2021新高考数学二轮总复习专题六统计与概率6.4.2随机变量及其分布学案含解析.docx
高中数学备课教案概率与统计中的随机变量与分布
高中数学备课教案概率与统计中的随机变量与分布高中数学备课教案:概率与统计中的随机变量与分布概率与统计是高中数学重要的内容之一,而在这个领域中,随机变量和分布的概念更是关键。
随机变量是代表随机试验中的某个特定数量的变量,而分布则描述了该随机变量所有可能取值的概率。
教师在备课过程中,应该注重学生对随机变量和分布的理解与应用。
本教案将详细介绍随机变量和分布的概念、分类以及例题应用,帮助教师更好地备课教学。
一、随机变量的概念及分类1.1 随机变量的概念随机变量是在随机试验中可能取到的各个结果所对应的数值,可分为离散型和连续型两种。
1.2 离散型随机变量离散型随机变量是只能取一些特定值的随机变量,其取值通常是整数或有限个数。
常见离散型随机变量有二项分布、泊松分布等。
1.3 连续型随机变量连续型随机变量是可以取得一切可能值的随机变量,其取值通常是实数。
常见连续型随机变量有均匀分布、正态分布等。
二、随机变量的分布2.1 离散型随机变量的分布离散型随机变量具有离散型分布,常见的分布有二项分布、泊松分布等。
在教学中,可以通过实际例题帮助学生理解离散型随机变量的分布特点和应用方法。
2.2 连续型随机变量的分布连续型随机变量具有连续型分布,常见的分布有均匀分布、正态分布等。
通过实际例题,教师可以引导学生探究连续型随机变量的分布特点和应用方法,并与离散型随机变量进行对比。
三、随机变量与分布的应用3.1 随机变量的应用随机变量的应用广泛存在于生活和科学研究中。
例如,在概率论、统计学、物理学等领域,通过引入随机变量来描述和研究不确定的或随机的现象。
3.2 随机变量与分布的问题解答在教学中,可以通过练习题和案例分析等方式,培养学生运用随机变量与分布解决实际问题的能力。
引导学生分析问题,运用相应的分布模型,计算概率或期望,从而得出正确的结论。
四、教学策略与方法4.1 清晰明了的讲解教师应以简洁明了的语言对随机变量和分布的概念进行讲解,避免使用过多的专业术语,使学生能够迅速掌握关键概念。
随机变量及其分布教案
随机变量及其分布教案本教案以"随机变量及其分布"为主题,旨在帮助初学者理解随机变量的概念、特征和分布。
本文将介绍随机变量的基本概念、离散与连续随机变量的特征以及常见的概率分布模型。
通过教师引导和学生参与,帮助学生掌握随机变量及其分布的概念和基本性质。
一、引入随机变量是概率论中的重要概念,它可以看作是试验结果的函数。
为了更好地理解随机变量,我们可以先从试验和事件的概念入手。
试验是指具有不确定性的过程或现象,而事件是试验的某一结果或一组结果组成的集合。
随机变量则是将试验结果映射到数轴上的变量。
二、随机变量的定义随机变量可以分为离散随机变量和连续随机变量。
离散随机变量是取有限个或可列个数值的随机变量,例如掷一个骰子的结果。
连续随机变量则是可以取连续数值的随机变量,例如人们身高的测量值。
三、离散随机变量的特征离散随机变量有其特征,主要包括概率质量函数、期望和方差等。
概率质量函数描述了随机变量在各个取值上的概率分布情况,期望则是对随机变量取值的加权平均值,方差则衡量了随机变量取值的分散程度。
四、连续随机变量的特征连续随机变量的特征与离散随机变量类似,不同之处在于连续随机变量使用概率密度函数来描述其概率分布情况。
期望和方差的计算方法也有所不同。
五、常见的概率分布模型在概率论和统计学中,有许多常见的概率分布模型可以用来描述随机变量的分布情况。
例如,离散型随机变量的概率分布模型有伯努利分布、二项分布和泊松分布等;连续型随机变量的概率分布模型有均匀分布、正态分布和指数分布等。
本教案将对其中部分常用的概率分布进行简要介绍,并通过实例演示如何应用这些分布模型进行概率计算。
六、总结与延伸通过本节课的学习,我们了解到随机变量及其分布的基本概念和特征,以及常见的概率分布模型。
随机变量在概率论和统计学中具有广泛的应用,对于我们理解和解决实际问题有着重要的作用。
在以后的学习中,我们将进一步深入研究随机变量及其分布的性质和应用,为进一步理解概率论和统计学打下坚实基础。
2019-2020年高三数学二轮复习 专题六 第2讲 概率、随机变量及其分布列教案
2019-2020年高三数学二轮复习 专题六 第2讲 概率、随机变量及其分布列教案自主学习导引 真题感悟1.(2012·北京)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A.π4B.π-22C.π6D.4-π4解析 如图,平面区域D 是面积为4的正方形,D 内到坐标原点的距离大于2的点所组成的区域为图中阴影部分,其面积为4-π,故此点到坐标原点的距离大于2的概率为4-π4,故选D.答案 D2.(2012·山东)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .解析 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意知P (B )=34,P (C )=P (D )=23,由于A =B C -D -+B -C D -+B -C -D , 根据事件的独立性和互斥性得P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34+23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性得P (X =0)=P (B -C -D -)=[1-P (B )][1-P (C )][1-P (D )]=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136. P (X =1)=P (B C -D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112, P (X =2)=P (B -C D -+B -C -D )=P (B -C D -)+P (B -C -D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19, P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13, P (X =4)=P (B -CD )=⎝⎛⎭⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13.故X所以EX =0×36+1×12+2×9+3×3+4×9+5×3=4112. 考题分析本部分内容的基础是概率,高考试题中无论是以古典概型为背景的分布列,还是以独立重复试验为背景的分布列,都要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意. 网络构建高频考点突破考点一:古典概型与几何概型【例1】(1)(2012·衡水模拟)盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是A.18125B.36125C.44125D.81125(2)(2012·海淀二模)在面积为1的正方形ABCD 内部随机取一点P ,则△PAB 的面积大于等于14的概率是________.[审题导引] (1)解题的关键是理解题意,应用计数原理与排列组合公式计算基本事件的个数;(2)首先找到使△PAB 的面积等于14的点P ,然后据题意计算.[规范解答] (1)设事件“取球次数恰为3次”为事件A ,则P (A )=2C 12·C 13·C 1353=36125. 2)如图所示,设E 、F 分别是AD 、BC 的中点,则当点P 在线段EF 上时,S △PAB =14,要使S △PAB >14,需点P 位于矩形EFCD 内,故所求的概率为:P (A )=S 矩形EFCD S 正方形ABCD =121=12.[答案] (1)B (2)12【规律总结】解答几何概型、古典概型问题时的注意事项(1)有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性.(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解.(4)利用几何概型求概率时,关键是构成试验的全部结果的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 【变式训练】1.(1)(2012·石景山一模)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是________.解析 阴影部分的面积为S 阴=2⎠⎛0πsin x d x=-2cos x |π0=4,故P =S 阴S ⊙O =4π3答案 4π32.(2012·广州模拟)从3名男生和n 名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3435,则n =________.解析 据题意知,所选3人中都是男生的概率为C 33C 3n +3,∴至少有1名女生的概率为1-C 33C 3n +3=3435,∴n =4. 答案 4考点二:相互独立事件的概率与条件概率【例2】(1)甲射击命中目标的概率为34,乙射击命中目标的概率为23,当两人同时射击同一目标时,该目标被击中的概率为A.12 B .1 C.1112 D.56(2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=A.18B.14C.25D.12 [审题导引] (1)把事件“目标被击中”分解为三个互斥事件求解;(2)据古典概型的概率分别求出P (A )与P (AB ),然后利用公式求P (B |A ).[规范解答] (1)解法一 设甲、乙射击命中目标分别记作事件A 、B ,则P (A )=34,P (B )=23,则该目标被击中的概率为 P (A B -)+P (A -B )+P (AB )=34×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23+34×23=1112. 解法二 若采用间接法,则目标未被击中的概率为 P (A - B -)=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23=112,则目标被击中的概率为1-P (A - B -)=1-112=1112.(2)P (A )=C 23+C 22C 25=410=25,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P ABP A =110410=14.【规律总结】(1)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解. (2)一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”“至多”等问题往往用这种方法求解.(3)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.(4)牢记公式P n (k )=C k n p k (1-p )n -k,k =0,1,2,…,n ,并深刻理解其含义. 2.解答条件概率问题时应注意的问题(1)正确理解事件之间的关系是解答此类题目的关键.(2)在求P (AB )时,要判断事件A 与事件B 之间的关系,以便采用不同的方法求P (AB ).其中,若B ⊆A ,则P (AB )=P (B ),从而P (B |A )=P BP A. 【变式训练】3.(2012·宜宾模拟)设某气象站天气预报准确率为0.9,则在4次预报中恰有3次预报准确的概率是A .0.287 6B .0.072 9C .0.312 4D .0.291 6解析 据题意知在4次预报中恰有3次预报准确的概率为C 34·0.93·0.1=0.291 6.答案 D4.(2012·枣庄模拟)如图,CDEF 是以圆O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在扇形OCFH 内”(点H 将劣弧EF 二等分),B 表示事件“豆子落在正方形CDEF 内”,则P (B |A )=A.3πB.2πC.38D.3π16解析 ∵圆的半径为1,则正方形的边长为2,∴P (A )=S 扇形OCFH S ⊙O =12·34ππ=38,P (AB )=3822π=34π,则P (B |A )=P AB P A =34π38=2π.答案 B考点三:离散型随机变量的分布列、期望、方差【例3】(2012·合肥模拟)某公司设有自行车租车点,租车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为14、12;一小时以上且不超过两小时还车的概率分别为12、14;两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望E ξ. [审题导引] (1)把事件“甲、乙两人所付租车费用相同”分解为三个互斥事件:租车费用为2元、租车费用为4元、租车费用为6元,分别求其概率,然后求和;(2)甲、乙两人所付的租车费用之和可能为4元、6元、8元、10元、12元,分别求出ξ取上述各值的概率即可得到其概率分布列.[规范解答] (1)甲、乙两人所付费用相同即为2,4,6元.都付2元的概率为P 1=14×12=18; 都付4元的概率为P 2=12×14=18;都付6元的概率为P 3=14×14=116;故所付费用相同的概率为P =P 1+P 2+P 3 =18+18+116=516. (2)依题意,ξ的可能取值为4,6,8,10,12.P (ξ=4)=18;P (ξ=6)=14×14+12×12=516;P (ξ=8)=14×14+12×14+12×14=516;P (ξ=10)=14×14+12×14=316;P (ξ=12)=14×14=116.故ξ的分布列为所求数学期望E ξ=4×18+6×516+8×516+10×316+12×116=152【规律总结】解答离散型随机变量的分布列及相关问题的一般思路(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值. (3)根据分布列和期望、方差公式求解.