九年级数学上下册知识点汇集—人教版
九年级人教版数学全册知识点
九年级人教版数学全册知识点一、代数1. 代数式的定义和基本性质2. 一元一次方程及其应用3. 一元一次不等式及其应用4. 线性函数及其应用5. 平方根与二次方程6. 平方根与二次函数7. 分式与分式方程8. 速度与比例二、几何1. 线段比例及其性质2. 相似三角形及其性质3. 直角三角形中的三角函数4. 平面直角坐标系5. 二次函数的图像与性质6. 平面向量三、数据统计与概率1. 统计与统计图2. 等可能事件与概率3. 条件概率与事件独立性4. 排列与组合5. 正态分布与抽样调查四、实数1. 整式的加减运算2. 整式的乘法和因式分解3. 分式的加减运算4. 分式的乘法和除法5. 二次根式的性质和计算五、函数与方程1. 一元二次方程2. 一元二次函数3. 二次函数与二次方程4. 一元二次不等式5. 一元一次不等式六、立体几何与图形1. 空间几何图形2. 直线与点的位置关系3. 平面与空间直线的位置关系4. 空间图形的投影5. 立体图形的计算七、三角函数1. 任意角与弧度制2. 三角函数及其图像性质3. 三角函数的诱导公式4. 三角函数的图像变换5. 三角恒等变换八、二次函数1. 二次函数的定义与性质2. 二次函数的函数图像3. 二次函数的最值与判别式4. 直线与二次函数的交点5. 二次函数的应用九、统计1. 统计调查与参数估计2. 统计图的应用与分析3. 数据的分类与分组4. 数据的比较与分析5. 综合统计应用题以上就是九年级人教版数学全册的知识点概述。
在这些知识点中,我们将学习代数、几何、数据统计与概率、实数、函数与方程、立体几何与图形、三角函数二次函数和统计等内容。
通过系统的学习和练习,我们将能够掌握九年级数学的核心知识,提高数学解题和分析问题的能力。
希望同学们能够认真学习,并在实践中不断提高自己的数学水平!。
九年级上下册数学知识点
九年级上下册数学知识点
一、上册数学知识点
1. 数与式
- 整数与有理数的运算
- 代数表达式的简化与变形
- 绝对值与不等式
2. 方程与不等式
- 一元一次方程与不等式
- 二元一次方程组的解法
- 含参方程及其应用
3. 函数的初步认识
- 函数的概念与表示方法
- 线性函数与二次函数的图像和性质
- 函数的基本运算
4. 几何图形初步
- 平行线与角的关系
- 三角形的基本性质
- 四边形的性质与分类
5. 几何图形的计算
- 面积与体积的计算
- 相似三角形的性质与应用
- 圆的基本性质与计算
二、下册数学知识点
1. 比例与相似
- 比例的概念与性质
- 相似三角形的判定与性质
- 比例线段的应用
2. 解直角三角形
- 锐角三角函数
- 解直角三角形的应用
- 三角函数的图像与性质
3. 统计与概率
- 统计的基本概念与方法
- 概率的初步认识
- 随机事件的概率计算
4. 数据的收集与处理
- 数据的表示方法
- 频数分布与直方图
- 抽样与估计
5. 平面直角坐标系
- 坐标系的基本概念
- 坐标系中的几何变换
- 函数图像的交点问题
6. 综合应用题
- 数学知识在实际问题中的应用 - 解决问题的策略与方法
- 开放性与探究性问题
请注意,以上内容仅为九年级数学上下册的主要知识点概览,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应参考具体的教材和课程标准进行学习和复习。
人教版数学九年级上、下册知识点归纳
九年级知识点第一单元 二次根式1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab (4))0,0(≥≥=b a bab a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第二单元 一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
新人教版九年级数学上册知识点归纳
新人教版九年级数学上册知识点归纳
一. 整式的加减法和乘法
- 整式的加减法
- 同类项的加减法原则
- 不同类项的加减法原则
- 整式的乘法
- 单项式乘法
- 多项式乘法
二. 因式分解与整式的乘法
- 因式分解
- 公因式提取法
- 平方差公式
- 立方差公式
- 和差化积公式
- 整式的乘法
- 定积分法
- 化简法
三. 一次函数与二次函数
- 一次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
- 二次函数
- 函数的概念和表示方法
- 函数的图象
- 函数的性质和应用
四. 几何图形的认识
- 点、线和面的基本概念
- 几何图形的分类
- 几何图形的性质和判定方法
五. 平面坐标系
- 平面直角坐标系
- 平面直角坐标系中的点及其坐标- 平面直角坐标系中的线段及其长度- 平面直角坐标系中的图形
六. 相交与平行线
- 直线的概念和表示方法
- 直线的性质和判定方法
- 直线间的位置关系
- 平行线判定的方法
七. 形状与变换
- 图形的相似关系和判定方法
- 图形的全等关系和判定方法
- 图形的对称关系和判定方法
- 图形的平移、旋转和翻转
八. 数据的收集和处理
- 数据的收集和整理方法
- 数据的图表表示
- 数据的统计分析
以上是新人教版九年级数学上册的知识点归纳,包括整式的加减法和乘法、因式分解与整式的乘法、一次函数与二次函数、几何
图形的认识、平面坐标系、相交与平行线、形状与变换,以及数据的收集和处理。
人教版初三数学知识点
人教版初三数学知识点初三数学上册知识点归纳二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方形式(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根九年级下册数学知识点归纳一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
数学九年级上下册知识点归纳
数学九年级上下册知识点归纳以下是数学九年级上下册部分知识点归纳:一、方程与不等式1. 一次方程与一次方程组:掌握一元一次方程、二元一次方程组的解法,能解简单的方程组。
