF(SSS).(2)解:∵△ABC≌△DEF,∠B=45°,∠F=85°,∴∠ACB=∠F=85°,∴∠A=180°―∠ACB―∠B=50°.【变式1-1】如图、点B、E、C、F在一条直线上AB=DE,AC=DF,BE=CF.(1)求证:∠A=∠D;(2)求证:AC∥DF.【答案】(1)证明见解析(2)证明见解析【分析】本题考查三角形综合,涉及三角形全等的判定与性质、平行线的判定等知识,熟记相关几何判定与性质是解决问题的关键.(1)由题中条件,利用两个三角形全等的判定定理SSS得到△ABC≌△DEF,再由三角形全等的性质即可得证;(2)由(1)中△ABC≌△DEF得到∠ACB=∠F,再由同位角相等两直线平行即可得证.【详解】(1)证明:∵BE=CF,∴BC=FE,在△ABC 和△DEF 中,AB =DE AC =DF BE =CF∴△ABC≌△DEF (SSS),∴∠A =∠D ;(2)证明:由(1)知△ABC≌△DEF ,∴ ∠ACB =∠F ,∴ AC∥DF .【变式1-2】如图,在△ABC 和 △DEF 中,边AC ,DE 交于点H ,AB∥DE ,AB =DE ,BC =EF .(1)若∠B =55°,∠ACB =100°,求∠CHE 的度数;(2)求证:△ABC≌△DEF .【答案】(1)∠CHE =25°;(2)证明见解析.【分析】本题考查了三角形的内角和定理,平行线的性质,全等三角形的判定,熟练掌握知识点的应用是解题的关键.(1)根据三角形内角和定理求出∠A ,再根据平行线的性质得出∠CHE =∠A 即可;(2)根据平行线的性质得出∠B =∠DEF ,求出BC =EF ,再根据全等三角形的判定定理推出即可;【详解】(1)解:∵∠B =55°,∠ACB =100°,∴∠A =180°―∠B ―∠ACB =25°,∵AB∥DE ,∴∠CHE =∠A =25°;(2)证明:∵AB∥DE ,∴∠B =∠DEF ,在△ABC 和△DEF 中,AB =DE ∠B =∠DEF BC =EF∴△ABC≌△DEF (SAS).【变式1-3】如图,点B 、E 、C 、F 在同一直线上,∠A =∠D =90°,BE =CF ,AC =DF .求证:∠B =∠DEF .【答案】答案见解析【分析】本题考查了三角形全等的判定与性质,掌握三角形全等的判定定理是解题的关键即可得到答案.根据BE =CF 得到BE +EC =EC +CF 即BC =FE ,之后利用HL 证明Rt △ABC≌Rt △DFE 即可得到答案.【详解】证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =FE .∵∠A =∠D =90°,则在Rt △ABC 和Rt △DFE 中,BC =FE AC =DE ,∴Rt △ABC≌Rt △DFE(HL).∴∠B =∠DEF .【题型2 翻折型】【方法技巧】【典例2】如图,AB=AD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【变式2-1】如图,已知∠1=∠2,∠C=∠D,求证:AC=BD【答案】证明见解析【分析】本题考查全等三角形的判定与性质,由两个三角形全等的判定定理AAS 得到△ABC≌△BAD (AAS),再由三角形全等性质即可得证,熟练掌握两个三角形全等判的定定理AAS 及性质是解决问题的关键.【详解】证明:在△ABC 与△BAD 中,∠1=∠2∠C =∠D AB =AB,∴△ABC≌△BAD (AAS),∴AC =BD .【变式2-2】如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD≌△ACD .【答案】见解析【分析】本题主要考查了全等三角形的判定.根据AD 平分∠BAC ,可得∠BAD =∠CAD ,再根据边角边可证明△ABD≌△ACD .【详解】证明:∵AD 平分∠BAC,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,∵AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD≌△ACD (SAS).【变式2-3】如图,AB =AC ,BO =CO ,求证:∠ADC =∠AEB .【答案】见解析【分析】本题考查了全等三角形的判定与性质、三角形外角的定义及性质,连接OA ,证明△AOB≌△AOC (SSS)得出∠B =∠C ,再由三角形外角的定义及性质即可得出答案,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】证明:如图,连接OA ,在△AOB 和△AOC 中,AB =AC OB =OC OA =OA,∴△AOB≌△AOC (SSS),∴∠B =∠C ,∵∠DOB =∠EOC ,∴∠B +∠DOB =∠C +∠EOC ,∴∠ADC =∠AEB .【题型3旋转型】【方法技巧】【典例3】如图,在△ABC 和△AEF 中,点E 在BC 边上,∠C =∠F ,AC =AF ,∠CAF =∠BAE ,EF 与AC 交于点G .(1)试说明:△ABC ≌△AEF ;(2)若∠B =55°,∠C =20°,求∠EAC 的度数.【答案】(1)见解答;(2)35°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠CAF+∠EAC=∠BAE+∠EAC,即∠BAC=∠EAF,在△ABC和△AEF中,,∴△ABC≌△AEF(ASA);(2)解:∵∠B=55°,∠C=20°,∴∠BAC=180°﹣55°﹣20°=105°,∵△ABC≌△AEF,∴AB=AE,∴∠B=∠AEB=55°,∴∠BAE=180°﹣∠B﹣∠AEB=70°,∴∠EAC=∠BAC﹣∠BAE=105°﹣70°=35°.【变式3-1】如图,点E在△ABC外部,点D在BC边上,若∠1=∠2,∠E=∠C,AE=AC,求证:AB=AD.【答案】证明见解答.【解答】证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴AB=AD.【变式3-2】如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠BAC=∠ADE.(1)求证:△ABC≌△DEA;(2)若∠CAD=30°,求∠BCD的度数.【答案】(1)见解析;(2)∠BCD=105°.【解答】(1)证明:∵BC∥AD,∴∠ACB=∠DAE.在△ABC和△DEA中,∵,∴△ABC≌△DEA(AAS).(2)解:由(1)知△ABC≌△DEA(AAS),∴AC=AD,∠ACB=∠CAD=30°,∴,∴∠BCD=∠ACD+∠ACB=30°+75°=105°.∴∠BCD=105°.【变式3-3】如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】证明见解答过程.【解答】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵点D是BC的中点,∴BD=CD,在△BDE与△CDF中,,∴△BDE≌△CDF(AAS).【变式3-4】如图,∠ABC=∠ADE,∠BAD=∠CAE,AC=AE,求证:△ABC≌△ADE.【答案】见解答.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).【题型4 一线三等角型】【方法技巧】模型一一线三垂直如图一,∠D=∠BCA=∠E=90°,BC=AC。
(完整word版)全等三角形难题(含答案),推荐文档
全等三角形难题(含答案)1.已知:AB=4, AC=2 D 是BC 中点,AD 是整数,求 AD解:延长AD 至U E,使AD=DE •/ D 是BC 中点 ••• BD=DC在^ ACD^n ^ BDE 中AD=DE/ BDE=Z ADCBD=DC••• AC=BE=2•••在△ ABE 中AB-BEv AE< AB+BE •/ AB=4即 4-2 v 2AD< 4+2 1v ADV 3••• AD=2延长CD 与 P,使D 为CP 中点。
连接 AP,BP •••DP=DC,DA=DB •••ACBP 为平行四边形又/ ACB=90•••平行四边形ACBP 为矩形2.已知:D 是AB 中点,/ ACB=90,求证: CD 1 -AB2••• AB=C P=1/2ABBC=DE / B=/ E ,/ C=/ D, F 是 CD 中点,求证:/ 仁/ 2证明:•/ BC=ED,CF=DF,/ BCF=/ EDF•••三角形BCF 全等于三角形 EDF (边角边)••• BF=EF, / CBF=/ DEF连接BE在三角形BEF 中,BF=EF••• / EBF=/ BEF•/ / ABC / AED••• / ABE=/ AEB •• AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,/ ABF=/ ABE+/ EBF=/ AEB+Z BEF=/ AEF•••三角形ABF 和三角形AEF 全等。
••• / BAF=/ EAF ( / 1 = / 2)。
4.已知:/ 仁/ 2, CD=DE EF//AB ,求证:EF=AC过C 作CG/ EF 交AD 的延长线于点GCG/ EF ,可得,/ EFD= CGDDE= DC/ FDE =/ GDC (对顶角)3.已知: 连接BF 和EFEF= CG/ CGD=/ EFD又,EF// AB•••/ CGD=/ 2 :.△ AGC为等腰三角形,AG= CG又EF = CG ••• EF= AC5.已知:AD平分/ BAC AC=AB+BD 求证:/ B=2/ C证明:延长AB取点E,使AE= AC连接DE•/ AD平分Z BAC• / EAD=/ CAD•AE= AC, AD= AD.△ A ED^A ACD (SAS• / E=/ C•AC= AB+BD• AE= AB+BD•AE= AB+BE• BD= BE• / BDE=/ E-/ ABC=/ E+Z BDE• / ABC= 2/ E• Z ABC= 2/ C6.已知:AC平分/ BAD CE丄AB, / B+Z D=180°,求证:AE=AD+BE证明:在AE上取F,使EF= EB,连接CF• CE 丄AB• / CEB=/ CEF= 90°•EB= EF, CE= CE,.△ CEB^A CEF• / B=/ CFE•/ B+/ »180°,/ CFE+/ CFA= 180• / CFAAC平分/ BAD./ DAC=/ FAC•AC= AC• △ ADC^A AFC( SAS• A» AF• AE= AF+ FE= AD+ BE12.如图,四边形ABCD中, AB// DC BE、CE分别平分/ ABC / BCD且点E在AD上。
全等三角形题型归类及解析汇报
全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且B E A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。
八年级数学上册全等三角形章末重难点题型(举一反三)(含解析版)
专题01 全等三角形章末重难点题型汇编【举一反三】【考点1 利用全等三角形的性质求角】【方法点拨】全等三角形的性质:(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
