材料力学10压杆稳定

合集下载

材料力学10压杆稳定_1欧拉公式

材料力学10压杆稳定_1欧拉公式

◆ 本例中,三杆截面面积基本相等,但由于其形状不同, Imin 不
同,致使临界力相差很大。最合理的截面形状为圆环形。
14
[例3] 图示各杆均为圆形截面细长压杆。已知各杆的材料及直径相 等。问哪个杆先失稳? 解:由于各杆的材料及 截面均相同,故只需比
1.3 a F F F
较其相当长度 l 即可
a
杆A: 2 l 2a
F
F
2 1
0.7
压杆两端固定可轴向移动:
0.5
6
上述弹性压杆临界力的计算公式称为欧拉公式
Fc r
π 2 EI
l
2
说明: 1)欧拉公式的适用范围:线弹性( ≤ p)
2)在压杆沿各个方向约束性质相同的情况下(即各个方向上 的 相等),I 应取最小值 3) l 称为压杆的相当长度
2
2000年10月25日上午10 时,南 京电视台演播中心由于脚手架 失稳使屋顶模板倒塌,导致死 6 人,伤 34 人。
3
2010年1月3日,通往昆明新机场的一座在建桥梁施工时因 支撑结构中的压杆失稳而坍塌,共导致 40 余人死伤。
4
二、压杆的临界力 使压杆由稳定向失稳转化的轴向压力的界限值称为压杆的临界力, 记作 Fcr 。即当 F < Fcr : 压杆稳定 F ≥ Fcr : 压杆失稳 亦可将压杆的临界力 Fcr 理解为使压杆失稳的最小轴向压力
hb3 1 Iy 90 403 48 108 m 4 12 12
根据欧拉公式,此压杆的临界力
Fcr
π 2 EI y l
2
23.8 kN
11
[例2] 一端固定,一端自由的中心细长压杆。已知杆长 l = 1m , 材 料的弹性模量 E = 200 GPa。当分别采用图示三种截面时,试计算 其临界力。

材料力学10压杆稳定_2经验公式

材料力学10压杆稳定_2经验公式
其中,直线公式适用的柔度的界限值 s = (a-s) / b,为材料常数
这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比

π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s


l
imin

0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支

压杆·稳定性

压杆·稳定性

sin kl = 0

kl = nπ n = 0,1, 2,
(d)
解得 k = nπ ,又 k 2 = P ,于是得
l
ቤተ መጻሕፍቲ ባይዱ
EI
P
=
n2π2 EI l2
(10.1)
因为 n 是正整数,故式(10.1)表明使杆件保持为曲线平衡的压力,理论上是多值的。
其中使压杆保持微小弯曲的最小压力,才是临界压力 Pcr 。因此,只有取 n=1,才得到压力 的最小值。于是临界压力为
x = 0 和 x = l 时, y = 0
由此求得
B = 0 , Asin kl = 0
上式表明,A 或 sin kl 等于零。但因 B 已经等于零,如 A 再等于零,则式(c)变为 y ≡ 0 。这
表示杆件轴线上任意点的挠度皆为零,它仍为直线的情况。这就与假设杆件处于微弯平衡的
前提相矛盾。因此必须是
第 10 章 压杆·稳定性
当轴向压力 P 较小(P<Pcr)时,当横向干扰力消失后,其横向弯曲变形也随之消失, 直杆将恢复到图 10.1(a)所示的原直线平衡位置。此时原直线平衡位置平衡状态属于稳定平 衡状态,如图 10.1(c)。
当轴向压力 P 适中(P =Pcr)时,干扰力消失后,将保持微弯平衡状态,而不能恢复到 图 10.1(a)所示的原直线平衡位置。此时原直线平衡位置平衡状态属于临界平衡状态(或随 遇平衡状态),如图 10.1(d)。
如图 10.1(a)所示一下端固定,上端自由的理想细长直杆,受一轴向压力 P 作用。此 时,该压杆如果受到一个很小的横向干扰力,杆将产生弯曲变形,如图 10.1(b)。显然,该 压杆在原初始直线位置是能够平衡的,但平衡状态会随轴向压力 P 的大小而变化。