注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题. 【变式训练】5.(2012·西城二模)甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是35,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.解析 (1)设乙答题所得分数为X ,则X 的可能取值为-15,0,15,30.P (X =-15)=C 35C 310=112;P (X =0)=C 25C 15C 310=512;P (X =15)=C 15C 25C 310=512;P (X =30)=C 35C 310=112.EX =112×(-15)+12×0+12×15+12×30=2.(2)由已知甲、乙至少答对2题才能入选,记甲入选为事件A ,乙入选为事件B .则P (A )=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25+⎝ ⎛⎭⎪⎫353=81125,P (B )=512+112=12. 故甲乙两人至少有一人入选的概率P =1-P (A -·B -)=1-44125×12=103125.名师押题高考【押题1】在不等式组⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0,x ≥0,y ≥0所表示的平面区域内,点(x ,y )落在x ∈[1,2]区域内的概率是________.解析 如图所示,不等式组所表示的平面区域的面积是72,在这个区域中,x ∈[1,2]区域的面积是1,故所求的概率是27.答案 27[押题依据] 几何概型与线性规划问题都是高考的热点,二者结合命题,立意新颖、内涵丰富,能够很好地考查基础知识与基本能力,故押此题.【押题2】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率;(2)求乙获胜且比赛局数多于5局的概率; (3)求比赛局数的分布列.解析 (1)由已知,甲、乙两名运动员在每一局比赛中获胜的概率都是12.记“甲以4比1获胜”为事件A ,则P (A )=C 34⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫124-312=18.(2)记“乙获胜且比赛局数多于5局”为事件B .因为,乙以4比2获胜的概率为P 1=C 35⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫125-312=532, 乙以4比3获胜的概率为P 2=C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫126-312=532,所以P (B )=P 1+P 2=516.(3)设比赛的局数为X ,则X 的可能取值为4,5,6,7.P (X =4)=2C 44⎝ ⎛⎭⎪⎫124=18,P (X =5)=2C 34⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫124-312=14, P (X =6)=2C 35⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫125-2·12=516,P (X =7)=2C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫126-3·12=516.[押题依据] 赛为模型的概率问题又是高考的经典题型,故押此题.。
高三数学二轮复习微专题精选6 概率统计
高三数学二轮复习微专题精选6 概率统计概率统计是高中数学中的一个重要内容,它涉及到随机事件的概率计算和统计分析。
在高三数学二轮复中,概率统计是一个需要重点复和掌握的知识点。
1. 概率计算概率计算是概率统计的基础,它涉及到事件发生的可能性大小的计算。
在复中,我们应该重点掌握以下几个内容:- 根据样本空间和事件的定义计算概率;- 利用频率定义概率;- 使用排列和组合计算概率;- 利用事件的补集计算概率。
2. 随机变量和概率分布随机变量是概率统计中的重要概念,它表示随机事件的结果。
概率分布则是随机变量取各种可能值的概率分布情况。
在复中,我们应该掌握以下几个重点:- 定义随机变量和概率分布;- 计算离散型随机变量的期望和方差;- 计算连续型随机变量的期望和方差。
3. 统计分析统计分析是概率统计的另一个重要内容,它涉及到数据的收集、整理和分析。
在复中,我们应该重点掌握以下几个内容:- 数据的收集和整理;- 数据的均值和标准差的计算;- 样本估计和参数估计的方法;- 使用统计推断进行判断和决策。
4. 解题技巧和思路在复的过程中,我们还需掌握一些解题技巧和思路:- 注意理解题目中的要求和条件;- 灵活运用概率计算的各种方法;- 注意统计分析中的常见统计指标的计算;- 理解样本和总体的关系,正确进行估计。
总之,对于高三数学二轮复微专题精选6的概率统计内容,我们应该系统性地复和掌握概率计算、随机变量和概率分布以及统计分析的相关知识。
同时,我们还应该注意解题思路和技巧的应用,提高解题效率。
通过充分理解和练,我们可以更好地应对考试中的概率统计题目,取得好成绩。
高中数学高考二轮复习概率与统计教案
高中数学高考二轮复习概率与统计教案本专题涉及面广,常以生活中的热点问题为依托,在高考中的考查方式十分灵活,强化“用数据说法,用事实说话”的考查内容。
为了突破这一专题,可以按照“用样本估计总体”、“古典概型与几何概型”、“随机变量及其分布列”、“独立性检验与回归分析”四个方面分类进行引导。
在古典概型问题的求解中,可以采用直接列举、画树状图、逆向思维、活用对称等技巧。
对于特殊古典概型问题,画树状图可以使列举结果不重不漏;对于较复杂的问题,逆向思维可以先求对立事件的概率,再得到所求事件的概率;对于具有对称性的问题,可以利用对称思维快速解决。
几何概型的求解关键在于准确确定度量方式和度量公式,常见的几何度量包括长度、面积、体积、角度等。
在求解概率时,可以采用将所求事件转化为几个彼此互斥的事件的和事件,利用概率加法公式求解概率,或者利用对立事件的概率公式“正难则反”来求“至少”或“至多”型事件的概率。
举例来说,对于一个问题:4位同学各自在周六、周日两天中任选一天参加公益活动,周六、周日都有同学参加公益活动的概率为多少?其中,4名同学各自在周六、周日两天中任选一天参加公益活动的情况有2的4次方等于16种,其中仅在周六或周日参加的各有1种,所以所求概率为1减去(1+1)/16,即7/8.总之,熟练掌握古典概型与几何概型的求解技巧,以及求解概率的常用方法,可以在高考中更好地应对这一专题。
基本事件为取出的第一颗球和第二颗球的颜色,共有10种基本事件,其中第一颗球为白球的有3种情况,第二颗球为黑球的有2种情况,所以第一次为白球、第二次为黑球的概率为3/10,选B。
2)对于函数f(x)=ax+bx+x-3在R上为增函数,即a+b+1>0,所以a+b>-1.因为a,b都是M中的元素,所以a +b的取值有16种,其中a+b>-1的取值有9种,所以函数f(x)在R上为增函数的概率为9/16,选A。
中大于30的有12种,即(3,4),(3,5),(4,5),(2,4),(2,5),(1,4),(1,5),(2,3),(1,3),(1,2)和(4,3),(5,3).故所求概率为12/20=3/5,选项C正确.变式训练2](2017·全国卷Ⅰ)设函数f(x)=ax^2+bx+c,其中a,b,c均为实数,且满足f(1)=2,f(2)=3,f(3)=6,则f(x)在[1,3]上的最小值为()A。
高考数学二轮复习专题3概率与统计第6讲随机变量及其分布教学案理
第6讲 随机变量及其分布题型1 相互独立事件的概率与条件概率(对应学生用书第18页)■核心知识储备………………………………………………………………………· 1.条件概率在A 发生的条件下B 发生的概率为P (B |A )=P AB P A =n ABn A.2.相互独立事件同时发生的概率P (AB )=P (A )P (B ).3.独立重复试验的概率如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k·(1-p )n -k,k =0,1,2,…,n .■典题试解寻法………………………………………………………………………·【典题1】 (考查条件概率)如图61,△ABC 和△DEF 是同一个圆的内接正三角形,且BC ∥EF .将一颗豆子随机地扔到该圆内,用M 表示事件“豆子落在△ABC 内”,N 表示事件“豆子落在△DEF 内”,则P (N |M )=( )图61A.334π B.32π C.13 D.23[解析] 如图,作三条辅助线,根据已知条件得这些小三角形都全等,△ABC 包含9个小三角形,满足事件N M 的有3个小三角形,所以P (N |M )=nN M n M=39=13,故选C. [答案] C【典题2】 (考查相互独立事件的概率)(2017·福州五校联考)为了检验某大型乒乓球赛男子单打参赛队员的训练成果,某校乒乓球队举行了热身赛,热身赛采取7局4胜制(即一场比赛先胜4局者为胜)的规则.在队员甲与乙的比赛中,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在5局以内(含5局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和数学期望.【导学号:07804040】[解] (1)由题意得,甲在5局以内(含5局)赢得比赛的概率P =⎝ ⎛⎭⎪⎫234+C 14⎝ ⎛⎭⎪⎫234×13=112243. (2)由题意知,X 的所有可能取值为4,5,6,7,且P (X =4)=⎝ ⎛⎭⎪⎫234+⎝ ⎛⎭⎪⎫134=1781,P (X =5)=C 14⎝ ⎛⎭⎪⎫234×13+C 14×23×⎝ ⎛⎭⎪⎫134=72243=827, P (X =6)=C 25⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫134=200729, P (X =7)=C 36⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫133+C 36⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫134=160729. 所以X 的分布列为E (X )=4×81+5×27+6×729+7×729=729. [类题通法]1.解决条件概率的关键是明确“既定条件”.2.求相互独立事件和独立重复试验的概率的方法直接法:正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥的事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解.间接法:当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解.■对点即时训练………………………………………………………………………·1.某同学用计算器产生了两个[0,1]之间的均匀随机数,分别记作x ,y .当y <x 2时,x >12的概率是( ) A.724 B .12 C.712D .78D [记“y <x 2”为事件A ,“x >12”为事件B ,所以(x ,y )构成的区域如图所示,所以S 1==124,S 2=⎠⎛01x 2d x-S 1=,则所求概率为=S 2S 1+S 2=724124+724=78,故选D.]2.如图62,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为()图62A .0.960B .0.864C .0.720D .0.576B [法一:(直接法)由题意知K ,A 1,A 2正常工作的概率分别为P (K )=0.9,P (A 1)=0.8,P (A 2)=0.8,因为K ,A 1,A 2相互独立,所以A 1,A 2至少有一个正常工作的概率为P (A 1A 2)+P (A 1A 2)+P (A 1A 2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96.所以系统正常工作的概率为P (K )[P (A 1A 2)+P (A 1A 2)+P (A 1A 2)]=0.9×0.96=0.864.法二:(间接法)A1,A2至少有一个正常工作的概率为1-P(A1A2)=1-(1-0.8)(1-0.8)=0.96,故系统正常工作的概率为P(K)[1-P(A1A2)]=0.9×0.96=0.864.]■题型强化集训………………………………………………………………………·(见专题限时集训T1、T3、T4、T6、T12)题型2 离散型随机变量的分布列、期望和方差的应用(答题模板)(对应学生用书第19页)离散型随机变量的分布列问题是高考的热点,常以实际生活为背景,涉及事件的相互独立性、互斥事件的概率等,综合性强,难度中等.(2017·全国Ⅱ卷T13、2017·全国Ⅲ卷T18、2016·全国Ⅰ卷T19、2016·全国Ⅱ卷T18、2013·全国Ⅰ卷T19、2013·全国Ⅱ卷T19)■典题试解寻法………………………………………………………………………·【典题】(本小题满分12分)(2016·全国Ⅰ卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.在三年使用期内更换的易损零件数,得下面如图63所示的柱状图:②图63以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,③n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P X≤n,④确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【导学号:07804041】[审题指导][零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2. 