【例1】(2019春•临安区期中)如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°【变式1-1】(2018秋•绍兴期末)如图,△ABC≌△EDC,BC⊥CD,点A,D,E在同一条直线上,∠ACB =20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【变式1-2】(2018秋•厦门期末)如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF交于点M,则∠AMF等于()A.2∠B B.2∠ACB C.∠A+∠D D.∠B+∠ACB【变式1-3】(2018秋•桐梓县校级期中)如图,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,点B′在线段AB上,AC,A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【考点2 全等三角形的判定条件】【方法点拨】寻找并证明全等三角形还缺少的条件,其基本思路是:(1)有两边对应相等,找夹角对应相等,或第三边对应相等.前者利用SAS判定,后者利用SSS判定. (2)有两角对应相等,找夹边对应相等,或任一等角的对边对应相等.前者利用ASA判定,后者利用AAS 判定.(3)有一边和该边的对角对应相等,找另一角对应相等.利用AAS判定.(4)有一边和该边的邻角对应相等,找夹等角的另一边对应相等,或另一角对应相等.前者利用SAS判定,后者利用AAS判定.【例2】(2019春•沙坪坝区校级期中)如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E【变式2-1】(2019秋•潘集区期中)在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,AC=DF,BC=EF(2)AB=DE,∠B=∠E,BC=EF(3)∠B=∠E,BC=EF,∠C=∠F(4)AB=DE,∠B=∠E,AC=DF,其中能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【变式2-2】(2018春•渝中区校级期中)如图,点B、F、C、E在一条直线上,∠A=∠D,∠B=∠E,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.BC=EF C.∠ACB=∠DFE D.AC=DF【变式2-3】(2018秋•鄂尔多斯期中)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE【考点3 全等三角形判定的应用】【方法点拨】解决此类题型的关键是理解题意,利用全等三角形的判定.【例3】(2019春•郓城县期末)如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B 两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.【变式3-1】(2019春•峄城区期末)如图,点C、E分别在直线AB、DF上,小华想知道∠ACE和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF.小华的想法对吗?为什么?【变式3-2】(2019春•槐荫区期末)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【变式3-3】如图,两根长12m的绳子,一端系在旗杆上的同一位置,另一端分别固定在地面上的两个木桩上(绳结处的误差忽略不计),现在只有一把卷尺,如何来检验旗杆是否垂直于地面?请说明理由.【考点4 利用AAS证明三角形全等】【方法点拨】两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)【例4】(2018秋•仙游县期中)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是.并证明结论.【变式4-1】(2018春•揭西县期末)如图,∠ABC=∠ACB,∠ADE=∠AED,BE=CD,试说明:△ABD ≌△ACE.【变式4-2】(2018秋•杭州期中)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.求证:△ACD≌△CBE.【变式4-3】(2018•雁塔区校级二模)如图,在四边形ABCD中,点E在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【考点5 利用SAS证明三角形全等】【方法点拨】两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)【例5】(2018春•金山区期末)如图,已知CA=CD,CB=CE,∠ACB=∠DCE,试说明△ACE≌△DCB 的理由.【变式5-1】(2018春•黄岛区期末)如图,点E在AB上,AC=AD,∠CAB=∠DAB,那么△BCE和△BDE 全等吗?请说明理由.【变式5-2】(2018秋•仪征市校级月考)如图,已知点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE,说明△ABC与△DEF全等的理由.【变式5-3】(2019秋•东莞市校级月考)如图:△ABC和△EAD中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE.求证:△ABD≌△AEC.【考点6 利用ASA证明三角形全等】【方法点拨】两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)【例6】(2019秋•利辛县期末)如图,已知AB=AC,∠ABE=∠ACD,BE与CD相交于O,求证:△ABE ≌△ACD.【变式6-1】(2018•双柏县二模)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;【变式6-2】(2019•陕西模拟)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.【变式6-3】(2019秋•乐清市校级期中)如图,△ABC的两条高AD、BE相交于点H,且AD=BD,求证:△BDH≌△ADC.【考点7 利用SSS证明三角形全等】【方法点拨】三边对应相等的两个三角形全等(可简写成“SSS”)【例7】(2019春•渝中区校级月考)如图,AB=CD,AE=CF,E、F是BD上两点,且BF=DE.求证:△ABE≌△CDF.【变式7-1】(2019秋•扶余县校级月考)如图,在△ABC中,AD=AE,BE=CD,AB=AC.(1)求证:△ABD≌△ACE;(2)求证:∠BAE=∠CAD.【变式7-2】(2019秋•保亭县校级月考)如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?【变式7-3】(2019秋•蓬江区校级期末)如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.【考点8 利用HL证明三角形全等】【方法点拨】对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例8】(2018秋•思明区校级月考)如图,在四边形ABCD中,AD⊥BD,AC⊥CB,BD=AC.求证:△ABD≌△BAC;【变式8-1】(2019秋•睢宁县校级月考)如图,Rt△ABC中,∠C=90°,BC=2,一条直线MN=AB,M、N分别在AC和过点A且垂直于AC的射线AP上运动.问点M运动到什么位置,才能使△ABC和△AMN 全等?并证明你的结论.【变式8-2】(2019秋•合浦县期末)如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.【变式8-3】(2019春•醴陵市期末)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.【考点9 全等三角形的判定与性质综合】【例9】(2019•南岸区)如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.【变式9-1】(2019•福州模拟)(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明:若不成立,请说明理由.【变式9-2】(2018秋•天台县期末)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长.(用含a,b的式子表示)【变式9-3】(2019春•道外区期末)如图,四边形ABCD中,∠ABC=∠BCD=90°,点E在BC边上,∠AED=90°(1)求证:∠BAE=∠CED;(2)若AB+CD=DE,求证:AE+BE=CE;(3)在(2)的条件下,若△CDE与△ABE的面积的差为18,CD=6,求BE的长.【考点10 动点问题中的全等三角形应用】【例10】(2019春•平川区期末)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?【变式10-1】(2019春•永新县期末)△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.【变式10-2】(2019春•宝安区期中)如图,在四边形ABCD中,AD=BC=10,AB=CD,BD=14,点E 从D点出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒5个单位的速度沿C→B→C,作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.【变式10-3】(2018秋•十堰期末)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.专题01 全等三角形章末重难点题型汇编【举一反三】【考点1 利用全等三角形的性质求角】【方法点拨】全等三角形的性质:(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
完整版)全等三角形难题题型归类及解析
完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。
为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。
因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。
又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。
设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。
首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。
因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。
又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。
因此,三角形APM和三角形CPN是全等的。
因为全等三角形的对应边相等,所以PM=PN。
3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。
我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。
因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。
因此,三角形OAP和三角形OBP是直角三角形。
设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。
将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。
(完整)全等三角形难题及答案
1、 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =.2、 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =.3、 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
求证:AB AC PB PC ->-。
4、如图,BD 、CE 分别是ABC ∆的边AC 、AB 上的高,F 、G 分别是线段DE 、BC 的中点求证:DE FG ⊥5、如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F ,求证:∠ADC=∠BDE6、如图,在锐角ABC ∆中,已知C ABC ∠=∠2,ABC ∠的平分线BE 与AD 垂直,垂足为D ,若cm BD 4=,求AC 的长参考答案1、 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形.以线段AE 为边的ABE ∆绕点B 顺时针旋转90到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。
解答过程:90ABC ∠=,F 为AB 延长线上一点∴90ABC CBF ∠=∠=在ABE ∆与CBF ∆中AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴ABE CBF ∆≅∆(SAS)∴AE CF =。
解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。
小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。
这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。
2、 思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。
专题 三角形的全等六大重难模型(期末真题精选)(解析版)