2. 分式方程:掌握分式方程的解法,能解简单的分式方程。
3. 一元二次方程:理解一元二次方程的概念,掌握一元二次方程的解法,能解简单的的一元二次方程。
4. 一元一次不等式:理解一元一次不等式的概念,掌握一元一次不等式的解法,能解简单的一元一次不等式。
二、函数1. 函数:理解函数的概念,会求函数的解析式和定义域。
2. 一次函数:掌握一次函数的图象和性质,能进行简单的函数计算。
3. 反比例函数:掌握反比例函数的图象和性质,能进行简单的函数计算。
4. 三角函数:理解锐角三角函数的定义,会用三角函数解决一些实际问题。
三、图形与几何1. 角:理解角的有关概念,掌握角的度量方法,能进行角的计算。
2. 相交线与平行线:理解相交线、平行线的概念,掌握相交线、平行线的性质和判定方法。
3. 三角形:理解三角形的有关概念,掌握三角形的性质和定理,能进行三角形的计算。
4. 四边形:理解四边形的有关概念,掌握四边形的性质和定理,能进行四边形的计算。
5. 圆:理解圆的概念和性质,掌握圆的切线、弦、弧、圆心角等定理和性质,能进行相关的计算和证明。
6. 尺规作图:能用尺规完成一些基本作图。
四、概率与统计1. 数据的收集与整理:掌握数据的收集、整理、描述和分析的方法。
2. 概率初步知识:理解概率的概念,能进行简单概率的计算。
以上知识点归纳并不全面,建议查阅教辅或咨询数学老师获取更多信息。
新版人教版九年级数学全册知识点
新版,人教,版,九年级,数学,全册,知识点,第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)21.2 降次----解一元二次方程1.一元二次方程的解法(1)直接开平方法:根据平方根的意义,用此法可解出形如(a≥0),(b≥0)类的一元二次方程.,则;,,.对有些一元二次方程,本身不是上述两种形式,但可以化为或的形式,也可以用此法解.(2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab=0的条件是a=0或b=0,使方程x(x-3)=0的条件是x=0或x-3=0.x的两个值都可以使方程成立,所以方程x(x-3)=0有两个根,而不是一个根.(3)配方法:任何一个形如的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解的方程.如解时,可把方程化为,,即,从而得解.注意:(1)“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1.(2)解一元二次方程时,一般不用此法,掌握这种配方法是重点.(3)公式法:一元二次方程(a≠0)的根是由方程的系数a、b、c确定的.在的前提下,.用公式法解一元二次方程的一般步骤:①先把方程化为一般形式,即(a≠0)的形式;②正确地确定方程各项的系数a、b、c的值(要注意它们的符号);③计算时,方程没有实数根,就不必解了(因负数开平方无意义);④将a、b、c的值代入求根公式,求出方程的两个根.说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法.2.一元二次方程根的判别式一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.而根的情况,由的值来确定.因此叫做一元二次方程的根的判别式.△>0方程有两个不相等的实数根.△=0方程有两个相等的实数根.△<0方程没有实数根.判别式的应用(1)不解方程判定方程根的情况;(2)根据参数系数的性质确定根的范围;(3)解与根有关的证明题.3.韦达定理及其应用定理:如果方程(a≠0)的两个根是,那么.当a=1时,.应用:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程;(4)已知两数和与积求两数.4.一元二次方程的应用(1)面积问题;(2)数字问题;(3)平均增长率问题.步骤:①分析题意,找到题中未知数和题给条件的相等关系(包括隐含的);②设未知数,并用所设的未知数的代数式表示其余的未知数;③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求的答数是否符合题意,并做答.这里关键性的步骤是②和③.注意:列一元二次方程应用题是一元一次方程解应用题的拓展,解题的方法是相同的,但因一元二次方程有两解,要检验方程的解是否符合题意及实际问题的意义.第二十二章二次函数22.1二次函数及其图像一般地,把形如y=ax?+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。
(精)最新版人教版九年级数学上册全册知识点
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
人教版九年级数学上下册知识点复习总结
人教版九年级数学上下册知识点复习总结上册知识点复总结
1. 数的性质和分类
- 自然数、整数、有理数的概念和性质
- 数轴的表示与利用
2. 整式的加、减、乘和除
- 同类项的合并与提取
- 四则运算的顺序问题
3. 分式与分式方程
- 分式的概念和性质
- 分式的加、减、乘和除
- 分式方程的解法
4. 一次函数与一次方程
- 一次函数的概念、图像和性质
- 一次方程的概念和解法
- 一次函数与一次方程的应用
5. 表格、图象和函数
- 表格、图象和函数的关系- 函数的概念和性质
- 函数的运算与性质
下册知识点复总结
1. 定比例与变比例
- 直线的斜率与倾斜角
- 变量间的比例关系
2. 直角三角形
- 直角三角形的性质与比较- 三角函数的定义和计算
- 解直角三角形的常用方法
3. 平面向量
- 平面向量的定义和运算
- 向量的模、方向和坐标表示
4. 多边形
- 多边形的性质和分类
- 多边形的周长和面积计算
5. 平面图形的变换
- 平移、旋转和对称的概念和性质
- 平面图形的变换规律
以上是人教版九年级数学上下册的知识点复习总结。
希望能帮助您进行复习和准备考试。
如有任何疑问,请随时向我提问。
人教版九年级数学知识点