1分由题意可知X的所有可能取值为16,17,18,19,20,21,22.⑤从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04. 4分所以X的分布列为(2)由(1)知P X=0.44,P X=0.68,⑥故n的最小值为19. 7分(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,⑦E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040;9分当n=20时,⑧E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.11分可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.12分[阅卷者说]解答离散型随机变量的分布列及相关问题的一般思路:明确随机变量可能取哪些值.结合事件特点选取恰当的计算方法计算这些可能取值的概率值.根据分布列和期望、方差公式求解.提醒:明确离散型随机变量的取值及事件间的相互关系是求解此类问题的关键.■对点即时训练………………………………………………………………………·(2016·湖南益阳4月调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂.现随机抽取这两种产品各60件进行检测,检测结果统计如下:(1)试分别估计甲,乙两种产品下生产线时为合格品的概率;(2)生产一件甲种产品,若是合格品,可盈利100元,若是不合格品,则亏损20元;生产一件乙种产品,若是合格品,可盈利90元,若是不合格品,则亏损15元.在(1)的前提下:①记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;②求生产5件乙种产品所获得的利润不少于300元的概率. [解] (1)甲种产品为合格品的概率约为4560=34 ,乙种产品为合格品的概率约为4060=23.(2)①随机变量X 的所有可能取值为190,85,70,-35, 且P (X =190)=34×23=12,P (X =85)=34×13=14, P (X =70)=14×23=16, P (X =-35)=14×13=112.所以随机变量X 的分布列为所以E (X )=2+4+6-12=125.②设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,又因为0≤n ≤5,且n 为整数,所以n =4或n =5,设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 45⎝ ⎛⎭⎪⎫234×13+⎝ ⎛⎭⎪⎫235=112243. ■题型强化集训………………………………………………………………………·(见专题限时集训T 2、T 7、T 8、T 11、T 13)题型3 正态分布问题 (对应学生用书第21页)■核心知识储备………………………………………………………………………·正态分布的性质(1)正态曲线与x 轴之间面积为1.(2)正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相同. (3)P (X ≤a )=1-P (X ≥a ),P (X ≤μ-a )=P (X ≥μ+a ). (4)求概率时充分利用3σ原则.■典题试解寻法………………………………………………………………………· 【典题】 (2017·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸: x i -=116∑16i =1x 2i -16x 2)≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).【导学号:07804042】附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.[思路分析] (1)先由对立事件的概率公式求出P (X ≥1)的值,再利用数学期望的公式求解.(2)利用独立性检验的思想判断监控生产过程方法的合理性;确定μ^-3σ^,μ^+3σ^的取值,以剔除(μ^-3σ^,μ^+3σ^)之外的数据,再用剩下的数据估计μ和σ. [解] (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6). 因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8.X 的数学期望E (X )=16×0.002 6=0.041 6.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.∑16i =1x 2i =16×0.2122+16×9.972≈1 591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008, 因此σ的估计值为0.008≈0.09. [类题通法]由于正态分布与频率分布直方图有极大的相似性,故最近五年比较受命题人青睐. 解决正态分布问题有三个关键点:对称轴x =μ;标准差σ;分布区间.利用对称性求指定范围内的概率值;由μ,σ分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.■对点即时训练………………………………………………………………………·1.设X ~N (1,σ2) ,其正态分布密度曲线如图64所示,且P (X ≥3)=0.022 8,那么向正方形OABC 中随机投掷10 000个点,则落入阴影部分的点的个数的估计值为( )图64(附:随机变量X 服从正态分布N (μ,σ2),则P (μ-σ<X <μ+σ)=68.26%,P (μ-2σ<X <μ+2σ)=95.44%) A .6 038 B .6 587 C .7 028D .7 539B [由题意得,P (X ≤-1)=P (X ≥3)=0.022 8,∴P (-1<X <3)=1-0.022 8×2=0.954 4,∴1-2σ=-1,σ=1,∴P (0≤X ≤1)=12P (0≤X ≤2)=0.341 3,故估计的个数为10 000×(1-0.341 3)=6 587,故选B.] 2.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如65的频率分布直方图.图65(1)求这100份数学试卷的样本平均分x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表).(2)由直方图可以认为,这批学生的数学总分Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2. ①利用该正态分布,求P (81<Z <119);②记X 表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求E(X)(用样本的分布区估计总体的分布).【导学号:07804043】附:366≈19,326≈18,若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.[解](1)x=60×0.02+70×0.08+80×0.14+90×0.15+100×0.24+110×0.15+120×0.1+130×0.08+140×0.04=100.s2=(60-100)2×0.02+(70-100)2×0.08+(80-100)2×0.14+(90-100)2×0.15+(110-100)2×0.15+(120-100)2×0.1+(130-100)2×0.08+(140-100)2×0.04=366.(2)①由题意可知Z~N(100,366).又σ=366≈19,故P(81<Z<119)=P(100-19<Z<100+19)=0.6826.②由①可知一名学生总分落在(81,119)的概率为0.6826.因为X~B(2400,0.6826),所以E(X)=2400×0.6826=1638.24.■题型强化集训………………………………………………………………………·(见专题限时集训T5、T9、T10、T14)三年真题| 验收复习效果(对应学生用书第22页)1.(2015·全国Ⅰ卷)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432 C.0.36 D.0.312A[3次投篮投中2次的概率为P(k=2)=C23×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C23×0.62×(1-0.6)+0.63=0.648.故选A.]2.(2017·全国Ⅱ卷)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=________.1.96 [由题意得X~B(100,0.02),∴DX=100×0.02×(1-0.02)=1.96.]3.(2016·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值. [解] (1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.又P (AB )=P (B ),故P (B |A )=P AB P A =P B P A =0.150.55=311. 因此所求概率为311. (3)记续保人本年度的保费为X ,则X 的分布列为+2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【导学号:07804044】[解] (1)由题意知,X 所有可能取值为200,300,500,由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4. 因此X 的分布列为(2)200≤n ≤500.当300≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ; 若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n .因此EY =2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n .当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n ,因此EY =2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n .所以n =300时,Y 的数学期望达到最大值,最大值为520元.。
2021新高考数学二轮总复习专题六统计与概率6.4.3统计与概率问题综合应用学案含解析.docx
6.4.3统计与概率问题综合应用必备知识精要梳理离散型随机变量的期望与方差(1)E(X)=x1p1+x2p2+…+x i p i+…+x n p n为X的均值或数学期望.(2)D(X)=(x1-E(X))2·p1+(x2-E(X))2·p2+…+(x i-E(X))2·p i+…+(x n-E(X))2·p n叫做随机变量X的方差.(3)均值与方差的性质:E(aX+b)=aE(X)+b;E(ξ+η)=E(ξ)+E(η);D(aX+b)=a2D(X).关键能力学案突破热点一离散型随机变量的期望与方差【例1】(2020山西临汾高三适应性训练,19)今年情况特殊,小王在居家自我隔离时对周边的水产养殖产业进行了研究.A、B两个投资项目的利润率分别为投资变量X和Y.根据市场分析,X 和Y的分布列分别为:X5%10%P0.80.2(1)若在A,B两个项目上各投资100万元,ξ和η分别表示投资项目A和B所获得的利润,求方差D(ξ),D(η);(2)若在A,B两个项目上共投资200万元,那么如何分配,能使投资A项目所得利润的方差与投资B项目所得利润的方差的和最小,最小值是多少?[注:D(aX+b)=a2D(X)]解题心得期望与方差的一般计算步骤(1)理解离散型随机变量的意义,写出变量X的所有可能取的值;(2)求X取各个值时的概率,写出分布列;(3)根据分布列,正确运用期望与方差的定义或公式进行计算.若变量X服从二项分布等特殊分布时,期望与方差可直接利用公式求解.【对点训练1】(2020四川宜宾高三诊断,19)某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.(1)若烘焙店一天加工16个这种蛋糕,求当天的利润y(单位:元)关于当天需求量n(单位:个,n ∈N)的函数解析式;(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:①若烘焙店一天加工16个这种蛋糕,X表示当天的利润(单位:元),求X的分布列与数学期望及方差;②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.热点二统计数据及概率在现实决策问题中的应用【例2】(2020山西太原5月模拟,20)为实现2020年全面建设小康社会,某地进行产业的升级改造.经市场调研和科学研判,准备大规模生产某高科技产品的一个核心部件,目前只有甲、乙两种设备可以独立生产该部件.如图是从甲设备生产的该核心部件中随机抽取400个,对其尺寸x进行统计后整理的频率分布直方图.根据行业质量标准规定,该核心部件尺寸x满足:|x-12|≤1为一级品,1<|x-12|≤2为二级品,|x-12|>2为三级品.(1)现根据频率分布直方图中的分组,用分层抽样的方法先从这400个部件中抽取40个,再从所抽取的40个部件中,抽取出所有尺寸x∈[12,15]的部件,再从所有尺寸x∈[12,15]的部件中抽取2件,记ξ为这2个部件中尺寸x∈[14,15]的个数,求ξ的分布列和数学期望;(2)将甲设备生产的部件成箱包装出售时,需要进行检验.已知每箱有100个部件,每个部件的检验费用为50元.检验规定:若检验出三级品需更换为一级或二级品;若不检验,让三级品进入买家,厂家需向买家每个支付200元补偿.现从一箱部件中随机抽检了10个,结果发现有1个三级品.若将甲设备的样本频率作为总体的概率,以厂家支付费用作为决策依据,问是否对该箱中剩余部件进行一一检验?请说明理由;(3)为加大生产力度,厂家需增购设备.已知这种部件的利润如下:一级品的利润为500元/个;二级品的利润为400元/个;三级品的利润为200元/个.乙种设备生产的该部件中一、二、三级品的概率分别是25,12,110.若将甲设备的样本频率作为总体的概率,以厂家的利润作为决策依据,则应选购哪种设备?请说明理由.解题心得利用均值和方差进行决策的方法利用随机变量的均值与方差可以帮助我们作出科学的决策.其中随机变量ξ的均值的意义在于描述随机变量的平均程度,而方差则描述了随机变量稳定与波动或集中与分散的状况.品种的优劣、仪器的好坏、预报的准确与否、机器的性能好坏等很多指标都与这两个特征量有关.(1)若我们希望实际的平均水平较理想时,则先求随机变量ξ1,ξ2的均值.当E(ξ1)=E(ξ2)时,不应误认为它们一样好.需要用D(ξ1),D(ξ2)来比较这两个随机变量的偏离程度.(2)若我们希望比较稳定时,应先考虑方差,再考虑均值是否相等或者接近.【对点训练2】(2020广东惠州一模,20)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:。
