热力学第二定律ppt课件

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

(完整版)热力学第二定律.ppt

(完整版)热力学第二定律.ppt

热力学第二定律的微观实质
从微观上看,任何热力学过程都伴随着大量分子的无序运 动的变化。热力学第二定律就是说明大量分子运动的无序程度 变化的规律。 •功转换为热:大量分子的有序运动向无序运动转化, 是可 能的;而相反的过程,是不可能的。
•热传导:大量分子运动的无序性由于热传导而增大了。 •自由膨胀:大量分子向体积大的空间扩散,无序性增大。
不可能从单一热源吸收热量,使它
Q
完全转变为功而不引起其它变化。
热源
A. 从单一热源吸收热量,使它完全转变为功,一定要引起 其它变化。
特例:等温过程从单一热源吸收热量,并完全用来做功, 必导致系统体积变化。
B. 第二类永动机不可能制成。
η 100% 2.克劳修斯表述
热量不能自动地从低温物体传向高温物体。
讨论: A.没有外界做功,不可能从低温热源将
热量传输到高温热源。 B.第二类永动机不可能制成。
高温热源 Q1 A
Q2 低温热源
热力学第二定律是研究热机效率和制冷系数时提 出的。对热机,不可能吸收的热量全部用来对外 作功;对制冷机,若无外界作功,热量不可能从 低温物体传到高温物体。热力学第二定律的两种 表述形式,解决了物理过程进行的方向问题。
S 0
(孤立系, 自然过程)ห้องสมุดไป่ตู้
§8-6 热力学过程的不可逆性
广义定义:假设所考虑的系统由一个状态出发
经过某一过程达到另一状态,如果存在另一个 过程,它能使系统和外界完全复原(即系统回 到原来状态,同时原过程对外界引起的一切影 响)则原来的过程称为可逆过程;反之,如果 用任何曲折复杂的方法都不能使系统和外界完 全复员,则称为不可逆过程。
各种宏观态不是等几率的。那种宏观态包含的微观态 数多,这种宏观态出现的可能性就大。

热力学第二定律-PPT课件

热力学第二定律-PPT课件

答案 C
18
典例精析 二、热力学第一定律和热力学第二定律
返回
【例3】 关于热力学第一定律和热力学第二定律,下列论述正 确的是( ) A.热力学第一定律指出内能可以与其他形式的能相互转化,
而热力学第二定律则指出内能不可能完全转化为其他形式 的能,故这两条定律是相互矛盾的 B.内能可以全部转化为其他形式的能,只是会产生其他影响, 故两条定律并不矛盾
答案 B
15
典例精析 一、热力学第二定律的基本考查 返回
【例2】 如图1中汽缸内盛有一定质量的理想气体,汽缸壁是 导热的,缸外环境保持恒温,活塞与汽缸壁的接触是光滑的, 但不漏气,现将活塞杆缓慢向右移动,这样气体将等温膨胀并 通过活塞对外做功.若已知理想气体的内能只与温度有关,则 下列说法正确的是( )
的是( D )
A.随着低温技术的发展,我们可以使温度逐渐降低,并最终达 到绝对零度
B.热量是不可能从低温物体传递给高温物体的 C.第二类永动机遵从能量守恒定律,故能制成 D.用活塞压缩汽缸里的空气,对空气做功2.0×105 J,同时空
气向外界放出热量1.5×105 J,则空气的内能增加了0.5×105 J
解析 由于汽缸壁是导热的,外界温度不变,活塞杆与外界连 接并使其缓慢地向右移动过程中,有足够时间进行热交换,所 以汽缸内的气体温度也不变,要保持其内能不变,该过程气体 是从单一热源即外部环境吸收热量,即全部用来对外做功才能 保证内能不变,但此过程不违反热力学第二定律.此过程由外 力对活塞做功来维持,如果没有外力对活塞做功,此过程不可 能发生.
程都具有
,都是不可逆的.
方向性
7
一、热力学第二定律 返回 延伸思考
热传导的方向性能否简单理解为“热量不会从低温物体传给高温物 体”? 答案 不能.