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

材料力学答案- 压杆稳定

材料力学答案- 压杆稳定

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)?解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。

15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。

解:(a) 柔度: 2301500.4λ⨯== 相当长度:20.30.6l m μ=⨯=(b) 柔度: 1501250.4λ⨯== 相当长度:10.50.5l m μ=⨯=(c) 柔度: 0.770122.50.4λ⨯== 相当长度:0.70.70.49l m μ=⨯=(d) 柔度: 0.590112.50.4λ⨯== 相当长度:0.50.90.45l m μ=⨯=(e) 柔度: 145112.50.4λ⨯== 相当长度:10.450.45l m μ=⨯=由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。

即:()22cr EIF l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为:()2948222320010 1.610640.617.6410cr EFF l N πππμ-⨯⨯⨯⨯⨯===⨯()2948222320010 1.610640.4531.3010cr EIF l Nπππμ-⨯⨯⨯⨯⨯===⨯15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。

解:92.633827452.5p s s a λπσλ===--===15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr F 。

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

材料力学-压杆的稳定性

材料力学-压杆的稳定性

压杆的稳定性
倒塌后成为一片废墟
压杆的稳定性
1925年苏联莫兹尔 桥在试车时因桥梁 桁架压杆失稳导致破 坏时的情景。
压杆的稳定性
这是1966年我国广东鹤地水库弧门由于大风导致 支臂柱失稳的实例。
1983年10月4日,高 54.2m、长17.25m、总 重565.4KN大型脚手架 局部失稳坍塌,5人死亡、
EI
d2
y

M
(x)


P cr
y
dx2 EI
EI
d2y k2y 0 dx2
压杆的稳定性
通解: y Asin kx B coskx
边界条件:
y
y 0, y 0
Pcr
y
Pcr
x0
xl
(i) B 0 (ii) 0 Asin kl
A 0, sin kl 0
11.1 压杆稳定的概念
一、概述
(a): 木杆的横截面为矩形(12cm), 高为 3cm,当荷载重量为6kN时杆还不致 破坏。
(b): 木杆的横截面与(a)相同,高为1.4m (细长压杆),当压力为0.1KN时杆 被压弯,导致破坏。
(a)和(b)竟相差60倍,为什么?
拉压杆的强度条件为: = —F—N [ ] A
7人受伤 。
压杆的稳定性
三 平衡的稳定性 随遇平衡 不稳定平衡
压杆的稳定性
稳定平衡
压杆平衡的稳定性
F<FF<cr Fcr
F>Fcr F>Fcr
F=FF=crFcr
稳定平衡状态
不稳定平衡状态
随遇平衡状态 (临界状态)
四 临界压力Pcr的概念
压杆的稳定性

材料力学第十章 压杆稳定性问题2

材料力学第十章 压杆稳定性问题2
在求Pcr 及 cr的基础上,进行稳定性校核。 的基础上 进行稳定性校核
Pcr P Pcr nst
nst 为稳定安全系数, 为稳定安全系数 一般大于强度安全系数 般大于强度安全系数。 由于初曲率、载荷偏差、材料不均匀、有钉子孔 等 都会降低 Pcr 。而且柔度越大,影响越大。 等,都会降低 而且柔度越大 影响越大
S
cr
max
若 P ,图中CD段选欧拉公式 若 S P ,图中 图中BC段选经验公式 若 S ,图中AB段按强度计算,即 cr
何斌
s
Page 13
Q235钢制成的矩形截面杆,两端约束以及所承受的载 荷如图示 荷如图示((a)为正视图(b)为俯视图),在AB两处为销钉 为 视图 为俯视图 在 两处为销钉 连接。若已知L=2300mm,b=40mm,h=60mm。材料的弹性模 量E=205GPa。试求此杆的临界载荷。 正视图平面弯曲截面z绕轴 正视图平面弯曲截面z 转动;俯视图平面弯曲截 面绕y 面绕 y轴转动。 轴转动 正视图:
2 对中长杆由于 cr与 P , s b 有关 2. 强度越高, cr也越高 3 对短粗杆:强度问题 3. 对短粗杆 强度问题
何斌
P