人教版九年级数学知识点人教版九年级数学知识点知识点1:一元二次方程的基本概念1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的.位置1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
人教版九年级数学知识点梳理抛物线顶点坐标公式y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)相关结论过抛物线y^2=2px(p0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有①x1.x2=p^2/4,y1.y2=—P^2,要在直线过焦点时才能成立;②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];③(1/|FA|)+(1/|FB|)=2/P;④若OA垂直OB则AB过定点M(2P,0);⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);⑥弦长公式:AB=√(1+k^2).│x2-x1│;⑦△=b^2-4ac;⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。
人教版初三知识点总结
人教版初三知识点总结人教版初三知识点总结人教版初三教材是初中数学教材中的一种,分为上册和下册。
下面是一份人教版初三数学知识点总结,包括了初三阶段学习的各个知识点。
第一章方程方程是初三数学中的基础知识点,学习方程可以培养学生的逻辑思维能力和问题解决能力。
主要内容包括:1.一元一次方程:一元一次方程的概念、解的概念、解一元一次方程的基本方法等。
2.一元二次方程:一元二次方程的概念、解的概念、解一元二次方程的基本方法等。
第二章不等式不等式是初三数学中的重要内容,学习不等式可以培养学生的逻辑思维能力和问题解决能力。
主要内容包括:1.一元一次不等式:一元一次不等式的概念、解的概念、解一元一次不等式的基本方法等。
2.一元二次不等式:一元二次不等式的概念、解的概念、解一元二次不等式的基本方法等。
第三章函数函数是初三数学中的核心概念,学习函数可以培养学生的逻辑思维能力和问题解决能力。
主要内容包括:1.函数的概念:函数的定义、自变量和因变量、函数的表示方法等。
2.函数的图像:函数的图像的绘制、函数的图像与函数的性质等。
第四章三角形三角形是初三数学中的基础知识点,学习三角形可以培养学生的逻辑思维能力和问题解决能力。
主要内容包括:1.三角形的概念:三角形的定义、三角形的性质等。
2.三角形的面积:三角形的面积的计算方法等。
第五章相似形相似形是初三数学中的重要内容,学习相似形可以培养学生的逻辑思维能力和问题解决能力。
主要内容包括:1.相似形的概念:相似形的定义、相似形的性质等。
2.相似形的判定:相似形的判断方法等。
第六章平面直角坐标系平面直角坐标系是初三数学中的基础知识点,学习平面直角坐标系可以培养学生的逻辑思维能力和问题解决能力。
主要内容包括:1.平面直角坐标系的概念:平面直角坐标系的定义、坐标的概念等。
2.平面直角坐标系中的几何关系:平面直角坐标系中两点的距离、两点的中点等。
第七章数列数列是初三数学中的重要内容,学习数列可以培养学生的逻辑思维能力和问题解决能力。
人教版九年级数学全册各单元知识点总结
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
初三数学知识点归纳人教版
初三数学知识点归纳人教版一、一元二次方程。
1. 定义。
- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后再用直接开平方法求解。
例如x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如x^2-3x+2 = 0,分解因式得(x - 1)(x -2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
4. 一元二次方程根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),若方程的两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
二、二次函数。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中a、b、c是常数,x是自变量。
九年级数学上下册知识点汇集—人教版
九年级数学知识点九年级数学(上册)知识点第二十一章 一元二次方程一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成02=++c bx ax (a ≠0)后,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如p a mx =+2)((n ≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. 介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3)一元二次方程02=++c bx ax (a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式02=++c bx ax ,当ac b 42-≥0时,•将a 、b 、c 代入式子a ac b b x 242-±-=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
数学九年级上下册知识点归纳
数学九年级上下册知识点归纳第一章:有理数1.1 有理数的加法和减法•有理数的加法–同号相加:同号两数相加,取相同的符号,然后数值相加。
–异号相加:异号两数相加,取绝对值大的数的符号,然后数值相减。
•有理数的减法–减去一个数,相当于加上这个数的相反数。
1.2 有理数的乘法和除法•有理数的乘法–同号相乘或异号相乘,结果为正;异号相乘,结果为负。
•有理数的除法–除数不为零时,有理数的除法仍适用于除法的基本性质。