热力学第二定律1ppt课件

热力学第二定律1ppt课件
做功,只有以从高温热源吸收一部分热量,再放掉其中一部
分热量给低温热源为代价,否则不能做功.
• 卡诺循环的热温商之和等于零,不可逆循环的热温商之和小
于零。
.
22
§3.3 熵
1.熵的导出
卡诺循环结论
2 pa
Q1 Q2 0 T1 T2 推广到任何可逆循环:
Q Ri0 或 Q 0
i Ti
TR
b 1
• 任意可逆循环的V 分割 红线恒温可逆, 蓝线绝热可逆.
2.卡诺定理
卡诺定理:在高低温两个热源间工作的所有热机中,以可逆 热机的热机效率为最大。(反证法)
.
21
irW Q1Q1Q 1Q21Q Q1 2
r
1Q2 Q1
1-T2 T1
结论:
QQ
1 2 0 TT
可逆循环取等号
1
2
• 循环过程是可以对外做功的.
• 理想气体卡诺热机的效率η恒小于1, 且只与两个热源的温度 (T1, T2)有关, 温差愈大, η愈高。也就是说,卡诺热机要对外
开尔文:从一个热源吸热,使之完全转化为功,而不产生其 它变化是不可能的。即热功转变的不可逆性。
热:能量传递的低 级形式:无序能
高级能可以无条件地 转变为低级能;低级 能全部转变为高级能 是有条件的——给环
境留下影响。
.
功是能量传递的高 级形式:有序能
10
第二类永动机是不可能造成的
.
11
对热力学第二定律的说明: (1)热力学第二定律是实验现象的总结。它不能被任 何方式加以证明,其正确性只能由实验事实来检验。 (2)热力学第二定律的各种表述在本质上是等价的, 由一种表述的正确性可推出另外一种表述的正确性。

热力学第二定律课件

热力学第二定律课件

●【点拨】 虽然第二类永动机不违反能量守恒定律 ,大量 的事实证明,在任何情况下热机都不可能只有一个热源, 热机要不断地把吸取的热量变为有用的功,就不可避免地 将一部分热量传给低温热源.
若热机从高温热源吸收热量Q1,其中一部分转化为对外所
做的机械功W,另一部分热量Q2随废气排放到冷凝器中.根据
能量转化和守恒定律,应有Q1=W+Q2,热机效率η=
●解析: 热力学第一定律是热现象中内能与其他形式能的 转化规律,是能的转化和守恒定律的具体表现,适用于所 有的热学过程,故C正确,D错误;再根据热力学第二定律, 热量不能自发地从低温物体传到高温物体,必须借助于其 他系统做功.A错误,B正确,故选B、C.
●答案: BC
●2.热力学第二定律的一种表述 ●热量不能 自发 地从低温物体传到高温物体.这是热力学
第二定律的克劳修斯表述,阐述的是 传热 的方向性.
●二、热力学第二定律的另一种表述
●1.热机
●(1)热机工作的两个阶段
●第一个阶段是 燃烧燃料 ,把燃料中的 化学能 变成工作物质的
内能.
●第 二个 阶段是 工作 物质对 外
中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液
化,放出热量到箱体外,下列说法正确的是( )
●A.热量可以自发地从冰箱内传到冰箱外 ●B . 电 冰 箱 的 制 冷 系 统 能 够 不 断 地 把 冰 箱 内 的 热 量 传 到 外 界 ,
是因为其消耗了电能 ●C.电冰箱的工作原理不违反热力学第一定律 ●D.电冰箱的工作原理违反热力学第一定律
地球上海水的总质量达1.4×1021 kg.如果把这些海水的温度 降低1 ℃,放出的热量就达9×1018 kW·h,足够全世界使用4 000年.这个设想不违背能量守恒定律,但是不能实现,所 以叫做第二类永动机.前面学到的,违背能量守恒定律的永 动机,叫做第一类永动机.