时才适用
2E P 2
2E P
E
P
P
欧拉公式适用于 P
Page 6
材料力学
第十章 压杆稳定问题
10.4 临界应力和长细比 细长杆 中长杆和短粗杆 细长杆、中长杆和短粗杆
1.细长杆: ① P 的压杆称为细长杆。 的压杆称为细长杆 ② 此类压杆只发生了弹性失稳 ③ 稳定计算:欧拉公式 稳定计算 欧拉公式
何斌

材料力学压杆稳定公式

材料力学压杆稳定公式

材料力学压杆稳定公式材料力学是物理学的一个分支,研究物质的力学性质和物理性质以及它们之间的相互作用。

材料力学中的压杆稳定性问题,在工程中应用非常广泛,是一种典型的应用力学问题。

本文将对压杆稳定公式进行详细解析,并探讨它在实际应用场景中的应用。

一、压杆稳定公式的原理当压力作用于杆的轴向时,可能会导致杆件翻转或折断,这种失稳现象称为压杆稳定性。

压杆稳定性是压力元素设计过程中必须考虑的关键问题。

压杆稳定公式是工程师计算杆件失稳情况的重要工具。

压杆稳定公式由欧拉公式和Johnson公式组成。

欧拉公式是描述简单结构(如棒杆)失稳所必需满足的基本条件,它给出了压杆稳定的临界条件。

欧拉公式的表达式为:Pcr = π²EI/l²Pcr为极限荷载(稳定负荷),E为杨氏模量,I为惯性矩,l为杆的长度。

Johnson公式是实际应用中采用的压杆稳定公式,它考虑了杆的附加载荷和杆的弯曲刚度对稳定性的影响。

Johnson公式的表达式为:Pcr= σcA/{1+(σs/σc)[(A/A0)^2-1]}Pcr为极限荷载,σc为杆的材料弹性极限,σs为附加载荷产生的应力,A为杆的横截面积,A0为杆的理论横截面积。

Johnson公式是以欧拉公式为基础的,可以用于计算矩形截面、圆形截面和其他截面形状的杆件的极限稳定荷载。

二、压杆稳定公式的实际应用场景1.结构设计压杆稳定公式在结构设计中是至关重要的。

当设计师有多种杆件形状和材质可供选择时,可以利用压杆稳定公式计算每种形状和材质的极限荷载,以找到最适合的材质和形状。

2.建筑施工压杆稳定公式在建筑施工中也有广泛的应用。

在桥梁、塔和钢构建筑的建设中,压杆稳定公式可以帮助工程师确定结构的稳定性。

它们还可以检查杆件的尺寸和重量是否适当。

3.飞机制造在飞机制造中,压杆稳定公式可以用来计算气动稳定性问题,以确保飞机在不同高度和气压下的稳定性。

这对于飞行安全至关重要。

4.交通工程压杆稳定公式在交通工程中也有广泛应用。

材料力学课件 第十章压杆稳定

材料力学课件 第十章压杆稳定

sinkL0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2
EImin L2
14
Pcr
2
EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
三、其它支承情况下,压杆临界力的欧拉公式
29
我国钢结构柱子曲线
二、 受压构件的稳定公式
利用最大强度准则确定出轴心受压构件的临界应力 cr ,引入抗力分项系数 R ,则轴心受压构件的稳定计算公式如下:
N cr cr f y f A R R fy
f :钢材的强度设计值
(10.24)
30
例6
如图所示,两端简支,长度l 5m 的压杆由两根槽钢组成,若限定两个槽钢腹板
Iy [73.3 (51.8)2 21.95]2 2176.5cm4
33
若失稳将仍会在 xoy平面内,有
imin iz
Iz A
1732.4 6.28cm 43.9
max
l imin
500 79.6 6.28
查表得2 0.733
此时3 与3 已经很接近,按两个 16a 槽钢计算压杆的许可压力,有
20
[例3] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
=1.0,
I
y
b3h 12
,
②绕 z 轴,左端固定,右端铰支:
b
Pcry
2EI L22
y
=0.7,