第二章:代数式2.1 代数式的概念•代数式:由数字、字母、算符号和括号组成的式子。
2.2 代数式的性质•代数式的值与未知数的值有关,可以表示一类数。
•代数式的相等性:当两个代数式在任何数值代入时都有相等情况时,称这两个代数式相等。
第三章:平方根和立方根3.1 平方根•平方根的概念:对于非负数a,如果有b^2 = a,则b叫作a的平方根。
3.2 立方根•立方根的概念:对于任意实数a,如果有b^3 = a,则b叫作a的立方根。
第四章:二次根式4.1 二次根式的乘法和除法•二次根式的乘法:将根号内的数相乘,乘积放在一个根号内。
•二次根式的除法:被除数和除数同为二次根式时,先化简,然后把根号内的数相除。
4.2 二次根式的加法和减法•二次根式的加法:同次数的根号相加减,保持根号内的数不变,合并同类项即可。
•二次根式的减法:同上。
第五章:一元二次方程5.1 一元二次方程的根•一元二次方程一般形式为:ax2+bx+c=0。
5.2 一元二次方程的判别式•判别式为$\\Delta = b^2 - 4ac$。
•当$\\Delta > 0$时,方程有两个不相等的实根。
•当$\\Delta = 0$时,方程有两个相等的实根。
•当$\\Delta < 0$时,方程无实根,解为虚数。
结语以上是九年级数学上下册的知识点归纳,掌握这些知识能够帮助同学们更好地理解数学中的相关概念和方法。
希望同学们能够通过不断练习和学习,进一步提高数学水平,取得更好的成绩。
人教版九年级数学上册知识点整理(完整版)
人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。
有理数的数轴上,0的左侧是负有理数,右侧是正有理数。
加、减、乘、除有理数的运算规则。
二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
三、代数式由数、变量及运算符号组成的式子叫做代数式。
其中数叫做常数项,变量叫做一次项。
四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。
五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。
六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。
七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。
2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。
八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。
九、相反数两个数互为相反数,当且仅当它们的和为0。
十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。
2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。
十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。
2、弧是圆上任意两点之间的弧。
3、圆心角,切线和弦的关系。
十三、比例和类比1、比例含义:比例是两个量之间的等比关系。
2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。
十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。
2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。
十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。
2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。
初三数学知识点归纳人教版
初三数学知识点归纳人教版初三数学学问点总结一、直线、相交线、平行线1.线段、射线、直线三者的区分与联系从图形、表示法、界限、端点个数、基本性质等方面加以分析。
2.线段的中点及表示3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边)4.两点间的距离(三个距离:点点;点线;线线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示〔方法〕7.角的平分线及其表示8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区分与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,3.三角形的主要线段商量:①定义②线的交点三角形的心③性质① 高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特别三角形:直角三角形、等腰三角形、等边三角形4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特别三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要帮助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加帮助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360⑵顺次连结各边中点得平行四边形。
新人教版数学九年级知识点