第六章-热力学第二定律PPT课件

第六章-热力学第二定律PPT课件

力学中称为方向性问题。
.
2
3,第二类永动机是不可能实现的
4,热力学第二定律与第一定律 相互独立互相补充
二,热力学第二定律的克劳修斯表述
克劳修斯(Rudolf Clausius,1822-1888),德国物理学家,对热力
学理论有杰出的贡献,曾提出热力学第二定律的克劳修斯表述和熵
的概念,并得出孤立系统的熵增加原理。他还是气体动理论和热力
.
4
3,更简单的克劳修斯表述:热量不可能自发地从低温热源传向高温热源。
通过以上内容,我们来判断以下说法正确与否:
① 功可变成热,热不能变成功。(若 对,举一例说明)
② 功可完全变成热,热不能完全变成功。(若不对,举一反例)
③ 功不能完全变成热,热能完全变成功。
④ 功可完全变成热,但要在外界作用下,热能完全变成功。
2,两种表述将的都是热和功的问题,功不仅限于机械功的广义 功,每一种功热转换过程也可以作为热力学第二定律的表述。
热力学第二定律不是若干典型热学事例的堆积仓库,物理定律也 不能停留在具体的表面描述,真正的热力学定律应当是对物理本 质的描述,不同的表述应当有共同的物理本质,热力学第二定律 应该有更好的叙述。
第六章,热力学第二定律
问题的引入:
1,焦耳理论与卡诺热机理论的矛盾:同属能量转换, 有用功变热可以全部实现,为什么反过来就不能全部 实现,能量转换与守恒定律可没有这样的限制。
2,热机效率始终小于1并不全是技术原因
3,大量与热有关的自然过程仅靠热力学第一定律是不 足以解释的:1)热传递是不可逆的;2)电影散场后, 观众自发离开影院走向各方,却不能自发地重新聚集在 原来的电影院; 3)空气自由膨胀不能自发收缩等。
小结:上述三个不可逆过程,在推理过程中,很容易找到使系统 复原的方法,但这种情况并不多见,并且花费很多精力时间去寻 找系统复原的方法,很不经济。所以,我们必须借助其他方法。

第二章 热力学第二定律 物理化学课件

第二章  热力学第二定律  物理化学课件

设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B Qr AT
对微小变化
dS Qr
T
上式习惯上称为熵的定义式,即熵的变化值可 用可逆过程的热温商值来衡量。
2 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必 然比卡诺循环效率低,即
Q1 Q2 Q1
T1
T 2
T1

1+
T K
2
dT T
J K-1
24.3J K-1
• 此过程热温商为
Q
T
2
373 K 273 K
32.22
22.18 103
T K
373
3.49
106
• 故开动此致冷机所需之功率为
1780
1 60
W
50%=59.3
W
§2.4 熵的概念
• 1 可逆过程的热温商及熵函数的引出
• 在卡诺循环中,两个热源的热温商之和 等于零,即
Q1 Q2 QB 0
T1 T2
TB
• 那么,任意可逆循环过程的多个热源的 热温商之和是否仍然等于零?
§2.4 熵的概念
S Qr Qr TT
• 对理想气体定温可逆过程来说 Qr=-Wr
nRT ln V2
S
V1 nR ln V2 nR ln p1
T
V1
p2
例题3
• (1) 在300K时,5mol的某理想气体由 10dm3定温可逆膨胀到100dm3。计算此过 程中系统的熵变;
• (2)上述气体在300K时由10dm3向真空膨 胀变为100dm3。试计算此时系统的S。 并与热温商作比较。
Q1