材料力学压杆稳定

材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。

在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。

压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。

稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。

本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。

压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。

压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。

这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。

为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。

一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。

此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。

2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。

一般来说,杆件所使用的材料应当具有足够的强度和刚度。

强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。

此外,材料应当具有足够的韧性,以防止杆件发生断裂。

3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。

一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。

支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。

4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。

外力可以包括静力荷载、动力荷载和温度荷载等。

在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。

总之,压杆的稳定性是确保结构安全可靠性的重要因素。

在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。

合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。

材料力学 第10章 压杆稳定

材料力学 第10章 压杆稳定
Fcr (2l )2
μ=2
欧拉临界压力公式 :
Fcr
2 EI (l )2
应用欧拉公式时,应注意以下两点:
1、欧拉公式只适用于线弹性范围,即只适用于弹性稳定问题
2、 I 为压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
对于各个方向约束相同的情形(例如球铰约束),I 取截面的 最小惯性矩,即 I=Imin;
Fcr
2 EI (l )2
压杆临界压力欧拉公式的一般形式
E——材料的弹性模量;
—长度系数(或约束系数),反映了杆端支承对临界载
荷的影响。
压杆临界力与外
l—压杆的计算长度或相当长度。 力有关吗??
l—压杆的实际长度。
I—压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
适用条件:1.理想压杆;2.线弹性范围内
第10章 压杆稳定
第10章 压杆稳定
§10.1 §10.2 §10.3 §10.4 §10.5 §10.6
工程中的压杆稳定问题 理解
压杆稳定性概念 掌握
细长压杆临界压力的欧拉公式 掌握
压杆的临界应力 掌握
压杆的稳定性计算
掌握
提高压杆稳定性的措施
了解
关键术语
压杆,稳定性,屈曲,稳定失效,临界压力Fcr, 柔度λ(长细比),计算长度μl
重点 1、细长压杆临界压力的欧拉公式 2、压杆的临界应力 3、压杆临界载荷的欧拉公式的适用条件 4、压杆稳定性设计
难点 1、压杆临界压力的计算 2、压杆稳定性设计
§10.1 工程中的压杆稳定问题
构件的承载能力:
①强度 ②刚度 ③稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全 可靠地工作。
F
30mm

材料力学-10-压杆的稳定性问题

材料力学-10-压杆的稳定性问题
材料力学-10-压杆的稳定 性问题
欢迎来到材料力学-10-压杆的稳定性问题演示文稿。今天,我们将探讨压杆的 定义、分类以及影响其稳定性的因素。
压杆的定义和分类
压杆是一种长而细的结构元素,主要通过压力来支撑负载。根据其截面形状,压杆可以分为圆形、方形 和矩形等不同类型。
欧拉公式简介
欧拉公式是用于计算压杆的临界压力的重要公式。它基于结构的刚度和截面的几何特性,帮助我们预测 压杆在不同加载条件下的稳定性。
实例分析
通过实例分析,我们将深入探讨具体的压杆结构,并分析其稳定性问题。了 解实际案例对于理解压杆稳定性的关键因素至关重要。
结论和要点
在本演示文稿中,我们回顾了压杆的定义和分类,介绍了欧拉公式及其应用,探讨了稳定性分析的关键 因素,并通过实例分析展示了压杆的真实应用。记住这些要点,您将能够更好公式
临界压力计算公式是通过将欧拉公式代入材料的弹性模量和截面的惯性矩,从而得出压杆在理想情况下 可能失稳的临界加载。
压杆的稳定性分析
压杆的稳定性分析涉及到考虑加载条件、几何形状以及材料性质等因素。我们将使用数学模型和工程实 践来评估压杆在给定条件下的稳定性。
缺陷对稳定性的影响
压杆的稳定性可能受到结构缺陷的影响,如划伤、弯曲或异物。我们将研究 这些因素如何改变压杆的临界压力和整体稳定性。

材料力学10压杆稳定_4稳定条件_折减系数法

材料力学10压杆稳定_4稳定条件_折减系数法
5
2)确定折减系数
压杆柔度 l 1 2000 mm 80.0
i cos 30o 28.87 mm
查表得折减系数
2m
1m
0.470
30o
3)稳定计算
a
a
根据压杆的稳定条件,
AB