概率论与数理统计教案-随机变量及其分布
概率论与数理统计教案-随机变量及其分布一、教学目标1. 了解随机变量的概念及其重要性。
2. 掌握随机变量的分布函数及其性质。
3. 学习离散型随机变量的概率分布及其数学期望。
4. 理解连续型随机变量的概率密度及其数学期望。
5. 能够运用随机变量及其分布解决实际问题。
二、教学内容1. 随机变量的概念及分类。
2. 随机变量的分布函数及其性质。
3. 离散型随机变量的概率分布:二项分布、泊松分布、超几何分布等。
4. 连续型随机变量的概率密度:正态分布、均匀分布、指数分布等。
5. 随机变量的数学期望及其性质。
三、教学方法1. 采用讲授法,系统地介绍随机变量及其分布的概念、性质和计算方法。
2. 利用案例分析,让学生了解随机变量在实际问题中的应用。
3. 借助数学软件或图形计算器,直观地展示随机变量的分布情况。
4. 开展小组讨论,培养学生合作学习的能力。
四、教学准备1. 教学PPT课件。
2. 教学案例及实际问题。
3. 数学软件或图形计算器。
4. 教材、辅导资料。
五、教学过程1. 导入:通过生活实例引入随机变量的概念,激发学生的学习兴趣。
2. 讲解随机变量的定义、分类及其重要性。
3. 讲解随机变量的分布函数及其性质,引导学生理解分布函数的概念。
4. 讲解离散型随机变量的概率分布,结合实例介绍二项分布、泊松分布、超几何分布等。
5. 讲解连续型随机变量的概率密度,介绍正态分布、均匀分布、指数分布等。
6. 讲解随机变量的数学期望及其性质,引导学生掌握数学期望的计算方法。
7. 案例分析:运用随机变量及其分布解决实际问题,提高学生的应用能力。
8. 课堂练习:布置适量练习题,巩固所学知识。
10. 作业布置:布置课后作业,巩固课堂所学。
六、教学评估1. 课堂提问:通过提问了解学生对随机变量及其分布的理解程度。
2. 课堂练习:检查学生解答练习题的情况,评估学生对知识的掌握程度。
3. 课后作业:布置相关作业,收集学生作业情况,评估学生对知识的运用能力。
高中数学备课教案概率与统计中的随机变量分布
高中数学备课教案概率与统计中的随机变量分布高中数学备课教案概率与统计中的随机变量分布一、引言概率与统计是数学中重要的一部分,它研究了各种随机事件或现象,并通过数学模型描述和分析它们。
在概率与统计的学习中,随机变量分布是一个核心概念,它用于描述随机变量取各个值的可能性。
本教案将重点介绍概率与统计中的随机变量分布。
二、背景知识在讲解随机变量分布之前,我们需要了解一些基本的背景知识。
首先,随机变量是指在随机试验中可能取不同值的变量。
它可以分为离散随机变量和连续随机变量两种。
其次,概率密度函数是用来描述连续随机变量分布规律的函数,而概率质量函数则是用来描述离散随机变量分布规律的函数。
三、离散随机变量分布离散随机变量分布是指离散随机变量在各个取值上的概率分布情况。
常见的离散随机变量分布有伯努利分布、二项分布、泊松分布等。
1. 伯努利分布伯努利分布是最简单的离散随机变量分布,它只有两个可能的取值,通常记为0和1。
比如投掷一枚硬币的结果就可以用伯努利分布来描述,0代表出现反面,1代表出现正面。
伯努利分布的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中p为取值为1的概率。
2. 二项分布二项分布是一种重要的离散随机变量分布,它描述了在n次独立重复试验中成功的次数。
比如投掷一个硬币3次,出现正面的次数可以用二项分布来描述。
二项分布的概率质量函数为:P(X=k) = C(n,k) *p^k * (1-p)^(n-k),其中C(n,k)是组合数。
3. 泊松分布泊松分布是一种描述单位时间或单位空间内随机事件发生次数的分布。
比如单位时间内接到的短信数量、单位空间内的交通事故数量等都可以用泊松分布来描述。
泊松分布的概率质量函数为:P(X=k) =(λ^k * e^(-λ))/k!,其中λ为单位时间或单位空间内事件的平均发生率。
四、连续随机变量分布连续随机变量分布是指连续随机变量在取值范围内的概率分布情况。
高中数学高考二轮复习随机变量及其分布列教案(全国专用)
1.(2014·课标Ⅱ,5,易)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6.已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.451.A设“一天的空气质量为优良”为事件A,“连续两天为优良”为事件AB,则已知某天的空气质量为优良,随后一天的空气质量为优良的概率为P(B|A).由条件概率可知,P(B|A)=P(AB)P(A)=0.60.75=45=0.8,故选A.2.(2015·湖南,18,12分,中)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X .求X 的分布列和数学期望.2.解:(1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球}, B 1={顾客抽奖1次获一等奖}, B 2={顾客抽奖1次获二等奖}, C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2) =25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15. 于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.3.(2014·山东,18,12分,中)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.3.解:记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.(1)记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,得 P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3)=12×15+13×15+16×35+16×15=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16, P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+15×16=215, P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130, P (ξ=6)=P (A 3B 3)=12×15=110. 可得随机变量ξ的分布列为所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.4.(2013·课标Ⅰ,19,12分,中)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 4.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=416×116+116×12=364.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为E(X)=400×1116+500×116+800×14=506.25.相互独立事件的概率是高考的常考考点,是解决复杂问题的基础,一般情况下,一些较为复杂的事件可以拆分为一些相对简单事件的和或积,这样就可以利用概率公式转化为互斥事件和独立事件的组合,通常以解答题出现,与数学期望等知识结合,难度中等.1(2015·北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)(1)甲的康复时间不少于14天→甲是A组的第5人或第6人或第7人→每人康复时间互斥→互斥事件概率加法公式 (2)甲康复时间比乙长→相互独立事件同时发生→列举每种情况→互斥事件加法求解【解析】 设事件A i 为“甲是A 组的第i 个人”,事件B j 为“乙是B 组的第j 个人”,i ,j =1,2, (7)由题意可知P (A i )=P (B j )=17,i ,j =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知,C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6. 因为P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049. (3)a =11或a =18.(2014·大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立. (1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解:设A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1BC +A 2B +A 2B -C , P (B )=0.6,P (C )=0.4, P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1BC +A 2B +A 2B -C )=P (A 1BC )+P (A 2B )+P (A 2B -C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B -)P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,则有P (X =0)=P (B -A 0C -)=P (B -)P (A 0)P (C -)=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (BA 0C -+B -A 0C +B -A 1C -)=P (B )P (A 0)P (C -)+P (B -)P (A 0)P (C )+P (B -)P (A 1)P (C -)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2BC )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38, X 的分布列为数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.相互独立事件概率的求法(1)首先要搞清事件间的关系(是否彼此互斥、是否相互独立、是否对立),正确区分“互斥事件”与“对立事件”.当且仅当事件A 和事件B 相互独立时,才有P (AB )=P (A )·P (B ).(2)A ,B 中至少有一个发生:A ∪B .①若A ,B 互斥:P (A ∪B )=P (A )+P (B ),否则不成立.②若A ,B 相互独立(不互斥),则概率的求法:方法一:P (A ∪B )=P (AB )+P (AB -)+P (A -B );方法二:P (A ∪B )=P (A )+P (B )-P (AB )=1-P (A -)P (B -).(3)某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.条件概率在高考中经常作为解答题的一小问,或以选择题、填空题出现,难度较小,一般以直接考查公式的应用为主,分值约为5分.2(2015·湖北荆门模拟,20,12分)某工厂生产了一批产品共有20件,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件.求: (1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.【解析】 设“第一次抽到次品”为事件A ,“第二次抽到次品”为事件B ,事件A 和事件B 相互独立.依题意得:(1)第一次抽到次品的概率为P (A )=520=14. (2)第一次和第二次都抽到次品的概率为P (AB )=520×419=119.(3)方法一:在第一次抽到次品的条件下,第二次抽到次品的概率为P (B |A )=P (AB )P (A )=119÷14=419.方法二:第一次抽到次品后,还剩余产品19件,其中次品4件,故第二次抽到次品的概率为P (B )=419.(2015·湖北荆州质检,13)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 【解析】 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37. 