3.4热力学第二定律课件ppt—高二下学期物理人教版选择性必修第三册

3.4热力学第二定律课件ppt—高二下学期物理人教版选择性必修第三册

热力学第二定律的反思
热力学第二定律的两种表述之间有什么样的关系?
①两种表述是等价的 可以从一种表述导出另一种表述,两种表述都称为热力学 第二定律。 ②对任何一类宏观过程进行方向的说明,都可以作为热力 学第二定律的表述。例如:气体向真空的自由膨胀是不可 逆的。
热力学第二定律的意义 热力学第二定律的意义? 提示了有大量分子参与的宏观过程的方向性,是独立于热 力学第一定律的一个重要自然规律。
一个在水平地面上的物体,由于克服摩擦力做功,最后要停 下来。在这个过程中,物体的动能转化成为内能,使物体和 地面的温度升高。
我们能不能看到这样的现象:一个放在水平地面上的物体, 靠降低温度,可以把内能自发地转化为动能,使这个物体运 动起来。
机械能与内能转化的方向性
热机:是一种把内能转化为机械能的装置。 (汽油机、柴油机、蒸汽轮机、喷气发动机等)
热力学第二定律的另一种表述
开尔文表述: 不可能从单一热库吸取热量,使之完全变成功,而不产生其他影响。
适用条件:只能适用于由很大数目分子构成的系统及有限范围内的宏观过 程,而不适用于少量的微观体系,也不能把它扩展到无限的宇宙。
热力学第二定律的另一种表述
开尔文表述: 不可能从单一热库吸取热量,使之完全变成功,而不产生其他影响。
②要实现相反方向的过程,必须借助外界的帮助,因而产 生其它影响或引起其它变化。
热量不可能从低温物体传到高温物体而不产生其他影响。
热力学第二定律
热传导的方向性能否简单理解为“热量不会从低温 物体传给高温物体”?
不能。“自发地”是指没有第三者的影响,例如空调 、冰箱等制冷机就是把热量从低温物体传到了高温物 体,但是也产生了影响,即外界做了功。
第二类永动机

热力学第二定律-物理化学-课件-03

热力学第二定律-物理化学-课件-03
7
说明: 1.各种说法一定是等效的。若克氏说法不成 立,则开氏说法也一定不成立(证明见书48页); 2.要理解整个说法的完整性切不可断章取义。如 不能误解为热不能转变为功,因为热机就是一种把 热转变为功的装置;也不能认为热不能完全转变为 功,因为在状态发生变化时,热是可以完全转变为 功的(如理想气体恒温膨胀即是一例) 3.热二律与热一律同样都是建立在无数客观事实基础 上的客观规律。至今还没有发现违背热二律的事实。
平衡
20
(2)真空膨胀 熵是状态函数,始终态相同,系统熵变也相同, 所以:
S sy 19.14 J K
1
S su
Q pra Tex
0
Sis Ssy Ssu 19.14 J K 1 0
自发过程
21
恒容变温
QV= dU = nCV,mdT
S
4
自发过程的定义
没有环境的影响下而能自动发生的过程 自发过程的特点 有方向的,有限度的,是不可逆过程。 要正确理解自发过程具有单向性(不可逆)的含义: 并不是其不能反向进行,环境对系统做功,可以使 系统复原,如利用水泵引水上山;利用空调机,可 以把热量从低温物体传到高温物体,但是一定在环 境中留下痕迹。 5
22
PVT均变化的ΔS的计算-理想气体
( p1 ,V1 , T1 ) ( p2 , V2 , T2 )
恒容 SV
S
( p ',V1 , T2 )
恒温 ST
T2 V2 S SV ST nCV ,m ln nR ln T1 V1
23
( p1 ,V1 , T1 ) ( p2 , V2 , T2 )
V2 p2 Qr Wr nRT ln nRT ln V1 p1 Qr V2 p2 S nR ln nR ln T V1 p1