专题02 三角形的全等六大重难模型一.一线三等角模型1.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B 逆时针旋转90°后得到线段BC,则点C的坐标是()A.(3,4)B.(4,3)C.(4,7)D.(3,7)试题分析:过点C作CD⊥y轴,垂足为D,根据垂直定义可得∠CDB=90°,从而利用直角三角形的两个锐角互余可得∠CBD+∠DCB=90°,再利用旋转的性质可得CB=BA,∠CBA=90°,然后利用平角定义可得∠CBD+∠ABO=90°,从而利用同角的余角相等可得∠ABO=∠DCB,进而可得△BOA≌△CDB,最后利用全等三角形的性质可得CD=BO=3,DB=OA=4,从而求出DO=7,即可解答.答案详解:解:过点C作CD⊥y轴,垂足为D,∴∠CDB=90°,∴∠CBD+∠DCB=180°﹣∠CDB=90°,∵点A的坐标是(4,0),点B的坐标是(0,3),∴OA=4,OB=3,由旋转得:CB=BA,∠CBA=90°,∴∠CBD+∠ABO=180°﹣∠ABC=90°,∴∠ABO=∠DCB,∵∠CDB=∠AOB=90°,∴△BOA≌△CDB(AAS),∴CD=BO=3,DB=OA=4,∴DO=DB+OB=4+3=7,∴点C的坐标是(3,7),所以选:D.2.已知正方形OBCD在平面直角坐标系中的位置如图所示M为边OB上一点,且点M的坐标为(a,b).将正方形OBCD绕原点O顺时针旋转,每秒旋转45°,则旋转2022秒后,点M的坐标为()A.(b,a)B.(﹣a,b)C.(﹣b,a)D.(﹣a,﹣b)试题分析:先确定此时点M对应的位置即点M所在的位置,如图,过点M,M′分别作ME⊥x 轴于点E,MF⊥x轴于点F,证明△M′OF≌△OME,得到M′F=OE=a,OF=ME=b,由此求解即可.答案详解:解:∵正方形OBCD 绕原点O 顺时针旋转,每秒旋转45°,∴旋转8秒恰好旋转360°.∵2022÷8=252……6,∴旋转2022秒,即点M 旋转了252圈后,又旋转了6次.∵6×45°=270°,∴此时点M 对应的位置即点 M ’所在的位置,如图.过点M ,M '分别作ME ⊥x 轴于点E ,M 'F ⊥x 轴于点F ,∴∠M ′FO =∠OEM =90°,∴∠EOM +∠EMO =90°,∵四边形OBCD 是正方形,∴∠BOD =90°,∴∠FOM ′+∠MOE =90°,∴∠M ′OF =∠OME .在△M ′OF 和△MOE 中,{∠FM ′O =∠OEM ∠M′OF =∠OME OM =OM′,∴△M ′FO ≌△OEM (AAS ),∵点M 的坐标为(a ,b ),∴OF =ME =b ,M ′F =OE =a .又点M ′在第二象限,∴旋转2022秒后,点M 的坐标为(﹣b ,a ).所以选C .3.问题提出在等腰Rt △ABC 中,AB =BC ,∠ABC =90°,点D ,E 分别在边AB ,AC 上(不同时在点A ),连接DE ,将线段DE 绕点E 顺时针旋转90°,得到线段FE ,连接AF ,探究AF 与BC 的位置关系.问题探究(1)先将问题特殊化,如图1,点D ,E 分别与点B ,C 重合,直接写出AF 与BC 的位置关系;(2)再探讨一般情形,如图2,证明(1)中的结论仍然成立.问题拓展如图3,在等腰Rt △ABC 中,AB =BC ,∠ABC =90°,D 为AB 的中点,点E 在边AC 上,连接DE ,将线段DE 绕点E 顺时针旋转90°,得到线段FE ,点G 是点C 关于直线AB 的对称点,若点G ,D ,F 在一条直线上,求AE EC 的值.试题分析:(1)先证CF ∥AB ,再证AB =CF ,则四边形ABCF 是平行四边形,即可得出结论;(2)过E 作EM ⊥AC 交AB 的延长线于点M ,证△AEF ≌△MED (SAS ),得∠EAF =∠EMD =45°,则∠EAF =∠BCA ,即可得出结论;(3)连接AF 、CF ,过E 作EG ⊥AB 于点G ,延长GE 交CF 于点H ,证四边形ABCF 是正方形,得AB ∥CF ,∠BCF =90°,∠ACF =45°,再证△EFH ≌△DEG (AAS ),得EH =DG ,然后证△ECH 是等腰直角三角形,得EH =CH ,进而得AG =3BG ,即可解决问题.答案详解:问题探究(1)解:AF ∥BC ,理由如下:由旋转的性质得:∠DEF =90°,DE =FE ,∵∠ABC =90°,∴∠ABC +∠DEF =180°,∴CF ∥AB ,∵AB =BC ,∴AB =CF ,∴四边形ABCF 是平行四边形,∴AF∥BC;(2)证明:如图2,过E作EM⊥AC交AB的延长线于点M,则∠AEM=90°,∵∠ABC=90°,AB=BC,∴∠BAC=∠BCA=45°,∴△AEM是等腰直角三角形,∴ME=AE,∠AME=45°,由旋转的性质得:FE=DE,∠DEF=90°,∴∠DEF=∠AEM,∴∠DEF﹣∠AED=∠AEM﹣∠AED,即∠AEF=∠MED,∴△AEF≌△MED(SAS),∴∠EAF=∠EMD=45°,∴∠EAF=∠BCA,∴AF∥BC;问题拓展解:如图3,连接AF、CF,过E作EG⊥AB于点G,延长GE交CF于点H,则∠EGD=90°,由(1)可知,AF∥BX,∴∠DAF=∠DBG,∠AFD=∠G,∵D为AB的中点,∴AD=BD,∴△ADF≌△BDG(AAS),∴AF=BG,∵点G是点C关于直线AB的对称点,∴BG=BC,∴AF=BG,∴四边形ABCF是平行四边形,∵AB=BC,∠ABC=90°,∴平行四边形ABCF是正方形,∴AB∥CF,∠BCF=90°,∠ACF=45°,∵GH⊥AB,∴GH⊥CF,∴BG=CH,∠CHE=∠FHE=90°,∴∠EFH+∠FEH=90°,由旋转的性质得:FE=DE,∠DEF=90°,∴∠DEG+∠FEH=90°,∴∠EFH=∠DEG,∵∠EGD=∠FHE=90°,∴△EFH≌△DEG(AAS),∴EH=DG,∵∠ACF=45°,∴△ECH是等腰直角三角形,∴EH=CH,∴DG=BG=12BD=12AD,∴AG=3BG,∵∠EGD=∠ABC=90°,∴EG∥BC,∴AEEC=AGBG=3.4.如图,方格纸中的每个小正方形的边长均为1,小正方形的顶点称为格点.已知A ,B ,C 都是格点.(1)小明发现图2中∠ABC 是直角,请在图1补全他的思路;(2)请借助图3用一种不同于小明的方法说明∠ABC 是直角.先利用勾股定理求出△ABC 的三条边长,可得AB = √10 ,BC = √10 ,AC = 2√5 .从而可得三边数量关系为 AB 2+BC 2=AC 2 ,根据 勾股定理的逆定理 ,可以证明∠ABC 是直角.试题分析:(1)先利用勾股定理求出AB ,BC ,AC 的长,然后利用勾股定理的逆定理,进行计算即可解答;(2)根据题意可得:AD =BE =3,BD =CE =1,∠ADB =∠BEC =90°,从而利用SAS 可得△ADB ≌△BEC ,然后利用全等三角形的性质可得∠ABD =∠BCE ,再利用直角三角形的两个锐角互余可得∠BCE +∠EBC =90°,从而可得∠ABD +∠EBC =90°,最后利用平角定义进行计算即可解答.答案详解:解:(1)由题意得:AB =√12+32=√10,BC =√12+32=√10,AC =√22+42=2√5,∴AB 2+BC 2=AC 2,根据勾股定理的逆定理:△ABC 是直角三角形,∴∠ABC =90°,所以答案是:√10,√10,2√5,AB 2+BC 2=AC 2,勾股定理的逆定理;(2)由题意得:AD =BE =3,BD =CE =1,∠ADB =∠BEC =90°,在△ADB 和△BEC 中,{AD =BE ∠ADB =∠BEC BD =CE,∴△ADB≌△BEC(SAS),∴∠ABD=∠BCE,∵∠BEC=90°,∴∠BCE+∠EBC=180°﹣∠BEC=90°,∴∠ABD+∠EBC=90°,∴∠ABC=180°﹣(∠ABD+∠EBC)=90°,∴∠ABC是直角.5.如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.试题分析:根据已知可得∠CAF+∠BAE=90°,根据垂直定义可得∠CF A=∠BEA=90°,然后利用直角三角形的两个锐角互余可得∠C+∠CAF=90°,从而利用同角的余角相等可得∠C=∠BAE,即可解答.答案详解:证明:∵∠BAC=90°,∴∠CAF+∠BAE=90°,∵BE⊥AD,CF⊥AD,∴∠CF A=∠BEA=90°,∴∠C+∠CAF=90°,∴∠C=∠BAE,∴△ABE ≌△CAF (AAS ).6.【问题提出】(1)已知:如图1,AD ⊥DE 于点D ,BE ⊥DE 于点E ,点C 在线段DE 上,AC =BC 且AC ⊥BC ,求证:△ADC ≌△CEB .【问题解决】(2)如图2,点D ,C ,E 在直线l 上.点A ,B 在l 的同侧,AC ⊥BC ,若AD =AC =BC =BE =5cm ,CD =6cm ,求CE 的长.试题分析:(1)根据同角的余角相等可得∠A =∠BCE ,然后利用AAS 即可证明结论;(2)作AG ⊥CD 于G ,BH ⊥CE 于H ,根据等腰三角形的性质得CG =3cm ,利用勾股定理得AG =4cm ,由(1)同理得,△ACG ≌△CBH (AAS ),得CH =AG =4cm ,从而得出答案. 答案详解:(1)证明:∵AD ⊥DE 于点D ,BE ⊥DE ,∴∠D =∠E =90°,∴∠ACD +∠BCE =90°,∠ACD +∠A =90°,∴∠A =∠BCE ,在△ADC 和△CEB 中,{∠D =∠E∠A =∠BCE AC =BC,∴△ADC ≌△CEB (AAS );(2)解:作AG ⊥CD 于G ,BH ⊥CE 于H ,∵AD =AC ,AG ⊥CD ,在Rt △ACG 中,由勾股定理得,AG =4cm ,由(1)同理得,△ACG ≌△CBH (AAS ),∴CH =AG =4cm ,∵BC =BE ,BH ⊥CE ,∴CE =2CH =8cm .二.手拉手模型--旋转7.如图,C 为线段AB 上一动点(不与点A 、B 重合),在AB 的上方分别作△ACD 和△BCE ,且AC =DC ,BC =EC ,∠ACD =∠BCE ,AE 、BD 交于点P .有下列结论:①AE =DB ;②∠APB =2∠ADC ;③当AC =BC 时,PC ⊥AB ;④PC 平分∠APB .其中正确的是 ①②③④ .(把你认为正确结论的序号都填上)试题分析:由“SAS ”可证△ACE ≌△DCB ,可得AE =DB ,可判断①;由△ACE ≌△DCB ,可得∠CAE =∠CDB ,由AC =DC ,可得∠CAD =∠ADC ,利用三角形内角和定理即可判断②;由AC =BC ,AC =DC ,BC =EC ,可得:AC =BC =DC =EC ,进而得出∠CAE =∠CBD ,再运用等腰三角形性质即可判断③;由全等三角形的性质可得S △ACE =S △DCB ,由三角形的面积公式可求CG =CH ,由角平分线的性质可得PC 平分∠APB ,可判断④,即可求解.答案详解:解:∵∠ACD =∠BCE ,∴∠ACD +∠DCE =∠BCE +∠DCE ,即∠ACE =∠DCB ,在△ACE 和△DCB 中,{AC =DC ∠ACE =∠DCB EC =BC,∴△ACE ≌△DCB (SAS ),∴AE =DB ,故①正确;∵△ACE ≌△DCB ,∴∠CAE =∠CDB ,∵∠ACD =∠CDB +∠CBD ,∴∠ACD=∠CAE+∠CBD,∵∠CAE+∠CBD+∠APB=180°,∴∠ACD+∠APB=180°,∵AC=DC,∴∠CAD=∠ADC,∵∠ACD+∠CAD+∠ADC=180°,∴∠ACD+2∠ADC=180°,∴∠APB=2∠ADC,故②正确;∵AC=BC,AC=DC,BC=EC,∴AC=BC=DC=EC,∴∠CAE=∠CBD,∴P A=PB,∵AC=BC,∴PC⊥AB,故③正确;如图,连接PC,过点C作CG⊥AE于G,CH⊥BD于H,∵△ACE≌△DCB,∴S△ACE=S△DCB,AE=BD,∴12×AE×CG=12×DB×CH,∴CG=CH,∵CG⊥AE,CH⊥BD,∴PC平分∠APB,故④正确,所以答案是:①②③④.8.如图所示,已知△ABC和△BDE均为等边三角形,连接AD、CE,若∠BAD=α,则∠BCE=α.试题分析:因为△ABC 和△BDE 均为等边三角形,由等边三角形的性质得到AB =BC ,∠ABC =∠EBD ,BE =BD .再利用角与角之间的关系求得∠ABD =∠EBC ,则△ABD ≌△EBC ,故∠BCE 可求.答案详解:解:∵△ABC 和△BDE 均为等边三角形,∴AB =BC ,∠ABC =∠EBD =60°,BE =BD ,∵∠ABD =∠ABC +∠DBC ,∠EBC =∠EBD +∠DBC ,∴∠ABD =∠EBC ,在△ABD 和△EBC 中,{AB =BC ∠ABD =∠EBC BE =BD,∴△ABD ≌△EBC (SAS ),∴∠BCE =∠BAD =α.所以答案是:α.9.如图,在△ABC 中,∠ACB =90°,∠B =30°,AC =6,点D 是边CB 上的动点,连接AD ,将线段AD 绕点A 顺时针旋转60°,得到线段AP ,连接CP ,则线段CP 的最小值 3 .试题分析:延长AC 到点E ,使CE =AC ,可得△ABE 是等边三角形,利用SAS 证明△BAD ≌△EAP ,得∠AEP =∠ABD =30°,当CP ⊥EP 时,CP 最小,从而解决问题.