FAB A

3F a2

3F 0.12 m2
≤ 0.47010106 Pa


F A1

300 103 A1
N
≤1
0.5 170 106
Pa
l
求得此时压杆的横截面面积
A1 ≥ 35.3cm2 查工字钢型钢表,可选 No. 20a 工字钢 根据 No. 20a 工字钢的截面几何参数,压杆柔度
1

l
i

0.7 420 cm 2.12 cm
138.7
于提高大柔度压杆的稳定性没有意义。 2. 中柔度杆 结论:选择高强度钢材有利于提高中柔度压杆的稳定性。
3
二、从柔度着手
降低压杆柔度 将显著提高压杆的稳定性 1. 加固压杆两端约束,减小长度因数
2. 减小杆长 l
3. 采用合理的截面形状,使压杆在各个方向上的柔度 大致
相等。
4
[例1] 如图,已知撑杆 AB 为边长 a = 0.1 m 的正方形截面木杆;木
此时,实际工作应力


F A2

300103 N 42.128104 m2

71.4
MPa
稳定许用应力
[st ] 2 [ ] 0.416170106 Pa 70.7 MPa
9
2)第二次试算

材料力学-10-压杆的稳定问题

材料力学-10-压杆的稳定问题
其中a和b为与材料有关的常数,单位为MPa (P247) 。
10.3 长细比与压杆分类
表10-1 常用工程材料的a和b数值 (P247)
10.3 长细比与压杆分类
3、粗短杆
——不发生屈曲,而发生屈服
s
对于粗短杆,临界应力即为材料的屈服应力:
cr s
三、 临界应力总图与P、s值的确定
π EI FPcr 2 l
10.2 细长压杆的临界荷载 欧拉公式
3.两端固定
同理
M C 0, M D 0
D
FPcr
C
π EI 2 0.5l
2
π EI FPcr 2 l
2
10.2 细长压杆的临界荷载 欧拉公式
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
因为
1.3a
l 1 l 2 l 3
π 2 EI l 2
a
(1)
(2)
(3)
又 故
FPcr
FPcr1 FPcr2 FPcr3
(1)杆承受的压力最小,最先失稳; (3)杆承受的压力最大,最稳定。
10.2 细长压杆的临界荷载 欧拉公式
例题 2
P
c
a\2
已知:图示压杆EI ,且 杆在B支承处不能转动。 求:临界压力。
A
π 2 EI 0.5a 2
第10章 压杆的稳定问题
10.3 长细比与压杆分类
10.3 长细比与压杆分类
一、 临界应力与长细比的概念
欧拉公式应用于线弹性范围
FPcr cr p A
σcr——临界应力(critical stress); σp——材料的比例极限。 能否在计算临界荷载之前,预先判断压杆是否 发生弹性屈曲?

材料力学10压杆稳定_3稳定条件_安全因数法

材料力学10压杆稳定_3稳定条件_安全因数法

丝杠的临界应力 丝杠的临界力
cr a b 268.4 MPa Fcr cr A 337.1 kN
3)稳定性校核 丝杠的工作安全因数
n
Fcr Fmax

337.1103 N 80103 N
4.21 nst
4
所以,丝杠稳定性满足要求。
[例2] 液压装置的活塞杆如图,已知液压缸内径 D = 65 mm,油压 p
第五节 压杆的稳定计算·安全因数法
一、压杆的稳定条件
F ≤ Fcr ns t

n

Fc r F
≥ nst
其中,nst 为规定的稳定安全因数,一般应高于强度安全因数 n 为实际的工作安全因数
说明: 1)对于等截面压杆,满足稳定条件一定满足强度条件。
2)压杆局部截面的削弱不会影响其整体的稳定性,但需补充对削 弱截面进行强度校核。
2)减小杆长 l
3)采用合理的截面形状,使压杆在各个方向上的柔度 大致相等
[例1] 千斤顶如图,已知丝杠长度 l = 375 mm,有效直径 d = 40 mm,
材料为45 钢,所受最大轴向压力 Fmax = 80 kN,规定的稳定安全系数 为 nst = 4,试校核丝杠的稳定性。
解: 1)计算丝杠柔度ຫໍສະໝຸດ 2)计算 AB 杆柔度查表得 Q235 钢的柔度界限值
p 100
AB 杆柔度
s 61.4 l 80
i
3)计算 AB 杆临界力
由于 s < < p ,AB 杆属于中长杆,