热力学第二定律ppt

热力学第二定律ppt

五、熵判据与熵增原理
• 1、绝热过程 • 当Q=0时: • dS(绝热)≥0 • S(绝热)≥0
=0
是绝热可逆过程
〉0 是绝热不可逆过程 • 上式表明系统发生一个绝热过程,若是绝热可逆过程则 熵不变,若是绝热不可逆过程则熵增大,系统发生一个 绝热过程,熵不可能减小。
2.(隔离系统)熵判据 由于隔离系统进行的任何过程必然是绝热的。所以 隔离系统一切可能发生的过程,均向着熵增大的方向进 行,直至熵达到该条件下的极大值。任何可能的过程均 不会使隔离系统的熵减小。 隔离系统可能发生(不可逆)的过程就是自发过程, 隔离系统的可逆过程就是平衡,所以判断隔离系统是否 可逆,就是判断是否自发。 S(隔)≥0 >不可逆、自发 dS(隔)≥0 >不可逆、自发
B nB+nB T P2
同种气体恒温混合 ,若P1 =P1 = P2 则TS(混合)=0 若VA1=VB1=V2 则TS(混合)《0
3.不同温度的气体混合
• A nA B nB nA+nB • TA1 VA1 TB1 VB1 • • 变温混合 S S(环)=0 A、B T2 V2
2 1 T2
1
T2 P2 当CP , m为常数时 : S nCP , m ln nR ln T1 P1
2 1
还可推出当CP , m或CV , m为常数时 : V2 P2 2 1S nCP , m ln nCV , m ln V1 P1
讨论:(在CP,m或 CV,m为常数时) 恒温过程:TS=nRln(V2/V1)=nRln(P1/P2) 恒容过程: VS=nCV,mln(T2/T1)=nCV,mln(P2/P1) 恒压过程: PS=nCP,mln(T2/T1)=nCP,mln(V2/V1) 绝热可逆过程:S=0 所以绝热可逆过程的过程方程可用S=0表示。 即:S=nCV,mln(T2/T1)+nRln(V2/V1)=0

物理化学-热力学第二定律PPT课件

物理化学-热力学第二定律PPT课件

(2) 当T2-T1=0, (3) 当T1=0K,
=0 =100%
表述
第四节 卡诺定理
1. 所有工作在相同的高温热源与低温热源 之间的任意热机以卡诺热机的效率最大。
2.卡诺热机的效率只与两热源的温度有关, 而与工作物质无关
证明:
卡诺定理的数学表达式 R≧ I
T2–T1 ≧ T2
Q2+Q1 Q2
Q1 + T1
低电位
逆过程称为非自发过程
(2)不可逆性 理想气体真空膨胀 Q=0 W=0 U=0 再等温可逆压缩回去 U=0 Q=W 系统恢复,环境失W,而得Q
环境恢复,Q能否全部转变W
自发过程能否成为可逆过程,可归结为: 在不引起其它任何变化条件下,热能
否全部变为功。 焦尔的热功当量测定实验
一切自发过程都是不可逆过程
二、热力学第二定律数学表达式 ——克劳修斯不等式
U=0
W=Q1+Q2
W=W1+W2+W3+W4
=
nRT2ln(V2/V1)
-∫
T1 T2
CV
dT
+
nRT1ln(V4/V3)
-∫
T2 T1
CV
dT
W= nRT2ln(V2/V1) + nRT1ln(V4/V3) (2) 绝热膨胀
T2V2 -1 = T1V3 -1 (3) 绝热压缩
T2V1 -1 = T1V4 -1
式中, K1, K2, K 3 均为常数, Cp /CV
绝热功的求算
理想气体绝热可逆过程的功
W V2 pdV V1
=
K V2 V V1
dV
=
K
(1

大学物理热力学第二定律(课件)

大学物理热力学第二定律(课件)