答案详解:解:延长AC 到点E ,使CE =AC ,∵∠ACB=90°,∠B=30°,∴BC垂直平分AE,∠BAE=60°,∴BA=BE,∴△ABE是等边三角形,∴AB=AE,∵线段AD绕点A顺时针旋转60°,得到线段AP,∴AD=AP,∠DAP=60°,∴∠P AE=∠DAB,∴△BAD≌△EAP(SAS),∴∠AEP=∠ABD=30°,∴当CP⊥EP时,CP最小,∴CP=12CE=12AC=3,所以答案是:3.10.已知点D是△ABC外一点,连接AD,BD,CD,∠BAC=∠BDC=α.(1)【特例体验】如图1,AB=BC,α=60°,则∠ADB的度数为60°;(2)【类比探究】如图2,AB=BC,求证:∠ADB=∠BDC;(3)【拓展迁移】如图3,α=60°,∠ACB+∠BCD=180°,CE⊥BD于点E,AC=kDE,直接写出CDAB的值(用k 的代数式表示).试题分析:(1)在BD上取点E,使BE=CD,证明△ABE≌△ACD(SAS),由全等三角形的性质得出∠BAE=∠CAD,AE=AD,由等边三角形的性质可得出答案;(2)在DC的延长线上取一点H,使BD=BH,证明△ABD≌△CBH(SAS),由全等三角形的性质得出∠ADB=∠H=α,则可得出结论;(3)延长DC至H,使CH=AC,连接BH,证明△ABC≌△HBC(SAS),由全等三角形的性质得出AB=BH,设ED=m,则CE=2m,证出△BDH为等边三角形,由等边三角形的性质得出DH=BH=AB=km+2m,则可得出答案.答案详解:(1)解:在BD上取点E,使BE=CD,∵AB=BC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC,∵∠BAC=∠BDC,∠AOB=∠COD,∴∠ABE=∠ACD,∴△ABE≌△ACD(SAS),∴∠BAE=∠CAD,AE=AD,∴∠EAD=∠EAC+∠CAD=∠EAC+∠BAE=∠BAC=60°,∴△AED是等边三角形,∴∠ADB=60°.所以答案是:60°;(2)证明:在DC的延长线上取一点H,使BD=BH,∴∠BDH=∠H=α,∵∠BAC=∠BDC=α,∠AOB=∠COD,∴∠ABD=∠ACD,∴∠BCD=∠ACD+α=α+∠CBH,∴∠ACD=∠CBH=∠ABD,∴△ABD≌△CBH(SAS),∴∠ADB=∠H=α,∴∠ADB=∠BDC;(3)解:延长DC至H,使CH=AC,连接BH,∵∠ACB+∠BCD=180°,∠BCH+∠BCD=180°,∴∠ACB=∠BCH,∵AC=CH,BC=BC,∴△ABC≌△HBC(SAS),∴AB =BH ,∴∠H =∠BAC =∠BDC =60°,∵CE ⊥BD ,∠ECD =30°,∴CD =2ED ,设ED =m ,则CD =2m ,∵AC =kED =km ,∴CH =km ,∴DH =2m +km ,又∵∠BDH =∠H =60°,∴△BDH 为等边三角形,∴DH =BH =AB =km +2m ,∴CD AB =2m km+2m =2k+2.三.倍长中线模型11.如图,在△ABC 中,∠ABC =45°,AM ⊥BC 于点M ,点D 在AM 上,且DM =CM ,F 是BC 的中点,连接FD 并延长,在FD 的延长线上有一点E ,连接CE ,且CE =CA ,∠BDF =36°,则∠E = 36° .试题分析:先证明△AMC ≌△BMD ,延长EF 到点G ,使得FG =EF ,连接BG .再证△BFG ≌△CFE 可得BG =CE ,∠G =∠E ,从而得BD =BG =CE ,即可得∠BDG =∠G =∠CEF . 答案详解:解:∵∠ABM =45°,AM ⊥BM ,∴∠BMD =∠AMC ,BM =AM ,在△BMD 和△AMC 中,{DM =CM ∠BMD =∠AMC BM =AM,∴△BMD ≌△AMC (SAS ),延长EF 到点G ,使得FG =EF ,连接BG .如图所示:∵△BMD ≌△AMC∴BD =AC ,又∵CE =AC ,∴BD =CE ,在△BFG 和△CFE 中,{BF =FC ∠BFG =∠EFC FG =FE,∴△BFG ≌△CFE (SAS ),∴BG =CE ,∠G =∠CEF ,∴BD =CE =BG ,∴∠BDF =∠G =∠CEF .∴∠BDF =∠CEF ,∴∠E =36°.所以答案是:36°.12.如图,△ABC 中,AB =6,AC =4,D 是BC 的中点,AD 的取值范围为 1<AD <5 .试题分析:延长AD 到E ,使DE =AD ,连接BE ,证明△BDE ≌△CDA ,得出AC =BE ,再根据三角形的三边关系得到结论.答案详解:解:延长AD 到E ,使DE =AD ,连接BE ,在△ACD 与△EBD 中,{BD =CD ∠BDE =∠ADC AD =DE,∴△BDE ≌△CDA (SAS ),∴BE =AC ,∵AB =6,AC =4,∴2<AE <10,∴1<AD <5.所以答案是:1<AD <5.13.(1)方法呈现:如图①:在△ABC 中,若AB =6,AC =4,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE =AD ,再连接BE ,可证△ACD ≌△EBD ,从而把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断中线AD 的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC 中,点D 是BC 的中点,DE ⊥DF 于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE +CF 与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是∠BAF 的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.试题分析:(1)由已知得出AB﹣BE<AE<AB+BE,即6﹣4<AE<6+4,AD为AE的一半,即可得出答案;(2)延长FD至点M,使DM=DF,连接BM,EM,可得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AE,DF交于点G,根据平行和角平分线可证AF=FG,也可证得△ABE≌△GCE,从而可得AB=CG,即可得到结论.答案详解:解:(1)1<AD<5.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDA(SAS),∴BE=AC=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<AE<6+4,∴2<AE<10,∴1<AD<5.证明:(2)延长FD至点M,使DM=DF,连接BM、EM,如图②所示.同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF.(3)如图③,延长AE,DF交于点G,∵AB∥CD,∴∠BAG=∠G,在△ABE和△GCE中,CE=BE,∠BAG=∠G,∠AEB=∠GEC,∴△ABE≌△GEC(AAS),∴CG=AB,∵AE是∠BAF的平分线,∴∠BAG=∠GAF,∴∠F AG=∠G,∴AF=GF,∵FG+CF=CG,∴AF+CF=AB.四.平行+中点模型14.如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.试题分析:首先连接EM 、MF ,再证明△BEM ≌△CFM 可得ME =MF .答案详解:解:石凳M 到石凳E 、F 的距离ME 、MF 相等.理由如下:∵AB ∥CD ,∴∠B =∠C ,又∵M 为BC 中点,∴BM =MC .在△BEM 和△CFM 中,{BE =CF ∠B =∠C BM =CM,∴△BEM ≌△CFM (SAS ),∴ME =MF .即石凳M 到石凳E 、F 的距离ME 、MF 相等.15.△ABC 中,P 是BC 边上的一点,过P 作直线交AB 于M ,交AC 的延长线于N ,且PM =PN ,MF ∥AN ,(1)求证:△PMF ≌△PNC ;(2)若AB =AC ,求证:BM =CN .试题分析:(1)由平行线的性质得出∠MFP =∠NCP ,由AAS 证明△PMF ≌△PNC 即可;(2)由全等三角形的性质得出FM =CN ,由等腰三角形的性质和平行线的性质得出∠B =∠MFB ,证出BM =FM ,即可得出结论.答案详解:(1)证明:∵MF ∥AN ,∴∠MFP =∠NCP ,在△PMF 和△PNC 中,{∠MFP =∠NCP∠MPF =∠NPC PM =PN,∴△PMF ≌△PNC (AAS );(2)证明:由(1)得:△PMF ≌△PNC ,∴FM =CN ,∵AB =AC ,∴∠B =∠ACB ,∵MF ∥AN ,∴∠MFB =∠ACB ,∴∠B =∠MFB ,∴BM =FM ,∴BM =CN .16.如图,已知梯形ABCD 中,AD ∥BC ,E 为AB 中点,DE ⊥EC .求证:(1)DE 平分∠ADC ;(2)AD +BC =DC .试题分析:(1)延长DE 交CB 的延长线于F ,可证得△AED ≌△BEF ,根据三线合一的性质可得出CD =CF ,推出∠CDF =∠F ,由∠ADF =∠F 即可证明;(2)由△AED ≌△BEF ,根据三线合一的性质可得出CD =CF ,进而利用等线段的代换可证得结论;答案详解:证明:(1)延长DE 交CB 的延长线于F ,∵AD ∥CF ,∴∠A =∠ABF ,∠ADE =∠F .在△AED 与△BEF 中,{∠A =∠ABFAE =BE ∠ADE =∠F,∴△AED ≌△BEF ,∴AD =BF ,DE =EF ,∵CE ⊥DF ,∴∠CDF =∠F ,∵AD ∥CF ,∴∠ADE =∠F ,∴∠ADE =∠CDF ,∴ED 平分∠ADC .(2)∵△AED ≌△BEF ,∴AD =BF ,DE =EF ,∵CE ⊥DF ,∴CD =CF =BC +BF ,∴AD +BC =DC .五.角平分线+垂直模型17.已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且∠ADC +∠B =180°.(1)若AB =12,AD =8,则AF = 10 .(2)若△ABC 的面积是24,△ADC 的面积是16,则△BEC 的面积等于 4 .试题分析:(1)利用角平分线的性质可得CE =CF ,∠F =∠CEB =90°,根据等角的补角相等得∠B =∠CDF ,利用AAS 证出两三角形全等,求出DF =BE ,证Rt △AFC ≌Rt △AEC ,推出AF =AE ,由BE =DF 可得AB ﹣AE =AF ﹣AD =AB ﹣AF ,即可得AB +AD =2AF ;(2)利用全等三角形的面积相等,设△BEC 的面积为x ,列出方程可得结果.答案详解:解:(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,∴CE =CF ,∠CEB =∠F =90°,∵∠ADC +∠B =180°,∠ADC +∠CDF =180°,∴∠B =∠CDF ,在Rt △BCE 与Rt △DCF 中,{∠B =∠CDF∠CEB =∠F CE =CF,∴Rt △BCE ≌Rt △DCF (AAS ),∴DF =BE ,CE =CF ,CE ⊥AB 于E ,CF ⊥AD 于F ,在Rt △ACE 与Rt △ACF 中,{CE =CF AC =AC, ∴Rt △ACE ≌Rt △ACF (HL ),∴AF =AE ,∴AB ﹣AE =AF ﹣AD =AB ﹣AF ,∴AB +AD =2AF ,∵AB =12,AD =8,∴AF =10,所以答案是:10.(2)∵Rt △BCE ≌Rt △DCF ,∴S △BCE =S △DCF ,设△BEC 的面积为x ,∵△ABC 的面积是24,△ADC 面积是16,∴24﹣x =16+x ,∴x =12×(24﹣16)=4.即△BEC 的面积等于4,所以答案是:4.18.如图,AD 是△ABC 的角平分线,过点C 作CE ⊥AD ,垂足为点E ,延长CE 与AB 相交于点F ,连接DF ,若∠BAC =60°,∠B =40°,则∠BDF 的度数为 40 °.试题分析:首先利用已知条件可以证明△AFE ≌△ACE ,然后利用全等三角形的性质和等腰三角形的性质可以求出∠ACD =∠AFD ,最后利用四边形的内角和求出∠CDF 即可解决问题. 答案详解:解:∵AD 是△ABC 的角平分线,∴∠F AD =∠CAD ,∵CE ⊥AD ,∴∠AEF =∠AEC =90°,在△AFE 和△ACE 中,{∠FAD =∠CAD AE =AE ∠AEF =AEC ,∴△AFE ≌△ACE (ASA ),∴EF =CE ,AF =CF ,∴∠AFE =∠ACE ,∵CE ⊥AD ,∴CD =FD ,∴∠DFC =DCF ,∴∠AFD =∠ACD ,∵∠BAC =60°,∠B =40°,∴∠ACD =∠AFD =180°﹣60°﹣40°=80°,∴∠CDF =360°﹣∠BAC ﹣∠ACD ﹣∠AFD =140°,∴∠BDF =180°﹣∠CDF =180°﹣140°=40°.