故采用直线公式计算其临界力
cr a b 214 MPa
Fcr Acr 268 kN
丝杠可简化为一端固定、一端自由的压杆

压 杆 稳 定 实 验材料力学实验报告

压 杆 稳 定 实 验材料力学实验报告

压 杆 稳 定 实 验一.实验目的:1.观察压杆丧失稳定的现象。

2.用绘图法测定两端铰支压杆的临界荷载,并与理论值进行比较。

二.实验设备及工具:电子万能试验机、程控电阻应变仪三.试验原理:对于两端铰支受轴向压力的细长杆,根据欧拉公式,其临界荷载为式中为最小惯性矩,l 为压杆长度。

当时压杆保持直线形式,处于稳定平衡。

当时,压杆即丧失稳定而弯曲。

对于中柔度压杆,其临界应力公式为式中a 、b 为常数。

由于试样的初曲率往往很难避免,所以加载时压力比较容易产生偏心,实验过程中,即使压力很小时,杆件也发生弯曲,其挠度也随着荷载的增加而不断增加。

本实验采用由碳钢制成的矩形截面的细长试件,表面经过磨光,试件两端制成刀刃形,如图a 所示:cr F 2min2l EI F cr π=min I cr F F <crjF F ≥λσb a cr -=实验前先在试样中间截面的左右两侧各贴一个应变片1和2,以便测量其应变,见图b ,假设压杆受力后向左弯曲,以和分别表示压杆中间截面左、右两点的压应变,则除了包括由轴向力产生的压应变外,还附加一部分由弯曲产生的压应变,而则等于轴向力产生的压应变减去由弯曲产生的拉应变,故略小于。

随着弯曲变形的增加,与差异愈来愈显著。

当时,这种差异尚小,当F 接近时,迅速增加,迅速减小,两者相差极大。

如以载荷F 为横坐标,压应变为纵坐标,可绘出-F 和-F 曲线(见下图所示)。

由图中可以看出,当达到某一最大值后,随着弯曲变形的继续发生而迅速减小,朝着与曲线相反的方向变化。

显然,根据此两曲线作出的同一垂直渐近线AB ,即可确定临界荷载的大小。

1ε2ε2ε1ε1ε2ε1ε2εcr F F <cr F 2ε1ε1ε2ε1ε2εcr F以载荷P 为横坐标,压应变为纵坐标,人工绘制-P 和-P 曲线,两曲线的同一垂直渐近线与力轴的交点,即为临界荷载四.实验步骤1.测量试样尺寸,在试样的两端及中部分别测量试样的宽度和厚度,取用三次测量的算术平均值2.启动电子万能试验机,手动立柱上的“上升”或“下降”键,调整活动横梁位置,使上、下压板之间的位置相对比较小,把试样放在两压槽的正中间位置上。

第10章 压杆稳定

第10章 压杆稳定

第10章压杆稳定学习目标:1.了解失稳的概念、压杆稳定条件及其实用计算;2.理解压杆的临界应力总图;3.掌握用欧拉公司计算压杆的临界荷载与临界应力。

对承受轴向压力的细长杆,杆内的应力在没有达到材料的许用应力时,就可能在任意外界的扰动下发生突然弯曲甚至导致破坏,致使杆件或由之组成的结构丧失正常功能,此时杆件的破坏不是由于强度不够引起的,这类问题就是压杆稳定问题。