P
a Q1
1. a-d 2. d-c 3. c-b
绝热膨胀(降温); 等温膨胀(吸热); 绝热压缩(升温);
b
4. b-a 等温压缩(放热)。
A
外界对系统作功,系统从低温
T1
热源吸热,向高温热源放热。
d
(冰箱的工作原理) c
Q2
T2
O
V
§4-3 循环过程
二、卡诺循环 2.卡诺致冷机 若将卡诺循环逆向进行就构成了卡诺致冷机
§4-3 循环过程
一、循环过程 系统经过一系列变化又回到原来状态的过程称为循
环过程。 如果循环过程中各个阶段都是准静态过程,这个循
环过程可以用p-V图上一条闭合曲线来表示。
循环过程 △E = 0 , Q净=A净
P
正循环 (顺时针循环 A﹥0)
a
O
V
§4-3 循环过程
一、循环过程 系统经过一系列变化又回到原来状态的过程称为循
c

A Q1

Q1 Q2 Q1
1 Q2 Q1
1 T2 T1
结论:
c
1
T2 T1
(1)完成一次卡诺循环必须有高温和低温两个热源。
(2)卡诺热机的效率只与高低温热源的温度有关,与 工作物质无关。提高热机效率的有效途径是提高两个热源 的温度差。
(3)由于Q2≠ 0,T2 ≠ 0,卡诺热机的效率 C﹤1。
Q2 T2 Q1 T1
如果循环过程中不向低温热源
放热,即Q2=0,则效率C=1。实践
证明做不到。
讨论
图中两卡诺循环 1 2 吗 ?
p
A1>A2
T2 A1
T1
A1=A2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理1证明
因为两热机的热效率和循环净功分别为
A=WA/Q1, B=WB/Q1
WA=Q1-Q2A,WB=Q1-Q2B
(1)假定A>B WA>WB和Q2A<Q2B
(2)令可逆机B逆向工作,于是消耗功WB,从低温热源吸 热Q2B,向高温热源放热Q1 (3)将A、B组成为一个可逆机,其共同结果为:
a). 从单一热源吸热Q2B-Q2A b). 对环境输出净功WA-WB c). 无其他变化
和冷源的温度,即t=(T1-T2)/T1;
2、温度界限相同,但具有两个以上热源的可 逆循环,其热效率低于卡诺循环;
3、不可逆循环的热效率必定小于同样条件下 的可逆循环。
例5-2 某项专利申请书上提出一种热机,它从167℃的热源
二.概括性卡诺循环
双热源之间的极限回热循环,称为概括性卡诺循环。
热效率:t
1
q2 q1
1 T2Sab T1Sab
1 T2 T1
c
三. 逆向卡诺循环
a-d-c-b-a,逆时针方向进行
制冷系数
c
q2 wnet
q2 q1 q2
T2 T1 T2
供暖系数
' c
q1 wnet
q1 q1 q2
T1 T1 T2
第五章 热力学第二定律
The second law of thermodynamics
本章将讨论: • 1.热力学第二定律的实质及表述; • 2.建立第二定律各种形式的数字表达式; • 3. 给出过程能否实现的数学判据; • 4.重点剖析作为过程不可逆程度的度量:
a.孤立系统的熵增 b.不可逆过程的熵产 c.yong(energy)损失,wu(anergy)增
违反一种表述,必违反另一种表述!!!
三、热力学第二律与第二类永动机
第二类永动机:设想的从单一热源取热并 使之完全变为功的热机。
这类永动机 并不违反热力
学第一定律
但违反了热 力学第二定律
第二类永动机是不可能制造成功的
环境是个大热源
5.2 卡诺循环和多热源可逆循 环分析
一.卡诺循环
卡诺循环是1824年法国青年工程师卡诺提出的 一种理想的有重要理论意义的可逆热机的可逆循环, 它是由四个可逆过程组成:一个可逆热机在两个恒 温热源间工作。
热功转换
传热
1851年 开尔文-普朗克表述
热功转换的角度
1850年 克劳修斯表述
热量传递的角度
克劳修斯说法(1850):
不可能把热从低温物体传到高温物体而不引起 其它变化。