所以答案是:40.19.如图:在∠EAF的平分线上取点B作BC⊥AF于点C,在直线AC上取一动点P.在直线AE上取点Q使得BQ=BP.(1)如图1,当点P在点线段AC上时,∠BQA+∠BP A=180°;(2)如图2,当点P在CA延长线上时,探究AQ、AP、AC三条线段之间的数量关系,说明理由;(3)在满足(1)的结论条件下,当点P运动到在射线AC上时,直接写出AQ、AP、PC三条线段之间的数量关系为:AQ﹣AP=2PC或AP﹣AQ=2PC.试题分析:(1)作BM⊥AE于点M,根据角平分线的性质得到BM=BC,证明Rt△BMQ≌Rt△BPC(HL),进而证明∠BQA=∠BPC即可得出答案;(2)作BM⊥AE于点M,证明Rt△ABM≌Rt△ABC(HL),得到∠ABM=∠ABC,AM=AC,BM =BC,再证明Rt△BMQ≌Rt△BCP(HL),从而得出PC=QM即可;(3)分两种情况进行讨论,P在线段AC上或P在线段AC的延长线上,作出图后,由△QBM≌△PBC(AAS),得∠QBC=∠PBC,QM=PC,BM=BC,结合Rt△ABM≌Rt△ABC(HL),得出AM=AC,利用线段和差计算即可.答案详解:解:(1)作BM⊥AE于点M,∵AB平方∠EAF,BC⊥AF,∴BM=BC,在Rt△BMQ和Rt△BPC中,{BQ=BPBM=BC,∴Rt△BMQ≌Rt△BPC(HL),∴∠BQA=∠BPC,又∵∠BPC+∠BP A=180°,∴∠BQA+∠BP A=180°,所以答案是:180;(2)AQ﹣AP=2AC,理由如下,作BM⊥AE于点M,∵AB平方∠EAF,BC⊥AF,∴BM=BC,∠BMA=∠BCA=90°,在Rt△ABM和Rt△ABC中,{BM=BCAB=AB,∴Rt△ABM≌Rt△ABC(HL),∴∠ABM=∠ABC,AM=AC,在Rt△BMQ和Rt△BCP中,{BQ=BPBM=BC,∴Rt△BMQ≌Rt△BCP(HL),∴PC=QM,∴AQ﹣QP=(AM+QM)﹣(PC﹣AC)=AM+AC=2AC;(3)当点P在线段AC上时,如图,AQ﹣AP=2PC,作BM⊥AE于点M,∵BC ⊥AF ,∴,∠BMA =∠BCA =90°,∵∠BQA +∠BP A =180°,∠BPC +∠BP A =180°,∴∠BPC =∠BQM ,在△QBM 和△PBC 中,{∠BMQ =∠BCP∠BQM =∠BPC QB =PB,∴△QBM ≌△PBC (AAS ),∴∠QBC =∠PBC ,QM =PC ,BM =BC ,在Rt △ABM 和Rt △ABC 中,{BM =BC AB =AB, ∴Rt △ABM ≌Rt △ABC (HL ),∴AM =AC ,∴AQ ﹣AP =AM +QM ﹣(AC ﹣PC )=QM +PC =2PC ;当P 在线段AC 的延长线上,如图,AP ﹣AQ =2PC ,作BM ⊥AE 于点M ,∵BC ⊥AF ,∴∠BMA =∠BCA =90°,∵∠BQA +∠BP A =180°,∠BQM +∠BQA =180°,∴∠BPC =∠BQM ,在△QBM 和△PBC 中,{∠BMQ =∠BCP∠BQM =∠BPC QB =PB,∴△QBM ≌△PBC (AAS ),∴∠QBC =∠PBC ,QM =PC ,BM =BC ,在Rt △ABM 和Rt △ABC 中,{BM =BC AB =AB, ∴Rt △ABM ≌Rt △ABC (HL ),∴AM =AC ,∴AP ﹣AQ =AC +CP ﹣(AM ﹣QM )=MQ +PC =2PC .所以答案是:AQ ﹣AP =2PC 或AP ﹣AQ =2PC .六.半角模型20.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD ,线段EF 、BE 、FD 之间的关系是 EF =BE +FD ;(不需要证明)(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.(3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证明.试题分析:(1)延长CB 至G ,使BG =DF ,连接AG ,证明△ABG ≌△ADF ,根据全等三角形的性质得到AG =AF ,∠BAG =∠DAF ,再证明△GAE ≌△F AE ,根据全等三角形的性质得出EF =EG ,结合图形计算,证明结论;(2)延长CB 至M ,使BM =DF ,连接AM ,仿照(1)的证明方法解答;(3)在EB 上截取BH =DF ,连接AH ,仿照(1)的证明方法解答.答案详解:解:(1)EF =BE +FD ,理由如下:如图1,延长CB 至G ,使BG =DF ,连接AG ,在△ABG 和△ADF 中,{AB =AD ∠ABG =∠D =90°BG =DF,∴△ABG ≌△ADF (SAS ),∴AG =AF ,∠BAG =∠DAF ,∵∠EAF =12∠BAD ,∴∠DAF +∠BAE =∠EAF ,∴∠GAE =∠BAG +∠BAE =∠DAF +∠BAE =∠EAF ,在△GAE 和△F AE 中,{AG =AF ∠GAE =∠FAE AE =AE,∴△GAE ≌△F AE (SAS ),∴EF =EG ,∵EG =BG +BE =BE +DF ,∴EF =BE +FD ,所以答案是:EF =BE +FD ;(2)(1)中的结论仍然成立,理由如下:如图2,延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D ,在△ABM 和△ADF 中,{AB =AD ∠1=∠D BM =DF ,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∴∠3+∠4=∠EAF ,∴∠EAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△F AE 中,{AM =AF ∠MAE =∠FAE AE =AE,∴△MAE ≌△F AE (SAS ),∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;(3)(1)中的结论不成立,EF =BE ﹣FD ,理由如下:如图3,在EB 上截取BH =DF ,连接AH ,同(2)中证法可得,△ABH ≌△ADF ,∴AH =AF ,∠BAH =∠DAF ,∴∠HAE =∠F AE ,在△HAE 和△F AE 中,{AH =AF ∠HAE =∠FAE AE =AE,∴△HAE ≌△F AE (SAS ),∴EF =EH ,∵EH =BE ﹣BH =BE ﹣DF ,∴EF =BE ﹣FD .21.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是EF=BE+DF.(2)拓展应用:如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD .问(1)中的线段BE ,EF ,FD 之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.试题分析:(1)延长FD 到点G .使DG =BE .连接AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;(2)延长FD 到点G .使DG =BE .连接AG ,即可证明△ABE ≌△ADG ,可得AE =AG ,再证明△AEF ≌△AGF ,可得EF =FG ,即可解题;答案详解:解:(1)EF =BE +DF ,理由如下:在△ABE 和△ADG 中,{DG =BE ∠B =∠ADG =90°AB =AD,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,{AE =AG ∠EAF =∠GAF AF =AF ,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;所以答案是:EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连接AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,{DG =BE ∠B =∠ADG AB =AD,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在△AEF 和△GAF 中,{AE =AG ∠EAF =∠GAF AF =AF,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG=DG+DF=BE+DF,∴EF=BE+DF;。
(完整word版)八年级数学全等三角形难题集锦
1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。
(完整版)全等三角形难题集锦超级好题汇总
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
求证: (1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立? (3)AN 与BM 相交所夹锐角是否发生变化。
3.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EA B A B N CN 图①图②4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( ) A .3个 B .4个 C .5个 D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AG FC BDE (图1) ABCD EFDCB A7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.8.已知AC//BD,∠CAB 和∠DBA 的平分线EA 、EB 与CD 相交于点E. 求证:AB=AC+BD.9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ; (2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;A E C F BD图1图3ADFECBADBCE图2FAD FE图十一4321P A BC 10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。
专题01 全等三角形【考题猜想,35题12种题型】(解析版)
专题01 全等三角形(35题12种题型)一、全等图形的识别(共2小题)1.(2022秋·河南驻马店·八年级校考期中)下列各组中的两个图形属于全等图形的是( )A.B.C.D.【答案】B【分析】根据全等图形的定义,逐一判断选项,即可.【详解】解:A、两个图形不能完全重合,不属于全等图形,故此选项不符合题意;B、两个图形能完全重合,属于全等图形,故此选项符合题意;C、两个图形不能完全重合,不属于全等图形,故此选项不符合题意;D、两个图形不能完全重合,不属于全等图形,故此选项不符合题意.故选:B.【点睛】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键.2.(2022秋·广西南宁·八年级广西大学附属中学校考期末)下列四个图形中,属于全等图形的是( )A.①和②B.②和③C.①和③D.③和④【答案】A【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①、②和④都可以完全重合,因此全等的图形是①和②.故选:A.【点睛】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.二、利用全等三角形求正方形网格中的角度之和(共2小题)3.(2022秋·江苏宿迁·八年级统考期中)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点∠-∠-∠的度数为().均为格点,则123A.30°B.45°C.55°D.60°【答案】B【分析】根据网格特点,可得出190∠=o ,24∠∠=,3445∠+∠=o ,进而可求解.【详解】解:如图,则190∠=o ,24∠∠=,3445∠+∠=o ,∴123∠-∠-∠904545=-=o o o ,故选:B .【点睛】本题考查网格中的全等图形、三角形的外角性质,会利用全等图形求正方形网格中角度之和是解答的关键.4.(2022秋·山东菏泽·八年级统考期末)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=( )A .30°B .45°C .60°D .135°【答案】B 【分析】首先利用SAS 定理判定△ABC ≌△DBE ,根据全等三角形的性质可得∠3=∠ACB ,再由∠ACB+∠1=∠1+∠3=90°,可得∠1+∠3-∠2.