本章主要从压杆稳定的基本概念、不同支撑条件下的临界力、欧拉公式的适用条件以及提高压杆稳定性的措施方面加以介绍。

第一节压杆稳定的概念在研究受压直杆时,往往认为破坏原因是由于强度不够造成的,即当横截面上的正应力达到材料的极限应力时,杆才会发生破坏。

实验表明对于粗而短的压杆是正确的;但对于细长的压杆,情况并非如此。

细长压杆的破坏并不是由于强度不够,而是由于杆件丧失了保持直线平衡状态的稳定性造成的。

这类破坏称为压杆丧失稳定性破坏,简称失稳。

一、问题的提出工程结构中的压杆如果失稳,往往会引起严重的事故。

例如1907年加拿大魁北克圣劳伦斯河上长达548m的大铁桥,在施工时由于两根压杆失稳而引起倒塌,造成数十人死亡。

1909年,汉堡一个大型储气罐由于其支架中的一根压杆失稳而引起的倒塌。

这种细长压杆突然破坏,就其性质而言,与强度问题完全不同,杆件招致丧失稳定破坏的压力比招致强度不足破坏的压力要少得多,同时其失稳破坏是突然性,必须防范在先。

因而,对细长压杆必须进行稳定性的计算。

二、平衡状态的稳定性压杆受压后,杆件仍保持平衡的情况称为平衡状态。

压杆受压失稳后,其变形仍保持在弹性范围内的称为弹性稳定问题。

如图110-所示,两端铰支的细长压杆,当受到轴向压力时,如果是所用材料、几何形状等无缺陷的理想直杆,则杆受力后仍将保持直线形状。

当轴向压力较小时,如果给杆一个侧向干扰使其稍微弯曲,则当干扰去掉后,杆仍会恢复原来的直线形状,说明压杆处于稳定的平衡状态(如图)-所示)。

材料力学课件第十章压杆稳定

材料力学课件第十章压杆稳定

第十章
压杆稳定
① 强度
构件的承载能力
② 刚度 ③ 稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全可 靠地工作.
第十章
2.工程实例
压杆稳定
工程构件稳定性实验
第十章
压杆稳定
压杆稳定性实验
第十章
压杆稳定
第十章
其他形式的稳定问题
压杆稳定
F Fcr
第十章
3.失稳破坏案例
压杆稳定
案例1 20世纪初,享有盛誉的美国桥梁学家库柏在圣劳伦斯河 上建造1907年8月29日,发生稳定性破坏,86位工人伤亡,成为
理论分析计算
压杆什么时候发生稳定性问题,什么时候产生强度问题呢?
第十章
压杆稳定
10.2 两端绞支细长压杆的临界压力
x
F
l
m w
y B
m
x y
F M(x)=-Fw
m x B m
第十章
该截面的弯矩
压杆稳定
压杆任一 x 截面沿 y 方向的位移 w f ( x )
M ( x ) Fw
F M(x)=-Fw
第十章
10.1 压杆稳定的概念
压杆稳定
1.引言
第二章中,轴向拉、压杆的强度条件为 σmax
例如:一长为300mm的钢板尺,横截面尺寸为 20mm 1 能承受的轴向压力为 [F] = A[] = 3.92 kN
FN max [σ ] A
mm.钢的许用应力为[]=196MPa.按强度条件计算得钢板尺所 实际上,其承载能力并不取决于轴向压缩的抗压强度,而是 与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然发 生明显的弯曲变形,丧失了承载能力.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 EImin 中的 Imin 如何确定 ? 欧拉临界力公式 Fcr 2 ( l )
定性确定 Imin
例:图示细长圆截面连杆,长度 l 800 m m ,直径 d 20 mm ,材 料为Q235钢,E=200GPa.试计算连杆的临界载荷 Fcr . 解:1、细长压杆的临界载荷
Fcr
2 3 2E 200 10 p p 200
99.35 100
1、大柔度杆(细长压杆)采用欧拉公式计算。 2E 2 EI 2 p ( p ) 临界压力:Fcr 2 临界压应力: cr ( l ) 2:中柔度杆(中长压杆)采用经验公式计算。
cr
压杆容易失稳
二、欧拉公式的适用范围
p , cr p
2E p
欧拉公式的适用范围:
2E cr 2 p .
(细长压杆临界柔度)
2E p p
p,称大柔度杆(细长压杆 )
例:Q235钢, E 200GPa, p 200MPa.
(b): 木杆的横截面与(a)相同,高为 1.4m(细长压杆),当压力为 0.1KN时杆被压弯,导致破坏。
问题的提出
(a)和(b)竟相差60倍,为什么?
细长压杆的破坏形式:突然产生显著的弯 曲变形而使结构丧失工件能力,并非因强度不 够,而是由于压杆不能保持原有直线平衡状态 所致。这种现象称为失稳。
(a)
2
y
FN
y Fcr
d2y 2 k y0 2 dx
二阶常系数线性奇次微分方程
d y 2 k y 0 2 dx
y
2
Fcr (k ) EI
2
(二阶常系数线性齐次微分方程)
微分方程的解: y =Asinkx + Bcoskx
FN
边界条件: y ( 0 ) = 0 , y ( l ) = 0 0•A+1•B=0 sinkl • A +coskl • B=0 B=0 sinkl • A =0
§11-2
细长压杆临界压力的欧拉公式
一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡
y FN
y Fcr
考察微弯状态下局部压杆的平衡:
M (x) = Fcr y (x) d2y M (x) = –EI d x2 d2y EI 2 Fcr y 0 dx
Fcr 令 k EI
s
60 0 0
100 55 50 59
直线公式适合合 金钢、铝合金、铸 铁与松木等中柔度 压杆。
稳定性 平衡物体在其原来外界干扰下 的变化或破坏过程。
小球平衡的三种状态
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能试 验机上的压杆稳定 实验
工程项目的 压杆稳定试验
(b)
1907年加拿大圣劳伦斯河上的魁北克桥 (倒塌前正在进行悬臂法架设中跨施工)
倒塌后成为一片废墟
1925年苏联莫兹尔 桥在试车时因桥梁 桁架压杆失稳导致破 坏时的情景。
这是1966年我国广东鹤地水库弧门由于大风导致 支臂柱失稳的实例。
1983年10月4日,高 54.2m、长17.25m、总重 565.4KN大型脚手架局部 失稳坍塌,5人死亡、7人 受伤 。
s p ( p s ) cr a b ——直线型经验公式
a , b 是与材料性
能有关的常数。
a s s b
p
材料 硅钢
铬钼钢 硬铝 铸铁 松木
a(MPa) b(MPa) 577 3.74
980 372 331.9 39.2 5.29 2.14 1.453 0.199
E 2 2E 2E 2 EI Fcr 2 i 2 2 l ( l ) A ( l ) A ( )2 i
2
一、临界应力与柔度
cr