【答案】 37,条件概率的求法(1)利用定义,分别求P (A )和P (AB ),得P (B |A )=P (AB )P (A ).注意:事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清P (AB )的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再在事件A 发生的条件下求事件B 包含的基本事件数,即n (AB ),得P (B |A )=n (AB )n (A ).1.(2016·湖北荆门一模,6)把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.181.A 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·河北石家庄质检,9)小明准备参加电工资格考试,先后进行理论考试和操作考试两个环节,每个环节各有两次考试机会,在理论考试环节,若第一次考试通过,则直接进入操作考试;若第一次未通过,则进行第二次考试,若第二次考试通过则进入操作考试环节,第二次未通过则直接被淘汰.在操作考试环节,若第一次考试通过,则直接获得证书;若第一次未通过,则进行第二次考试,若第二次考试通过则获得证书,第二次未通过则被淘汰.若小明每次理论考试通过的概率为34,每次操作考试通过的概率为23,并且每次考试相互独立,则小明本次电工考试中共参加3次考试的概率是( ) A.13 B.38 C.23 D.342.B 设小明本次电工考试中共参加3次考试为事件A ,小明本次电工考试中第一次理论考试没通过,第二次理论考试通过,第一次操作考试通过为事件B ,小明本次电工考试中第一次理论考试通过,第一次操作考试没通过为事件C ,则P (A )=P (B ∪C )=P (B )+P (C ),又P (B )=⎝ ⎛⎭⎪⎫1-34×34×23=18,P (C )=34×⎝ ⎛⎭⎪⎫1-23=14,所以P (A )=18+14=38.3.(2015·河南郑州一模,10)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则从2号箱取出红球的概率是( ) A.1127 B.1124 C.1627 D.9243.A 方法一:记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知:P (B )=42+4=23,P (B -)=1-23=13;由条件概率公式知P (A |B )=3+18+1=49,P (A |B -)=38+1=39.从而P (A )=P (AB )+P (AB -)=P (A |B )·P (B )+P (A |B -)·P (B -)=1127,选A.方法二:根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为26=13,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为13,则这种情况下的概率为13×13=19.②从1号箱中取出红球,其概率为23.此时2号箱中有5个白球和4个红球,从2号箱中取出红球的概率为49,则这种情况下的概率为23×49=827.则从2号箱中取出红球的概率是19+827=1127.4.(2016·江苏扬州一模,4)在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为________.4.【解析】 方法一:不妨设甲先抽奖,设甲中奖记为事件A ,乙中奖记为事件B ,两人都中奖的概率为P ,则P =P (AB )=23×12=13.方法二:甲乙从三张奖券中抽两张的方法有A 23=6种,两人都中奖的可能有2种,设两人都中奖的概率为P ,则P =26=13. 【答案】 135.(2016·江苏盐城二模,10)如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.5.【解析】 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件AB -C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (AB -C )=P (A )P (B -)P (C )=12×12×12=18.【答案】 186.(2016·湖南常德一模,18,12分)某旅游景点,为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12;2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.(1)求甲、乙两人所付租车费用相等的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望. 6.解:(1)甲、乙所付费用可以为10元、20元、30元, 甲、乙两人所付费用都是10元的概率为P 1=13×12=16. 甲、乙两人所付费用都是20元的概率为P 2=12×13=16.甲、乙两人所付费用都是30元的概率为P 3=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故甲、乙两人所付费用相等的概率为P =P 1+P 2+P 3=1336. (2)随机变量ξ的取值可以为20,30,40,50,60. P (ξ=20)=12×13=16. P (ξ=30)=13×13+12×12=1336.P (ξ=40)=12×13+⎝ ⎛⎭⎪⎫1-12-13×13+⎝ ⎛⎭⎪⎫1-13-12×12=1136.P (ξ=50)=12×⎝ ⎛⎭⎪⎫1-12-13+⎝ ⎛⎭⎪⎫1-13-12×13=536. P (ξ=60)=⎝ ⎛⎭⎪⎫1-13-12×⎝ ⎛⎭⎪⎫1-12-13=136.故ξ的分布列为∴ξ的数学期望是Eξ=20×16+30×1336+40×1136+50×536+60×136=35. 7.(2016·山东德州一模,18,12分)某科技公司组织技术人员进行新项目研发,技术人员将独立地进行项目中不同类型的实验A ,B ,C ,若A ,B ,C 实验成功的概率分别为45,34,23.(1)对A ,B ,C 实验各进行一次,求至少有一次实验成功的概率;(2)该项目要求实验A ,B 各做两次,实验C 做三次,如果A 实验两次都成功则进行实验B 并获奖励10 000元,两次B 实验都成功则进行实验C 并获奖励30 000元,三次实验C 只要有两次成功,则项目研发成功并获奖励60 000元(不重复得奖).且每次实验相互独立,用X 表示技术人员所获奖励的数值,写出X 的分布列及数学期望.7.解:(1)设A ,B ,C 实验成功分别记为事件A ,B ,C 且相互独立,A ,B ,C 至少有一次实验成功为事件D .则P (D )=1-P (A -B -C -)=1-P (A -)P (B -)P (C -)=1-15×14×13=5960.(2)X 的取值为0,10 000,30 000,60 000.则P (X =0)=15+45×15=925.P (X =10 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫14+34×14=725.P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫233-C 23⎝ ⎛⎭⎪⎫232×13=775.或P (X =30 000)=⎝ ⎛⎭⎪⎫452×⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫133+23×⎝ ⎛⎭⎪⎫132+13×23×13=775. P (X =60 000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫233+C 23⎝ ⎛⎭⎪⎫232×13=415.∴X 的分布列为∴X 的数学期望是 E (X )=0×925+10 000×725+30 000×775+60 000×415=21 600(元).1.(2015·湖北,4,易)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D.对任意正数t,P(X≥t)≥P(Y≥t)1.C由正态分布密度曲线可得,μ1<μ2,σ1<σ2.结合正态曲线的概率的几何意义,对于A,∵μ1<μ2,∴P(Y≥μ2)<P(Y≥μ1);对于B,∵σ1<σ2,∴P(X≤σ2)>P(X≤σ1);对于C,D,结合图象可知,C正确.2.(2015·课标Ⅰ,4,中)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3122.A记A i={投中i次},其中i=1,2,3,B表示该同学通过测试,故P(B)=P(A2∪A3)=P(A2)+P(A3)=C23×0.62×0.4+C33×0.63=0.648.3.(2015·湖南,7,中)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2 386 B.2 718C.3 413 D.4 7723.C由于曲线C为正态分布N(0,1)的密度曲线,则阴影部分面积为S=0.682 62=0.341 3,∴落入阴影部分的点的个数为10 000×0.341 31=3 413.故选C.4.(2016·四川,12,易)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.4.【解析】 由题可知:在一次试验中成功的概率P =1-14=34,而该试验是一个2次的独立重复试验,成功次数X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫2,34,∴E (X )=2×34=32.【答案】 325.(2015·广东,13,中)已知随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =________.5.【解析】 由E (X )=np ,D (X )=np (1-p ),得⎩⎨⎧np =30,np (1-p )=20,解得p =13.【答案】 136.(2012·课标全国,15,中)某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.6.【解析】 由题意知每个电子元件使用寿命超过1 000小时的概率均为12,元件1或元件2正常工作的概率为1-12×12=34,所以该部件的使用寿命超过1 000小时的概率为12×34=38.【答案】 387.(2013·山东,19,12分,中)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果相互独立. (1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分,求乙队得分X 的分布列及数学期望.7.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故 P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427.所以,甲队以3∶0胜利、以3∶1胜利的概率为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4, 由题意,各局比赛结果相互独立, 所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意,随机变量X 的所有可能的取值为0,1,2,3, 根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=19, 故乙队得分X 的分布列为数学期望E (X )=0×1627+1×427+2×427+3×19=79.二项分布是一种重要的概率模型,在高考中经常出现,选择题、填空题、解答题都可能出现,解答题出现频率更高,一般会综合相互独立、互斥或对立事件等知识进行考查,难度中等.1(2014·辽宁,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【解析】(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能的取值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216,所以X的分布列为因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.(1)读图→计算小矩形面积,得相应概率→利用独立事件的概率公式求解(2)确定X的所有可能值→运用n次独立重复试验计算公式,得相应概率→列出分布列→利用二项分布求出期望和方差(2012·天津,16,13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).解:依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4), 则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i. (1)这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4,由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231+C 44⎝ ⎛⎭⎪⎫134=19.所以这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19. (3)ξ的所有可能的取值为0,2,4,由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781. 所以ξ的分布列为故E (ξ)=0×827+2×4081+4×1781=14881.n 次独立重复试验中事件A 恰好发生k 次的概率n 次独立重复试验中事件A 恰好发生k 次可看作是C k n 个互斥事件的和,其中每一个事件都可看作是k 个A 事件与n -k 个A -事件同时发生,只是发生的次序不同,其发生的概率都是p k (1-p )n -k .