【详解】∵在△ABC 和△DBE 中AB BD A D AC ED ìï∠∠íïî===,∴△ABC ≌△DBE (SAS ),∴∠3=∠ACB ,∵∠ACB+∠1=90°,∴∠1+∠3=90°,∵∠2=45°∴∠1+∠3-∠2=90°-45°=45°,故选B .【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定,以及全等三角形对应角相等.三、全等三角形的识别(共2小题)5.(2022秋·四川乐山·八年级统考期中)已知ABC DEF ≌△△,且A ∠与D ∠是对应角,B ∠和E ∠是对应角,则下列说法中正确的是( )A .AC 与DF 是对应边B .AC 与DE 是对应边C .AC 与EF 是对应边D .不能确定AC 的对应边【答案】A【分析】根据全等三角形的概念即可得到答案.【详解】解:A Q ∠与D ∠是对应角,B ∠和E ∠是对应角,C \∠和F ∠是对应角,AC \与DF 是对应边,故选A .【点睛】本题考查了全等三角形,理解全等三角形的概念,准确找出对应边是解题关键.6.(2022秋·河南开封·八年级统考期末)下列说法中,正确的有( )①形状相同的两个图形是全等形 ②面积相等的两个图形是全等形 ③全等三角形的周长相等,面积相等 ④若ABC DEF ≌△△,则A D ∠=∠,AB EF=A .1个B .2个C .3个D .4个【答案】A【分析】根据全等的定义和性质判断即可.【详解】①形状大小都相同的两个图形是全等形,故①错误;②面积相等的两个图形不一定是全等形,故②错误;③全等三角形的周长相等,面积相等,是对的,故③正确;④若ABC DEF ≌△△,则A D ∠=∠,AB DE =,故④错误;故正确的有1个.故选:A【点睛】此题考查全等三角形的定义和性质,解题关键是掌握全等三角形的定义.四、全等三角形的性质(共3小题)7.(2022秋·湖北荆门·八年级统考期中)如图,在ABC V 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC V V V ≌≌,则C ∠的度数为( )A .15°B .20°C .25°D .30°【答案】D 【分析】根据EDB EDC V V ≌,推出90,DEB DEC DBE DCE ∠=∠=°∠=∠,再由ADB EDB V V ≌,得到90,DAB DEB DBA DBE ∠=∠=°∠=∠,利用直角三角形中两个锐角互余即可得出.【详解】∵EDB EDC V V ≌,∠DEB +∠DEC =180°,∴90,DEB DEC DBE DCE ∠=∠=°∠=∠,又∵ADB EDB V V ≌,∴90,DAB DEB DBA DBE∠=∠=°∠=∠∴90DBA DBE DCE ∠+∠+∠=°,即30DBA DBE DCE ∠=∠=∠=°故选:D .【点睛】本题考查了全等三角形的性质,直角三角形两个锐角和等于90°,掌握全等的性质是解题的关键.8.(2022秋·河北石家庄·八年级统考期末)如图,若ABC ADE △△≌则下列结论中不成立的是( )A .BAD CAE ∠=∠B .BAD CDE ∠=∠C .DA 平分BDE ∠D .AC DE=【答案】D 【分析】根据全等三角形的性质得出∠B =∠ADE ,∠BAC =∠DAE ,AB =AD ,∠E =∠C ,再逐个判断即可.【详解】解:A .∵△ABC ≌△ADE ,∴∠BAC =∠DAE ,∴∠BAC −∠DAC =∠DAE −∠DAC ,∴∠BAD =∠CAE ,故本选项不符合题意;B .如图,∵△ABC ≌△ADE ,∴∠C =∠E ,∵∠AOE =∠DOC ,∠E +∠CAE +∠AOE =180°,∠C +∠COD +∠CDE =180°,∴∠CAE =∠CDE ,∵∠BAD =∠CAE ,∴∠BAD =∠CDE ,故本选项不符合题意;C .∵△ABC ≌△ADE ,∴∠B =∠ADE ,AB =AD ,∴∠B =∠BDA ,∴∠BDA =∠ADE ,∴AD 平分∠BDE ,故本选项不符合题意;D .∵△ABC ≌△ADE ,∴BC =DE ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.9.(2022秋·河南信阳·八年级统考期末)三个全等三角形按如图的形式摆放,则123∠+∠+∠的度数是( )A .90oB .120oC .135oD .180o【答案】D 【分析】根据全等三角形的性质和三角形的内角和定理和三角形的外角可得123456360,578180°°∠+∠+∠+∠+∠+∠=∠+∠+∠=,即123360180°°∠+∠+∠=-.【详解】解:如图所示:∵图中是三个全等三角形,∴48,67∠=∠∠=∠,又∵三角形ABC 的外角和123456360°=∠+∠+∠+∠+∠+∠=,又578180°∠+∠+∠=,即564180∠+∠+∠=°,∴123360180018°°∠+∠+=∠=-°,故选:D .【点睛】本题主要考查了全等三角形性质以及三角形的内角和定理, 解题关键点:熟记全等三角形的性质.五、利用“SSS”证明两个三角形全等(共4小题)10.(2022秋·福建龙岩·八年级校考期中)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是( )A .SASB .ASAC .AASD .SSS【答案】D 【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知,OC OD MC MD==在OCM ODM △和△中OC OD OM OMMC MD =ìï=íï=î∴OCM ODM @△△(SSS )∴COM DOM∠=∠∴OM 就是AOB ∠的平分线故选:D【点睛】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.11.(2023秋·河北张家口·八年级统考期末)如图,通过尺规作图得到A O B AOB '''∠=∠的依据是( )A.SSS B.SAS C.ASA 【答案】A△△【分析】根据作图过程利用SSS可以证明OCD≌【详解】解:根据作图过程可知,14.(2022秋·福建龙岩·八年级统考期中)如图,已知AB AD =,BC DE =,且10CAD ∠=°,25B D ∠=∠=°,120EAB ∠=°,则EGF ∠的度数为( )A.120°B.135A.60°B.【答案】B【分析】先证△BAE ≌△CAD ,得出∠B=∠C,再证∠CFB=∠BAC=90°即可.【详解】解:∵AB ⊥AC ,AD ⊥AE ,∴∠BAC=∠DAE=90°,∴∠BAE=∠CAD ,在△BAE 和△CAD 中,BA CA BAE CAD AE AD =ìï∠=∠íï=î,∴△BAE ≌△CAD ,∴∠B=∠C ,∵∠BGA=∠CGF ,∴∠CFB=∠BAC=90°,∴∠BFD =90°,故选:B .【点睛】本题考查了全等三角形的判定与性质,解题关键是确定全等三角形并通过8字型导角求出度数.16.(2022秋·四川凉山·八年级统考期末)如图,△ABC 中,AB =AC ,BD =CE ,BE =CF ,若∠A =50°,则∠DEF 的度数是( )A .60°B .65°C .70°D .75°【答案】B 【分析】首先证明△DBE ≌△ECF ,进而得到∠EFC =∠DEB ,再根据三角形内角和计算出∠CFE +∠FEC 的度数,进而得到∠DEB +∠FEC 的度数,然后可算出∠DEF 的度数.【详解】解:∵AB =AC ,∴∠B =∠C ,在△DBE 和△ECF 中,BD CE B C BE CF =ìï∠=∠íï=î,∴△DBE ≌△ECF (SAS ),∴∠EFC =∠DEB ,∵∠A =50°,∴∠C =(180°−50°)÷2=65°,∴∠CFE +∠FEC =180°−65°=115°,∴∠DEB +∠FEC =115°,∴∠DEF =180°−115°=65°,故选:B .【点睛】本题考查了全等三角形的性质和判定,三角形内角和定理,关键是掌握三角形内角和是180°.17.(2022秋·河南漯河·八年级校考期末)如图,已知C D ∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③12∠=∠;④B E ∠∠=.其中能使ABC V ≌AED △的条件有( )A .4个B .3个C .2个D .1个【答案】B 【分析】根据全等三角形的判定方法,逐一判断即可解答.【详解】解:①C D ∠∠=Q ,AC AD =,AB AE =,ABC \V 和AED △不一定全等,故①不符合题意;②C D ∠∠=Q ,AC AD =,BC DE =,ABC \V ≌()SAS AED V ,故②符合题意;③12∠∠=Q ,12EAB EAB ∠∠∠∠\+=+,CAB DAE ∠∠\=,C D ∠∠=Q ,AC AD =,ABC \V ≌()ASA AED V ,故③符合题意;④B E ∠∠=Q ,C D ∠=∠,AC AD =,ABC \V ≌()D AAS AE V ,故④符合题意;所以,增加上列条件,其中能使ABC V ≌AED △的条件有3个,故选:B .【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.七、利用“SSS”证明两个三角形全等(共3小题)A .3cm 2B .4cm 【答案】C 【分析】证△ABP ≌△EBP ,推出12S PBC S ABC D =D ,代入求出即可.∵BP 平分∠ABC ,∴∠ABP =∠EBP ,∵AP ⊥BP ,∴∠APB =∠EPB =90°,在△ABP 和△EBP 中,∠ABP =∠EBPA .SSSB .SASC .ASAD .AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定和性质定理即可得到结论.【详解】解:士兵的视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;得∠A =∠D ,∵AC =DF ,∴∠ACB =∠DFE =90°,∴判定△ABC ≌△DFE 的理由是ASA .故选:C .【点睛】本题考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.21.(2021秋·吉林长春·八年级统考期中)如图,在ABC V 中,过点A 作ABC ∠的平分线的垂线AD 交ABC V 内部于点P ,交边BC 于点D ,连结CP ,若ABP V ,CDP △的面积分别为4、2,则ABC V 的面积是( )A .24B .12C .8D .6【答案】B 【分析】根据ASA 可证ABP DBP @V V ,由全等的性质可得,AP DP =,即P 是AD 中点,由等底同高可得,DBP ABP S S =V V ,APC DPC S S =V V ,从而计算ABC ABP DBP APC DPC S S S S S =+++V V V V V ,故得出答案.【详解】由题可得:ABP DBP ∠=∠,BP AD ^,90BPA BPD \∠=∠=°,在ABP V 与DBP V 中,ABP DBP BP BPBPA BPD ∠=∠ìï=íï∠=∠î,()ABP DBP ASA \@V V ,AP DP \=,4DBP ABP S S \==V V ,2APC DPC S S ==V V ,442212ABC ABP DBP APC DPC S S S S S \=+++=+++=V V V V V .故选:B .【点睛】本题考查全等三角形的判定与性质,求等底同高的面积,掌握全等三角形的判定方法是解题的关键.八、利用“AAS”证明两个三角形全等(共小题)A .50B .62【答案】A 【分析】由AE AB ^,EF FH ^,BG ^以证明EFA ABG @V V ,所以AF BG =,A .30B .32【答案】B 【分析】根据角的和差关系可得∠AEF =∠BAG ,利用可证明△CDH ≌△BCG ,可得CH =BG ,CG =DH 形EFHD -2S △ABC ,利用梯形和三角形面积公式即可得答案.24.(2022秋·河北保定·八年级统考期末)如图,在ABC V 中,AB AC =,AD 是高,能直接判断ABD ACD @△△的依据是( )A .SSSB .SASC .HLD .ASA【答案】C【分析】根据直角三角形的全等证明即可判断.【详解】证明:∵AD ⊥BC∴ABD △和ACD V 是直角三角形,∵AB AC =,AD =AD (公共边),所以ABD △≌ACD V (HL )故选C【点睛】本题主要考查直角三角形的全等证明,掌握直角三角形的全等证明方法是解题的关键.25.(2023春·河北张家口·八年级统考期中)已知:如图,在△ABC 中,点D 在边BC 上,DB =DC ,DE AB ^,DF AC ^,垂足分别为E ,F ,DE =DF .求证:Rt Rt DEB DFC ≌△△.以下是排乱的证明过程:①∴∠BED =∠CFD =90°,②∴()Rt Rt DEB DFC HL ≌△△.③∵DE ⊥AB ,DF ⊥AC ,④∵在Rt DEB △和Rt DFC △中,DB DC DE DF =ìí=î,证明步骤正确的顺序是( )A .