l
i
I A
——临界应力的欧拉公式
——压杆的柔度(长细比)
柔度是影响压杆承载能力的综合指标。
i
——惯性半径
2 I z A iz , 2 I y A iy .
B A
l
Fcr
2 EI
l
2

2E d 4
l
2

64
y

3 200109 0.024
0.82 64
z
24.2 (kN )
2、从强度分析 s 235MPa
0.022 235106 73.8 (kN ) Fs A s 4
§12-3
欧拉公式的使用范围 临界应力总图
(b)
Fcr
2 EImin
l2
= 0 . 1 KN
(a)
(b)
二、支承对压杆临界载荷的影响
临界载荷欧拉公式的一般形式:
EI Fcr 2 ( l )
2
一端自由,一端固定 一端铰支,一端固定 两端固定 两端铰支
: : : :

= = = =
2.0 0.7 0.5 1.0
若 A = 0,则与压杆处于微弯状态的假设不符 因此可得:
y
Fcr
y =Asinkx + Bcoskx
B=0 sinkl • A =0
y FN
sinkl = 0
kl n (n = 0、1、2、3……) n k l
由 k2 Fcr 可得 EI
2 2
y Fcr
n EI Fcr 2 l
临界载荷: 屈曲位移函数 :
n EI Fcr 2 l nx y ( x) A sin l
2 2
临界力 F c r 是微弯下的最小压力, 故取 n = 1。且杆将绕惯性矩最小的 轴弯曲。
最小临界载荷:
Fcr
2 EImin
l
2
——两端铰支细长压杆的临界载荷 的欧拉公式
(a)
F j x = A [ b] = 6 KN
材 料 力 学
11.1、压杆稳定概念
11.2、铰支细长压杆的临界力
11.3、其它支撑情况下细长压杆的临界力
11.4、临界应力 欧拉公式的适用范围
§11-1
压杆的稳定概念
拉压杆的强度条件为:
FN = —— [ ] A
(a): 木杆的横截面为矩形(12cm), 高为3cm,当荷载重量为6kN 时杆还不致破坏。
相关文档
最新文档