因此n 次独立重复试验中事件A 恰好发生k 次的概率为C k n p k (1-p )n -k.判断某随机变量是否服从二项分布的方法(1)在每一次试验中,事件发生的概率相同. (2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.正态分布及其应用在近几年新课标高考中时常出现,主要考查正态曲线的性质(特别是对称性),常以选择题、填空题的形式出现,难度较小;有时也会与概率与统计结合,在解答题中考查.2(1)(2015·辽宁十校联考,7)设两个正态分布N (μ1,σ21)(σ1>0)和N (μ2,σ22)(σ2>0)的密度函数图象如图所示,则( )A .μ1<μ2,σ1<σ2B .μ1<μ2,σ1>σ2C .μ1>μ2,σ1<σ2D .μ1>μ2,σ1>σ2(2)(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ <μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 【解析】 (1)由正态分布N (μ,σ2)的性质知,x =μ为正态分布密度函数图象的对称轴,故μ1<μ2;又σ越小,图象越高瘦,故σ1<σ2.(2)由正态分布的概率公式知P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,故P(3<ξ<6)=12[] P(-6<ξ<6)-P(-3<ξ<3)=12(95.44%-68.26%)=13.59%.【答案】(1)A(2)B1.(2015·广东佛山一模,7)已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=()A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 51.B由正态曲线性质知,其图象关于直线x=3对称,∴P(X>4)=1-P(2≤X≤4)2=0.5-12×0.682 6=0.158 7,故选B.2.(2016·江西八校联考,6)在某次数学测试中,学生成绩ξ服从正态分布N(100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.22.B由题意得,P(80<ξ<100)=P(100<ξ<120)=0.4,P(0<ξ<100)=0.5,∴P(0<ξ<80)=0.1.,利用正态曲线的对称性求概率的方法(1)解题的关键是利用对称轴x=μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时,可借助图形判断.(2)对于正态分布N(μ,σ2),由x=μ是正态曲线的对称轴知:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).(3)对于特殊区间求概率一定要掌握服从N(μ,σ2)的随机变量X在三个特殊区间的取值概率,将所求问题向P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)转化,然后利用特定值求出相应概率.同时,要充分利用正态曲线的对称性和曲线与x轴之间的面积为1这些特殊性质.1.(2016·贵州八校联考,3)设随机变量ξ~N(2,4),若P(ξ>a+2)=P(ξ<2a-3),则实数a的值为()A .1 B.53 C .5 D .91.B 因为P (ξ>a +2)=P (ξ<2a -3),所以由正态分布的对称性知,(a +2)+(2a -3)2=2,解得a =53.2.(2015·河南郑州二模,9)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.429 D.2272.A 由独立重复试验的概率公式,知所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49. 3.(2015·福建福州模拟,5)已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.9773.C ∵μ=0,正态曲线关于μ=0对称, ∴P (ξ>2)=P (ξ<-2)=0.023,∴P (-2≤ξ≤2)=1-2×0.023=0.954,故选C.4.(2015·豫北六校联考,10)设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454,则n 与p 的值分别为( ) A .60,34 B .60,14 C .50,34 D .50,144.B 由ξ~B (n ,p ),得E (ξ)=np =15,D (ξ)=np (1-p )=454,则p =14,n =60. 5.(2016·山西四校联考,14)设随机变量X ~N (3,σ2),若P (X >m )=0.3,则P (X >6-m )=________.5.【解析】 因为P (X >m )=0.3,X ~N (3,σ2),所以m >3,P (X <6-m )=P (X <3-(m -3))=P (X >m )=0.3,所以P (X >6-m )=1-P (X <6-m )=0.7.【答案】 0.76.(2016·河北唐山一模,18,12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个,记乙所得红包的总钱数为X (单位:元),求X 的分布列和期望.6.解:(1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49. (2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝ ⎛⎭⎪⎫233=827,P (X =5)=C 12×13×⎝ ⎛⎭⎪⎫232=827,P (X =10)=⎝ ⎛⎭⎪⎫132×23+⎝ ⎛⎭⎪⎫232×13=627=29.P (X =15)=C 12×⎝ ⎛⎭⎪⎫132×23=427, P (X =20)=⎝ ⎛⎭⎪⎫133=127.所以X 的分布列为E (X )=0×827+5×827+10×29+15×427+20×127=203(元).7.(2016·江西南昌一模,18,12分)某市教育局为了了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取三位同学.(1)求抽到的三位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]各有一位同学的概率;(2)记抽到的三位同学该次体能测试成绩在区间[75,85]的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.7.解:(1)P(80≤X<85)=P(75<X≤80)=0.5-P(X≤75)=0.2,P(85≤X<95)=0.5-0.2-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75≤X≤85)=1-2P(X<75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列是E(ξ)=3×0.4=1.2(人).1.(2013·广东,4,易)已知离散型随机变量X的分布列为则X的数学期望E(X)=()A.32B.2 C.52D.31.A由数学期望公式得E(X)=1×35+2×310+3×110=32.2.(2014·浙江,9,难)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n 个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(1)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(2)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2) 2.A 随机变量ξ1,ξ2的分布列如下:所以E (ξ1)=n m +n +2m m +n =2m +nm +n, E (ξ2)=C 2n C 2m +n +2C 1m C 1n C 2m +n +3C 2mC 2m +n =3m +n m +n,所以E (ξ1)<E (ξ2).因为p 1=m m +n +n m +n ·12=2m +n 2(m +n ),p 2=C 2m C 2m +n +C 1m C 1n C 2m +n ·23+C 2nC 2m +n ·13=3m +n 3(m +n ),p 1-p 2=n 6(m +n )>0,所以p 1>p 2.思路点拨:列出随机变量ξ1,ξ2的分布列,计算期望值并比较大小;利用分步计数原理计算p 1,p 2并比较大小.3.(2014·浙江,12,易)随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.3.【解析】 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝ ⎛⎭⎪⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.【答案】 254.(2016·课标Ⅰ,19,12分,中)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需要更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?4.解:由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.5.(2016·天津,16,13分,中)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.5.解:(1)由已知,得P(A)=C13C14+C23C210=13.所以,事件A发生的概率为1 3.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的分布列为随机变量X的数学期望EX=0×415+1×715+2×415=1.6.(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮。
2024届新教材高考数学二轮复习 概率 课件(69张)
A.15
B.13
C.25
D.23
【解析】 从 6 张卡片中无放回抽取 2 张,共有(1,2),(1,3),(1,4),
(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),
(5,6),15 种情况,其中数字之积为 4 的倍数的有(1,4),(2,4),(2,6),(3,4),
2.古典概型 一般地,设试验 E 是古典概型,样本空间 Ω 包含 n 个样本点,事件 A 包含其中的 k 个样本点,则定义事件 A 的概率 P(A)=nk=nnΩA. 其中,n(A)和 n(Ω)分别表示事件 A 和样本空间 Ω 包含的样本点个数.
多 维 题 组·明 技 法
角度1:随机事件的关系 1. (2023·柳州模拟)从数学必修一、二和政治必修一、二共四本书中 任取两本书,那么互斥而不对立的两个事件是( D ) A.至少有一本政治与都是数学 B.至少有一本政治与都是政治 C.至少有一本政治与至少有一本数学 D.恰有1本政治与恰有2本政治
A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率 为(1-α)(1-β)2
B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1- β)2
C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1 -β)3
D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率 大于采用单次传输方案译码为0的概率
【解析】 由题意可得事件1表示{1,3,5},事件2表示{2,4,6},事件3 表示{4,5,6},事件4表示{1,2},所以事件1与事件2为对立事件,事件1与 事件3不互斥,事件2与事件3不互斥,事件3与事件4互斥不对立,故选 项A,C,D错误,选项B正确.故选B.
高考数学大二轮复习专题六统计与概率6.3.2随机变量及其分布课件理
平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比
较分散.
-4-
考向一
考向二
考向三
考向四
(2)记CA1表示事件:“A地区用户的满意度等级为满意或非常满意”;
CA2表示事件:“A地区用户的满意度等级为非常满意”;
CB1表示事件:“B地区用户的满意度等级为不满意”;
6.3.2 随机变量及其散布
考向一
考向二
考向三
考向四
根据频率求概率的综合问题
例1某公司为了解用户对其产品的满意度,从A,B两地区分别随机
调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
所以
P(A)=C32
1 22
3 3
=
2
.
9
(2)X 的可能取值为 2 000,2 200,2 400,2 600,2 800,3 000,3
1
6
1
6
200,P(X=2 000)= × =
1
1
1
1
2
1
,P(X=2
36
1
6
1
3
1
9
200)= × ×2= ,P(X=2
1
1
1
400)=6 × 3 ×2+3 × 3 = 9,P(X=2 600)=3 × 3 ×2+6 ×
-20-
考向一
考向二
考向三
考向四
类型2 超几何散布
例3(202X北京东城一模,理16)改革开放40年来,体育产业蓬勃发
新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件
C 15 C 110
取法,所求概率为 2
C 15
=
50
105
=
10
.