③→②→①→④B .③→①→④→②C .①→②→④→③D .①→④→③→②【答案】B【分析】根据垂直定义得出∠BED =∠CFD =90°,再根据全等三角形的判定定理推出即可.【详解】证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠CFD =90°,在Rt △DEB 和Rt △DFC 中,BD CD DE DF =ìí=î,∴Rt △DEB ≌Rt △DFC (HL ),即选项B 正确;选项A 、选项C 、选项D 都错误;故选:B .【点睛】本题考查了垂直定义和全等三角形的判定,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .26.(2022·辽宁葫芦岛·八年级校考期中)如图,CA ⊥AB ,垂足为点A ,AB =12米,AC =6米,射线BM ⊥AB ,垂足为点B ,动点E 从A 点出发以2米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED =CB ,当点E 经过t 秒时,由点D 、E 、B 组成的三角形与△BCA 全等.请问t有几种情况?( )A.1种B.2种C.3种D.4种【答案】D【分析】首先分两种情况:当E在线段AB上和当E在BN上,然后再分成两种情况:AC=BE和AB=EB,分别进行计算,即可得出结果.【详解】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=6,∴BE=6,∴AE=12﹣6=6,∴点E的运动时间为6÷2=3(秒);②当E在BN上,AC=BE时,△ACB≌△BED,∵AC=6,∴BE=6,∴AE=12+6=18,∴点E的运动时间为18÷2=9(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,∵AB=12,∴BE=12,∴AE=12+12=24,∴点E的运动时间为24÷2=12(秒),综上所述t的值为:0,3,9,12.共4种情况.故选D.【点睛】本题考查了全等三角形的综合问题,解本题的关键在于找到所有符合题意的情况.27.(2021秋·河北沧州·八年级统考期末)如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向DF的长度相等,则(1)AB=DE;(2)∠ABC+∠DFE=90°;(3)∠ABC=∠DEF.其中正确的有()A .0个B .1个C .2个D .3个【答案】D 【分析】由已知条件判断两个直角三角形全等,根据全等三角形的性质逐一分析即可.【详解】解:由题意知90BAC EDF ∠=∠=o在Rt BAC V 和Rt EDF V 中:∵BC EF AC DF=ìí=î∴Rt BAC Rt EDF @△△(HL )∴AB DE =,ABC DEF∠=∠∴(1)、(3)正确∵+90DEF DFE ∠∠=o ,ABC DEF∠=∠∴+90ABC DFE ∠∠=o∴(2)正确故选:D【点睛】本题考查两个直角三角形全等的判定和性质,牢记相关的定理和性质内容是解题的关键.十、添加一个条件使两个三角形全等(共小题)28.(2023春·湖南衡阳·八年级校考期末)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不能判断△ABC ≌△DEF 的是( )A .AB =DEB .∠A =∠DC .AC =DFD .AC ∥FD【答案】C 【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】解:Q BF =EC ,BC EF\=A. 添加一个条件AB =DE ,又,BC EF B E=∠=∠Q ()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E=∠=∠Q ()ABC DEF AAS \V V ≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断△ABC ≌△DEF ,故C 符合题意;D. 添加一个条件AC ∥FDACB EFD\∠=∠又,BC EF B E=∠=∠Q ()ABC DEF ASA \V V ≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.29.(2022秋·安徽合肥·八年级统考期末)如图,点B 、E 在线段CD 上,若A DEF ∠=∠,则添加下列条件,不一定能使ABC EFD V V ≌的是( )A .C D ∠=∠,AC DE=B .BC DF =,AC DE =C .ABC DFE ∠=∠,AC DE=D .AC DE =,AB EF=【答案】B 【分析】利用三角形全等的判定方法进行分析即可.【详解】解:A .添加∠C =∠D ,AC =DE 可利用ASA 判定△ABC ≌△EFD ,故此选项不合题意;B .添加BC =FD ,AC =ED 不能判定△ABC ≌△EFD ,故此选项符合题意;C .添加∠ABC =∠DFE ,AC =DE 可利用AAS 判定△ABC ≌△EFD ,故此选项不合题意;D .添加AC =DE ,AB =EF 可利用SAS 判定△ABC ≌△EFD ,故此选项不合题意;故选:B .【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS,直角三角形可用HL定理,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.十一、尺规作图与三角形全等(共3小题)故答案为:④.【点睛】本题考查了利用SSS 定理判定三角形全等,熟练掌握三角形全等的判定方法是解题关键.31.(2021秋·浙江宁波·八年级统考期末)已知:两边及其夹角,线段a ,c ,a ∠.求作:ABC V ,使BC a =,AB c =,(用尺规作图,保留作图痕迹,不写作法).请你根据所学的知识,说明尺规作图作出ABC a ∠=∠,用到的是三角形全等判定定理中的______,作出的ABC V 是唯一的,依据是三角形全等判定定理中的______.【答案】作图见解析;SSS ,SAS .【分析】(1)首先根据一个角等于已知角的方法作∠B=∠α,再在角的两边分别截取BC=a ,AB=c ,再连接AC ;(2)根据三角形全等的判定定理可得.【详解】解:(1)如图所示:(2)尺规作图作出∠ABC=∠α,用到的是三角形全等判定定理中的SSS ,作出的△ABC 是唯一的,依据是三角形全等判定定理中的SAS .【点睛】本题主要考查用尺规作三角形,全等三角形的判定定理,关键是掌握作一个角等于已知角的方法以及全等三角形的判定方法.32.(2021秋·重庆梁平·八年级校联考期中)用尺规作图的方法,画出与下面△ABC 全等的△DEF (保留作图痕迹).【答案】见解析【分析】分析根据SSS 画一个△DEF 与△ABC 全等即可.【详解】作法:作射线EM,在EM上截取线段EF,使EF=BC;分别以E点和F点为圆心,以BA、CA长为半径画弧,两弧相交于D点;连接ED,FD.则△DE F即为所求作的三角形.【点睛】本题主要考查了利用尺规作图法作全等三角形.可以根据全等三角形的判定方法SSS,SAS,ASA 选择一种方法即可.熟练掌握基本的尺规作图是解题的关键.十二、证明两个三角形全等(共3小题)33.(2022秋·贵州铜仁·八年级统考期中)如图,点B、E、C、F四点在一条直线上,∠A=∠D,AB//DE,老师说:再添加一个条件就可以使△ABC≌△DEF.下面是课堂上三个同学的发言,甲说:添加AB=DE;乙说:添加AC//DF;丙说:添加BE=CF.(1)甲、乙、丙三个同学说法正确的是________;(2)请你从正确的说法中选择一种,给出你的证明.【答案】(1)甲、丙;(2)见详解【分析】(1)根据平行线的性质,由AB∥DE可得∠B=∠DEC,再加上条件∠A=∠D,只需要添加一个能得出对应边相等的条件,即可证明两个三角形全等,添加AC//DF不能证明△ABC≌△DEF;(2)添加AB=DE,再由条件AB∥DE可得∠B=∠DEC,然后再利用ASA判定△ABC≌△DEF即可.【详解】(1)解:∵AB//DE,∴∠B=∠DEC,又∵∠A=∠D,∴添加AB=DE,可得△ABC≌△DEF(ASA);添加BE=CF,可得BC=EF,可得△ABC≌△DEF(AAS)∴说法正确的是:甲、丙,故答案为:甲、丙;(2)选“甲”,理由如下:证明:∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中A DB DEF AB DE ∠∠ìï∠∠íïî=== ∴△ABC ≌△DEF (ASA ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.34.(2021秋·江西抚州·八年级统考期中)如图,从①AB AC =;②AD AE =;③BD CE =;④ADB E ∠=∠;⑤BAC DAE ∠=∠五个条件中,选出三个条件,利用全等三角形的判定定理,可使ABD ACE ≌△△,你能想出几种方法,罗列出来,并挑选其中一种方法写出你的证明过程.【答案】可选①②③或①②⑤或①④⑤或②③④或③④⑤或②④⑤ ,证明见解析【分析】根据全等三角形的判定定理,即可求解.【详解】解:可选①②③或①②⑤或①④⑤或②③④或③④⑤或②④⑤选①②③,证明:在ABD △与ACE △中,∵AB AC =,AD AE =,BD CE = ,∴()ABD ACE SSS V V ≌;选①②⑤,证明:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠,在ABD △与ACE △中,∵AB AC =,BAD CAE ∠=∠,AD AE =,∴()ABD ACE SAS △≌△;选①④⑤,证明:∵BAC DAE ∠=∠,∴BAD CAE ∠=∠,在ABD △与ACE △中,∵ADB E ∠=∠,BAD CAE ∠=∠,AB AC =,(1)求证:FC AD =;(2)若4AE =,4BE =【答案】(1)见解析;(2【分析】(1)利用ASA 证明(2)根据题意,ABCD S 四边形。
(完整版)全等三角形题型归纳(经典完整)
1一,证明边或角相等方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。
求证:HB=HC 。
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .A ED C B654321E DCBAFGE D CBAFMNE 1234134****70432EDC BA 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。
①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。
②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。
证明两条线段差等于另一条线段,只需把差化成和来解决即可。
1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2, MN BN =12) P E D CB A134****704331. 利用含30角的直角三角形的性质证明例1. 已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE 、BD 交于点N ,过B 作BM AE ⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法例5. 已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:AD AB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B FE DCB ADCBA134****7043 4。
(完整版)全等三角形难题集锦超级好题汇总,推荐文档
D
C
A
E
B
12、.如图,在△ABC 中∠ABC,∠ACB 的外角平分线交 P.求证:AP 是∠BAC 的角平分线
A
B
2 1
C
3 4
P
13、如图在四边形 ABCD 中,AC 平分∠BAD,∠ADC+∠ABC=180 度,一C一E⊥一 AD 于 E,猜想 AD、AE、AB 之间 E
D
的数量关系,并证明你的猜想,
② 如图 2,在正方形 ABCD 中,N 为 BC 边上任一点,CM 为正方形外角∠DCK 的平分线,若∠ANM=90°,则 AN=NM
③
如图 3,在正五边形 ABCDE 中,N 为 BC 边上任一点,CM 为正五边形外角∠DCK 的平分线,若∠ANM=108°,则
AN=NM
A M
B
NC
K
图1
E
A
1.如图,已知等边△ABC,P 在 AC 延长线上一点,以 PA 为边作等边△APE,EC 延长线交 BP 于 M,连接 AM,求证:(1)
BP=CE;
(2)试证明:EM-
PM=AM.