开尔文-普朗特说法(1851):
不可能从单一热源取热,使之完全变为有用功, 而不引起其它变化。
注意: “克氏”是从传热的角度出发,“开氏”是 从功热转换的角度出发,都指出过程的方向性,两 者是等效的。
但却不能自发压缩,空 出一个空间
(4)混合过程 两种气体可自发地混
合,却不可自发地分离
热力学第二定律的实质
自然界过程的方向性表现在不同的方面
能不能找出共同的规律性? 能不能找到一个判据?
热力学第二定律
二、热力学第二律的表述与实质
热二律的表述有 60-70 种。但无论有多少种不同 的说法,它们都反映了客观事物的一个共同本质,即 自然界的一切自发过程有方向性。
四、多热源的可逆循环
热源多于两个的可逆循环
热效率:
t
1
q2' q1'
1
面积gnmelg 面积ehgnme
工作在T1 Th ,T2 Tl
下的卡诺循环的热效率
t
1 q2 q1
1
面积DCnmD 面积ABnmA
图中可逆循环e-h-g-l
-e的平均吸热温度和平
均放_ 热温度分别为和T_ 1 , 其热T 2效率为:
t 0.598
而相同温限内卡诺循环:c 0.8
1.不是卡诺循环
为什么?
2.等压过程耗功太大
3.过程2-3放热量太大
吸热(燃烧)前一定要压缩
5-3 卡诺定理
定理一
在相同温度的高温热源和相同温度的低温 热源之间工作的一切可逆循环,其热效率都相 等,与可逆循环的种类无关,与采用哪一种工 质也无关。
定理二
在温度同为T1的热源和温度同为T2的冷源 间工作的一切不可逆循环 ,其热效率必小于可 逆循环。
一、卡诺定理的证明
设A、B均为可逆机,均从热源T1吸收热量Q1,当A、B都按 正向循环工作时,A循环净功为WA=Q1-Q2A,B循环净功为
WB=Q1-Q2B,热效率分别为A=WA/Q1, B=WB/Q1 有三种可能: A >B, A <B, A =B
显然,违反热二的开氏说法,故A>B不成立。 同理,可以证明A&l热机循环 实现热能转变为机械能的条件,指 出了提高热机热效率的方向,是研 究热机性能不可缺少的准绳。
对热力学第二定律的建立具有 重大意义。
二、卡诺定理——结论
1、在同样两个热源间工作的热机,可逆热机 热效率均相等,与工质无关,只决定于热源
_
_
t
1
q2' q1'
1
T
_
2
s
T1 s
1
T
_
2
T1
循环热效率归纳:
t
wnet q1
1 q2 q1
1 Tm放 Tm吸
1 TL Th
适用一切循环,任意工质
多热源可逆循环,任意工质
卡诺循环,概括性卡诺循环,任意工质
关于循环热效率的讨论
T1=1500K;T2=300K; p1=28.0MPa;p2=0.1MPa
效率最高
➢卡诺 (S. Carnot)是热力学第二律奠基人。
a--b T1下的可逆等温吸热 Q1 = T1(s2-s1) b--c 可逆绝热膨胀 (对外做功)
c--d T2下的可逆等温放热 Q2 = T2(s2-s1) d--a 可逆绝热压缩 (对内作功)
循环热效率:
其中:
q1
RgT1
ln
vb va
q2
RgT2
ln
vc vd
利用绝热过程状态 参数间的关系:
整理得:
c
1
T2 T1
故: vc vd vb va
重要结论:
c
1
T2 T1
(1) 效率 c只取决于T1,T2 提高T1和降低T2都可以 提高热效率;
(2) 循环效率小于1;
(3) 当T1= T2时,c =0,所以借助单一热源连续做 工的机器是制造不出来的。
火无
5.1 热力学第二定律
热力学第一定律
能量守恒与转换定律 能量之间数量的关系
所有满足能量守恒与转换定律 的过程是否都能自发进行?
(2)有限温差传热
热可以自发地从高温物体传到低温物体,但却不能自发地 从低温物体传到高温。
Q
Q'
?
只要Q'不大于Q,B向A传热并不违反第一定律
(3)自由膨胀 气体自发向真空膨胀,
相关文档
最新文档