21
4.(2021江西萍乡高三检测,8)算盘是中国传统的计算工具,其形长方,周为
木框,内贯直柱,俗称“档〞,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每
珠作数一.算珠梁上局部叫上珠,梁下局部叫下珠.例如:在十位档拨上一颗
=
4
4
P(B|A2)= ,P(B|A3)= ,而
11
11
1
3
,P(A3)= ;P(B|A1)=
5
10
=
5
,由此知选项
11
B 正确.
P(B)=P(A1B)+P(A2B)+P(A3B)
1
=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2
此知选项 AC 不正确.
1 5
×
2 11
1
2
×
5
11
1
+5
×
4
11
+
3
10
×
4
11
=
9
.由
22
考向四
相互独立事件及二项分布
10.(2021天津,13)甲、乙两球落入盒子的概率分别为
落入盒子互不影响,那么甲、乙两球都落入盒子的概率为
乙两球至少有一个落入盒子的概率为
答案
1
6
1 1
.假定两球是否
和
2 3
;甲、
.
2
3
解析 两球都落入
1
p1=2
1
2 2
二轮复习高考大题专项(六)概率与统计课件(81张)
提升,甚至放在后两道解答题位置,综合性较强.但实施新高考后,因为文理
同卷,难度又回到中等.
【典例剖析】
题型一
相关关系的判断及回归分析
【例1】 某基地蔬菜大棚采用无土栽培方式种
植各类蔬菜.根据过去50周的资料显示,该基地
周光照量X(单位:小时)都在30小时以上,其中不
6
=
C 24
P(ξ=0)= 2
C6
=
6
15
=
2
C 12 C 14
,P(ξ=1)= 2
5
C6
1
,
15
故 ξ 的分布列为
ξ
0
1
2
P(ξ)
2
5
8
15
1
15
=
8
,
15
^
^
^
(2)由散点图可知 = bz+更适合于此模型.其中
6
^
∑ -6
= =16
2
∑ 2 -6
=
^
-1.07
参考数据:
α
xα
0.05
3.841
0.01
6.635
2
(
-
)
参考公式:χ2=
.
(+)(+)(+)(+)
0.005
7.879
0.001
10.828
解 (1)由统计表可得,低于45岁人数为70人,不低于45岁人数为30人,
可得列联表如下
是否使用手机支付
年龄低于45岁
使用
60
不使用
X>70时,只有1台光照控制仪运行,此时周总利润
2021新高考数学二轮总复习学案:6.4.2 随机变量及其分布含解析
6.4.2随机变量及其分布必备知识精要梳理1.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.2.二项分布一般地,在n次独立重复试验中,事件A发生的次数为X,设每次试验中事件A发生的概率为p,则P(X=k)=p k q n-k,其中0<p<1,p+q=1,k=0,1,2,…,n,称X服从参数为n,p的二项分布,记作X~B(n,p),且E(X)=np,D(X)=np(1-p).3.正态分布一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=φμ,σ(x)d x,则称X的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N(μ,σ2).如果随机变量X服从正态分布,则记为X~N(μ,σ2).满足正态分布的三个基本概率的值是:①P(μ-σ<X≤μ+σ)=0.682 6;②P(μ-2σ<X≤μ+2σ)=0.954 4;③P(μ-3σ<X≤μ+3σ)=0.997 4.4.离散型随机变量的分布列设离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,.X x1x2x3…x i…x nP p1p2p3…p i…p n关键能力学案突破热点一依据频率求概率的综合问题【例1】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2):满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解题心得频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率,在实际问题中,常用事件发生的频率作为概率的估计值.频率本身是随机的,而概率是一个确定的数,是客观存在的,因此概率与每次试验无关.(1)利用基本概念:①互斥事件不可能同时发生;②对立事件是互斥事件,且必须有一个要发生.(2)利用集合的观点来判断:设事件A与B所含的结果组成的集合分别是A,B,全集为I.①事件A与B互斥,即集合A∩B=⌀;②事件A与B对立,即集合A∩B=⌀,且A∪B=I,也即A=∁I B 或B=∁I A.(3)对立事件是针对两个事件来说的,而互斥事件则可以是多个事件间的关系.(4)如果A1,A2,…,A n中任何两个都是互斥事件,那么我们就说A1,A2,…,A n彼此互斥.(5)若事件A1,A2,A3,…,A n彼此互斥,则P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).应用互斥事件的概率加法公式解题时,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率,可以转化为求其对立事件的概率.(6)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(。
2021届高考数学二轮复习专题四概率与统计第2讲概率、随机变量及其分布列学案理
第2讲 概率、随机变量及其分布列高考定位 1.计数原理、古典概型、几何概型的考察多以选择或填空的形式命题,中低档难度;2.概率模型多考察独立重复试验、相互独立事件、互斥事件及对立事件等;对离散型随机变量的分布列及期望的考察是重点中的“热点〞,多在解答题的前三题的位置呈现,常考察独立事件的概率,超几何分布和二项分布的期望等.真 题 感 悟1.(2021·全国Ⅱ卷)我国数学家陈景润在哥德巴赫猜测的研究中取得了世界领先的成果.哥德巴赫猜测是“每个大于2的偶数可以表示为两个素数的和〞,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A.112B.114C.115D.118解析 不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C 210种不同的取法,其中两素数相加等于30的有7和23,11和19,13和17,共有3种情况,所以所求概率P =3C 210=115,应选C. 答案 C2.(2021·全国Ⅰ卷)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色局部记为Ⅱ,其余局部记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,那么( )A.p 1=p 2B.p 1=p 3C.p 2=p 3D.p 1=p 2+p 3解析 不妨设△ABC 为等腰直角三角形,AB =AC =2,那么BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅲ的面积S 3=π×〔2〕22-S 1Ⅱ的面积为S 2=π·⎝ ⎛⎭⎪⎫222-S 3=2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,应选A.答案 A3.(2021·全国Ⅰp (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.每件产品的检验费用为2元,假设有不合格品进入用户手中,那么工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)假设不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求E (X );(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 解 (1)由题意知,20件产品中恰有2件不合格品的概率为f (p )=C 220p 2(1-p )18. 因此f ′(p )=C 220[2p (1-p )18-18p 2(1-p )17] =2C 220p (1-p )17(1-10p ). 令f ′(p )=0,得p =0.1.当p ∈(0,0.1)时,f ′(p )>0,f (p )单调递增; 当p ∈(0.1,1)时,f ′(p )<0,f (p )单调递减. 所以f (p )的最大值点为p 0=0.1. (2)由(1)知,p =0.1.(ⅰ)令Y 表示余下的180件产品中的不合格品件数,依题意知Y ~B (180,0.1),X =20×2+25Y ,即X =40+25Y .所以E (X )=E (40+25Y )=40+25E (Y )=40+25×180×0.1=490.(ⅱ)如果对余下的产品作检验,那么这一箱产品所需要的检验费为400元. 由于E (X )>400,故应该对余下的产品作检验.考 点 整 合(1)古典概型的概率公式.P (A )=m n =事件A 中所含的根本领件数试验的根本领件总数.(2)几何概型的概率公式.P (A )=构成事件A 的区域长度〔面积或体积〕试验的全部结果所构成的区域长度〔面积或体积〕.(3)条件概率.在A 发生的条件下B 发生的概率:P (B |A )=P 〔AB 〕P 〔A 〕.(4)相互独立事件同时发生的概率:假设A ,B 相互独立,那么P (AB )=P (A )·P (B ). (5)假设事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ),P (A -)=1-P (A ).如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k )=C k n p k(1-p )n -k,k =0,1,2,…,n .用X 表示事件A 在n 次独立重复试验中发生的次数,那么X 服从二项分布,即X ~B (n ,p )且P (X =k )=C k n p k(1-p )n -k.在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,那么P (X =k )=C k M C n -kN -MC n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . 4.离散型随机变量的均值、方差 (1)离散型随机变量ξ的分布列为ξ x 1 x 2 x 3 … x i … n Pp 1p 2p 3…p i…p n离散型随机变量ξ的分布列具有两个性质:①p i ≥0; ②p 1+p 2+…+p i +…+p n =1(i =1,2,3,…,n ).(2)E (ξ)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量ξ的数学期望或均值.D (ξ)=(x 1-E (ξ))2·p 1+(x 2-E (ξ))2·p 2+…+(x i -E (ξ))2·p i +…+(x n -E (ξ))2·p n 叫做随机变量ξ的方差.(3)数学期望、方差的性质.①E (aξ+b )=aE (ξ)+b ,D (aξ+b )=a 2D (ξ). ②X ~B (n ,p ),那么E (X )=np ,D (X )=np (1-p ). ③X 服从两点分布,那么E (X )=p ,D (X )=p (1-p ).热点一 古典概型与几何概型【例1】 (1)(2021·太原二模)某商场举行有奖促销活动,抽奖规那么如下:箱子中有编号为1,2,3,4,5的五个形状、大小完全一样的小球,从中任取两球,假设摸出的两球号码的乘积为奇数,那么中奖;否那么不中奖.那么中奖的概率为( ) A.110B.15C.310D.25(2)(2021·湖南师大附中联考)太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被y =3sin π4x 的图象分割为两个对称的鱼形图案(如下图).其中小圆的半径均为1,现在大圆内随机取一点,那么此点取自阴影局部的概率为________.解析 (1)从5个球中,任取两球有C 25=10种情况,其中两球编号乘积为奇数有C 23=3种情况.∴所求事件的概率P =310.(2)依题意,大圆的直径为y =3sin π4x 的最小正周期T =8.∴大圆的面积S =π⎝ ⎛⎭⎪⎫822S 0=π×12P =2S 0S =2π16π=18.答案 (1)C (2)18探究提高 1.求古典概型的概率,关键是正确求出根本领件总数和所求事件包含的根本领件总数.常常用到排列、组合的有关知识,计数时要正确分类,做到不重不漏.2.计算几何概型的概率,构成试验的全部结果的区域和事件发生的区域的寻找是关键,有时需要设出变量,在坐标系中表示所需要的区域.