E
A
C
B
P M 22∠
2、点 C 为线段 AB 上一点,△ACM, △CBN 都是等边三角形,线段 AN,MC 交于点 E,BM,CN 交于点 F。求证: (1)AN=MB.(2)将△ACM 绕点 C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否 依然成立? (3)AN 与 BM 相交所夹锐角是否发生变化。
B
M
B
O
P
E FD
E
FD
A N
图①
CA
图②
C
全等三角形压轴题分类解析汇报
B AO DCE图2三角形全等综合题归类一、 双等边三角形模型1. (1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小; (2)如图2,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.2、 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.3. 如图1,若△ABC 和△ADE 为等边三角形,,M N分别为,EB CD的中点(1)△ADE 绕A 点旋转到图2的位置时,CD BE 是否成立?若成立,请证明;若不成立,请说明理由; (2)△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.C BOD图A E4、已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =; (2)在图①的基础上,将ADE △绕点A按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.5. 如图,四边形ABCD 和四边形AEFG 均为正方形,连接BG 与DE 相交于点H . (1)证明:△ABG ≌△ADE ;(2)试猜想∠BHD 的度数,并说明理由;(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<∠BAE <180°),设△ABE 的面积 为1S,△ADG的面积为2S,判断1S与2S的大小关系,并赋予证明.CF GEDB AHC EN DA BM图①CAE M BDN 图②6.已知:如图,ABC△是等边三角形,过AB边上的点D作DG BC∥,交AC于点G,在GD的延长线上取点E,使DE DB=,连接AE CD,.(1)求证:AGE DAC△≌△;(2)过点E作EF DC∥,交BC于点F,请你连接AF,并判断AEF△是怎样的三角形,试证明你的结论.CGAEDB F二、 垂直模型(该模型在基础题和综合题中均为重点考察内容)考点1:利用垂直证明角相等1、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12 cm,求BD的长.2、如图(1),已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E。
全等三角形难题题型归类及解析精编版
全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2.已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,?PN ⊥CD 于N ,判断PM与PN 的关系.3.如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,?∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.ABCDE P D ACBM N4.已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1)求证:∠ABE=∠C ;(2)若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
.5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )PDACB O21PFMDBA C E6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1)若BD 平分∠ABC ,求证CE=12BD ;(2)若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
7、如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。
EDCBAA D BCE8、如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.二、中点型由中点应产生以下联想:1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线1、△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,并说明理由.F DCA B E2、已知:如图,ABC △中,45ABC°,CD AB 于D ,BE 平分ABC ,且BE AC 于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF AC ;(2)求证:12CEBFDAEFCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关系,并证明你的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 全等三角形难题题型归类及解析
、角平分线型
角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助 线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的 垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分 线与垂线构成等腰三角形。
如图,在△ ABC 中,D 是边BC 上一点,AD 平分/ BAC 在AB 上截取AE=AC
连结DE 已知DE=2cm BD=3cm 求线段BC 的长。
已知:如图所示,BD 为/ ABC 的平分线,AB=BC
在 BD 上, PM L AD 于 M ?PNICD 于 N,判断 与PN 的关系.
如图所示,P 为/ AOB 勺平分线上一点,PC 丄0A 于C,
OAP /OBP=180,
若OC=4cm 求AO+BO 勺值.
1. 2. PM
已知:如图E 在^ ABC 的边AC 上,且/ AEB 玄ABC
求证:/ ABE=/ C;
若/ BAE 的平分线 AF 交 BE 于 F , FD// BC 交 AC 于
D,
的长。
5、如图所示,已知/ 仁/2, EF 丄AD 于P ,交BC 延长线于M ,求证:2/ M=
(/ACB- / B
)
4. 设 AB=5 AC=8 求 DC
已知在△ ABC中,/ BAC为直角,AB=ACD为AC上一点,CEL BD于E.
(1) 若BD平分/ ABC求证CE=2BD (2) 若D为AC上一动点,/ AED如何
变化,若变化,求它的变化范围;
若不变,求出它的度数,并说明理由。
7、如图:
BE。
四边形ABCD中, AD// BC,AB=AD+BC,E是CD的中点, 求证:AE1 6如图,
8、如图,在△ ABC 中,/ ABC=60° , AD、CE 分别平分/ BAC、/ ACB , 求证:AC=AE+CD .
二、中点型
由中点应产生以下联想: 1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线
〔、△ ABC 中,/ A=90° , AB=AC , D 为BC 中点,E、F 分别在AC、AB 上, 且DE丄DF,试判断DE、DF的数量关系,并说明理由.
2、已知:如图,△ ABC 中,NABC =45° , CD 丄 AB 于 D , BE 平分 N ABC ,且
BE 丄AC 于E , 与 CD 相交于点F , H 是BC 边的中点,连结DH 与BE 相交于点
=AC ; 二1
BF 2
3、如图,△ ABC 中,D 是BC 的中点,DE 丄DF ,试判断BE+CF 与EF 的大小
系,并证明你的结论。
(第19题)
4、如图,已知在△ ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC ,
求证:
BF 求证: (2) CE
延长BE交AC于F,求证:AF=EF
A
三、多个直角型
在多个直角的问题中很容易找的条件是直角相等以及边相等,而最难找的是锐角相等,所以“同角的余角相等”这个定理就显得非常重要,它是证明多个
直角问题中锐角相等的有利工具。
1、如图,已知:AD是BC上的中线,
C
2、如图,已知:AB丄BC于B , EF丄AC于G, DF丄BC于D , BC=DF求证:AC=EF
3、女口图,/ ABC=90 , AB=BC BP 为一条射线,ADI BP, CEL PB,若 AD=4 EC=2.
A ABC 的两条高AD BE 相交于H,且AD=BD
试说明下列结论成立的
4、如图,
理由。
(1) / DBH=/ DAC (2) A BDH^ A ADC
求DE 的
如图/ACB=90 ,AC=BC,BE1 CE,ADICE于D, AD=2 5cm DE=1.7cm,求BE
的长
C在A、E的异侧,BD丄AE于D, CE丄AE于E
5.
6. 如图①,E、F分别为线段AC上的两个动点,且DEI AC于E, BF丄AC于F,
7. 若AB=CD
(2)
如图⑴,
AF=CE BD交AC于点M.
求证:MB=MD ME=MF
当E、F两点移动到如图②的位置时,
否成立?若成立请给予证明;若不
成立请说明理由
.
已知△ ABC中,/ BAC=90 AB=AC, AE是过A的一条直线,且B、A
其余条件不变,上述结论能
②
(1) 试说明:BD=DE+CE.
(2)若直线AE 绕A 点旋转到图(2)位置时(BDVCE),其余条件不变, CE 的关系如何?为什么?
(3)若直线AE 绕A 点旋转到图(3)位置时(BD>CE),其余条件不变,
(4)归纳前二个问得出BD DE CE 关系。
用简洁的语言加以
说明。
四、等边三角形型
由于等边三角形是轴对称图形,所以很多时候利用其轴对称性进行构造全等 三角形,另外等边三角形又具有 60度和120度的旋转对称性,所以经常利用旋 转全等的知识进行解答,同时等边三角形具有丰富的边角相等的性质,因此当 我们看到
问 BD 与 DE
A E
CE 的关系如何?请直接写出结果,不需说明. I
B
问 BD 与 DE
有60度的角的时候经常构造等边三角形解题。
1、如图,已知心ABC为等边三角形,D、E、F分别在边BC、CA、AB 上, 且也DEF 也是等边三角形.
(2)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的
猜想是正确的;
(3)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化
过程.
2、已知等边三角形ABC中,BD = CE,AD与BE相交于点P,求/AP
E的大小。
3、如图,D是等边△ ABC的边AB上的一动点,以CD为一边向上作等边△ EDC 连接AE,找出图中的一组全等三角形,并说明理由.
4、已知,△ ABC 和^ ECD 都是等边三角形,且点 B , C , D 在一条直线上■求
已知P 是等边△ ABC 内的一点,P A = 5, PB=4, PC =3,则NBPC 的度数为
多少? 已知P 是正方形ABCD 内的一点,PA : PB : PC=1 : 2 : 3,贝/APB 的度证: BE=AD
5、
6、
数为多少?.
五、等腰三角形型 由于等腰三角形是轴对称图形,所以很多时候利用其轴对称性进行构造全等三 角形,另外等腰三角形又具有旋转对称性,所以经常利用旋转全等的知识进行 解答
1、如图所示,已知 AEL AB, AF 丄 AC , AE=AB AF=AC
求证:(1) EC=BF (2) EC L BF
2.在^ ABC中,,AB=AC 在AB边上取点D,在AC延长线上取点E ,使CE=BD,
连接DE交BC于点F,求证DF=EF .
3.如图所示,已知D是等腰△ ABC底边BC上的一点,它到两腰AB AC的距离分
别为DE DF,CM L AB,垂足为M,请你探索一下线段DE DF CM三者之间的数
量关系,并给予证明.
折叠型
2 3、如图①,将边长为4cm的正方形纸片ABCD& EF折叠(点E、F分别在边
AB CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,
①,△ AEM的周长= ___ cm
②求证:EP=AE+DP
⑵ 随着落点M在AD边上取遍所有的位置(点M不与A D重合),△ PDM的周长是否发生变化?请说明理由.。