新人教版数学九年级知识点一、代数与函数1. 方程与不等式1.1 一元一次方程及应用1.2 一次不等式及应用1.3 二元一次方程组及应用2. 平方根与立方根2.1 平方根的概念及性质2.2 立方根的概念及性质3. 整式与分式运算3.1 整式的加减乘除3.2 分式的加减乘除4. 函数的概念与性质4.1 函数的定义与表示4.2 函数的增减性与单调性二、几何与图形1. 三角形1.1 三角形的分类及性质1.2 三角形的面积计算2. 圆与圆的性质2.1 圆的定义与性质2.2 弧长与扇形面积计算3. 空间几何体3.1 空间几何体的分类及性质3.2 空间几何体的表面积与体积计算4. 直角三角形与勾股定理4.1 直角三角形的性质及应用4.2 勾股定理的概念及应用三、数据与统计1. 统计图与统计量1.1 条形图、折线图和饼图的绘制与分析 1.2 中心位置和离散程度的统计量计算2. 概率2.1 随机事件与样本空间2.2 概率的概念与计算3. 抽样调查与统计推断3.1 问卷设计与样本选择3.2 通过样本推断总体特征四、数学实际问题解决能力1. 建立数学模型1.1 通过实际问题建立数学模型1.2 利用数学模型解决实际问题2. 运用数学方法解决问题2.1 使用代数方法解决实际问题2.2 使用几何方法解决实际问题3. 数学证明与推理3.1 利用数学理论进行证明3.2 运用逻辑推理解决问题以上是新人教版数学九年级的知识点概览,通过学习这些知识,同学们能够夯实数学基础,提高自己的数学能力。
希望同学们能够认真学习,勤于练习,善于思考,养成良好的数学学习习惯,并能将数学知识运用到实际生活中解决问题。
祝同学们在数学学习中取得优秀的成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学知识点九年级数学(上册)知识点第二十一章 一元二次方程一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下形式02=++c bx ax (a ≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成02=++c bx ax (a ≠0)后,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如p a mx =+2)((n ≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. 介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3)一元二次方程02=++c bx ax (a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式02=++c bx ax ,当ac b 42-≥0时,•将a 、b 、c 代入式子a ac b b x 242-±-=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.第二十二章 二次函数1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成: ()k h x a y +-=2的形式,其中ab h 2-=,a b ac k 442-= 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2. 6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =. (3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,与对称轴交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线c bx ax y ++=2中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2axy =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线 a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab (即a 、b 同号)时,对称轴在y 轴左侧;③0<a b (即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置. 当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ). (2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为y ,则横坐标是y c bx ax =++2的两个实数根.(5)一次函数()0≠+=k b kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 cbx ax y b kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G没有交点。
第二十三章 旋转1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
第二十四章圆1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO 是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R 和r ,且R ≥r ,圆心距为d :外离d >R+r ;外切d=R+r ;相交R-r <d <R+r ;内切d=R-r ;内含d <R-r 。
10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
12.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
13.有关定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14. 计算公式 1、 扇形弧长:180R n l π=2、扇形面积公式:3602R n l π=, 比较扇形的弧长公式和面积公式发现:S 扇形=lR lR R R n R n l s 21,21211803602==⨯==扇形所以ππ3、圆面积 :122r l rl s ππ=⋅⋅=圆锥侧2r rl s s s ππ+=+=底圆锥侧圆锥全第二十五章 随机事件与概率在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不会发生的事件称为随机事件。