【训练1】 (1)(2021·全国Ⅰ卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是( ) A.13B.12C.23D.34(2)(2021·郑州质检)现有大小形状完全一样的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球任意排成一排,那么中间2个小球不都是红球的概率为( ) A.16B.13C.56D.23解析 (1)如下图,画出时间轴:小明到达的时间会随机的落在图中线段AB 上,当他的到达时间落在线段AC 或DB 上时,才能保证他等车的时间不超过10分钟,根据几何概型所求概率P =10+1040=12.(2)设“4个小球排成一排,中间2个小球不都是红球〞为事件A .那么A -表示事件“中间2个球都是红球〞,易知P (A -)=A 22A 24=212=16,故P (A )=1-P (A -)=56.答案 (1)B (2)C热点二 互斥事件、相互独立事件的概率 考法1 互斥条件、条件概率【例2-1】 (2021·全国Ⅱ卷选编)某险种的根本保费为a (单位:元),继续购置该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数1234≥5 保费a a a a a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数1234≥5 概率(1)求一续保人本年度的保费高于根本保费的概率;(2)假设一续保人本年度的保费高于根本保费,求其保费比根本保费高出60%的概率. 解 (1)设A 表示事件:“一续保人本年度的保费高于根本保费〞,那么事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.20+0.20+0.10+0.05=0.55.(2)设B 表示事件:“一续保人本年度的保费比根本保费高出60%〞,那么事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.10+0.05=0.15. 又P (AB )=P (B ), 故P (B |A )=P 〔AB 〕P 〔A 〕=P 〔B 〕P 〔A 〕=错误!=错误!.因此所求概率为311.考法2 相互独立事件与独立重复试验的概率【例2-2】 (2021·衡水中学调研)多家央企为了配合国家战略支持雄安新区建立,纷纷申请在新区建立分公司.假设规定每家央企只能在雄县、容城、安新3个片区中的一个片区设立分公司,且申请其中任一个片区设立分公司都是等可能的,每家央企选择哪个片区相互之间互不影响且必须在其中一个片区建立分公司.向雄安新区申请建立分公司的任意4家央企中,(1)求恰有2家央企申请在“雄县〞片区建立分公司的概率;(2)用X 表示这4家央企中在“雄县〞片区建立分公司的个数,用Y 表示在“容城〞或“安新〞片区建立分公司的个数,记ξ=|X -Y |,求ξ的分布列.解 (1)法一 依题意,每家央企在“雄县〞片区建立分公司的概率为13,去另外两个片区建立分公司的概率为23,这4家央企恰有2家央企在“雄县〞片区建立分公司的概率为P =C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-132=827.法二 所有可能的申请方式有34种,恰有2家央企申请在“雄县〞片区建立分公司的方式C 24·22种,从而恰有2家央企在“雄县〞片区建立分公司的概率为P =C 24·2234=827.(2)由题意知,X ~B ⎝ ⎛⎭⎪⎫4,13, 那么P (X =k )=C k 4⎝ ⎛⎭⎪⎫13k·⎝ ⎛⎭⎪⎫1-134-k(k =0,1,2,3,4),随机变量ξ的所有可能取值为0,2,4.P (ξ=0)=P (X =2)=827,P (ξ=2)=P (X =1)+P (X =3)=4081, P (ξ=4)=P (X =0)+P (X =4)=1781.所以随机变量ξ的分布列为探究提高 1.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件是能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.2.(1)注意区分独立重复试验的根本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率一样. (2)牢记公式P n (k )=C k n p k(1-p )n -k,k =0,1,2,…,n ,并深刻理解其含义.【训练2】 (2021·天津卷)某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进展睡眠时间的调查. (1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)假设抽出的7人中有4人睡眠缺乏,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X 表示抽取的3人中睡眠缺乏的员工人数,求随机变量X 的分布列与数学期望; ②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠缺乏的员工〞,求事件A 发生的概率.解 (1)由题意得,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)①随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4·C 3-k3C 37(k =0,1,2,3). 那么P (X =0)=C 33C 37=135,P (X =1)=C 23C 14C 37=1235,P (X =3)=C 34C 37=435,那么P (X =2)=1-135-1235-435=1835,所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×135+1×1235+2×1835+3×435=127.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠缺乏的员工有2人〞;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠缺乏的员工有1人〞,那么A =B ∪C ,且B 与C ①知,P (B )=P (X =2),P (C )=P (X =1),故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以,事件A 发生的概率为67.热点三 随机变量的分布列、均值与方差考法1 超几何分布【例3-1】 (2021·西安调研)4月23日是“世界读书日〞,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率; (2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用X 表示抽得甲组学生的人数,求X 的分布列和数学期望.解 (1)由得,问卷调查中,从四个小组中抽取的人数分别为3,4,2,1, 从参加问卷调查的10名学生中随机抽取两名的取法共有C 210=45种, 这两名学生来自同一小组的取法共有C 23+C 24+C 22=10, 所以P =1045=29.(2)由(1)知,在参加问卷调查的10名学生中,来自甲、丙两小组的学生人数分别为3,2.X 的可能取值为0,1,2.那么P (X =k )=C k 3·C 2-k2C 25(k =0,1,2). ∴P (X =0)=C 22C 25=110,P (X =1)=C 13C 12C 25=35,P (X =2)=C 23C 25=310.那么随机变量X 的分布列为故E (X )=0×110+1×35+2×310=65.探究提高 1.求离散型随机变量的分布列的关键是正确理解随机变量取每一个值所表示的具体事件,然后综合应用各类求概率的公式,求出概率.X ,如果能够断定它服从超几何分布H (N ,M ,n ),那么其概率可直接利用公式P (X =k )=C k M C n -kN -MC nN (k =0,1,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *).A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人承受甲种心理暗示,另5人承受乙种心理暗示.(1)求承受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示承受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ). 解 (1)记承受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 那么P (M )=C 48C 510=518.(2)由题意知X 可取的值为:0,1,2,3,4,那么 P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 0 1 2 3 4 P1425211021521142X 的数学期望是E (X )=0×142+1×521+2×1021+3×521+4×142=2.考法2 与独立重复试验有关的分布列【例3-2】 (2021·潍坊一模)某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进展检测.现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数μ=14,标准差σ=2,绘制如下图的频率分布直方图.以频率值作为概率估计值.(1)从该生产线加工的产品中任意抽取一件,记其数据为X ,依据以下不等式评判(P 表示对应事件的概率):①P (μ-σ<X <μ+σ)≥0.682 6; ②P (μ-2σ<X <μ+2σ)≥0.954 4; ③P (μ-3σ<X <μ+3σ)≥0.997 4.评判规那么为:假设至少满足以上两个不等式,那么生产状况为优,无需检修;否那么需检修生产线,试判断该生产线是否需要检修;(2)将数据不在(μ-2σ,μ+2σ)内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为Y ,求Y 的分布列与数学期望E (Y ). 解 (1)由题意知,μ=14,σ=2,由频率分布直方图得P (μ-σ<X <μ+σ)=P (12<X <16)=(0.29+0.11)×2=0.8>0.682 6, P (μ-2σ<X <μ+2σ)=P (10<X <18)=0.8+(0.04+0.03)×2=0.94<0.954 4, P (μ-3σ<X <μ+3σ)=P (8<X <20)=0.94+(0.015+0.005)×2=0.98<0.997 4,所以不满足至少两个不等式成立,故该生产线需检修. (2)由(1)知P (μ-2σ<X <μ+2σ)=0.94=4750,所以任取一件是次品的概率为1-4750=350,所以任取两件产品得到的次品数Y 可能值为0,1,2,且Y ~B ⎝ ⎛⎭⎪⎫2,350. 那么P (Y =0)=⎝ ⎛⎭⎪⎫47502=2 2092 500;P (Y =1)=C 12×4750×35=1411 250;P (Y =2)=⎝ ⎛⎭⎪⎫3502=92 500. ∴Y 的分布列为∴E (Y )=0×2 2092 500+1×1411 250+2×92 500=325.(或E (Y )=2×350=325.)探究提高 1.求随机变量的均值和方差的关键是正确求出随机变量的分布列.X ,如果能够断定它服从二项分布B (n ,p ),那么其概率、期望与方差可直接利用公式P (X=k )=C k n p k(1-p )n -k(k =0,1,2,…,n ),E (X )=np ,D (X )=np (1-p )求得.【训练4】 (2021·湖南六校联考)为响应国家“精准扶贫,产业扶贫〞战略的号召,进一步优化能源消费构造,某市决定在地处山区的A 县推进光伏发电工程.在该县山区居民中随机抽取50户,统计其年用电量得以下统计表.以样本的频率作为概率.(1)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为X ,求X 的数学期望;(2)该县某山区自然村有居民300户.假设方案在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度的价格进展收购.经测算每千瓦装机容量的发电机组年平均发电1 000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元.解 (1)记在抽取的50户居民中随机抽取1户,其年用电量不超过600度为事件A ,那么P (A )=35. 由可得从该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为X ,且X ~B ⎝⎛⎭⎪⎫10,35.故E (X )=np =10×35=6.(2)设该县山区居民户年均用电量为E (Y ),由抽样可得E (Y )=100×550+300×1550+500×1050+700×1550+900×550=500(度).那么该自然村年均用电约150 000度.又该村所装发电机组年预计发电量为300 000度,故该机组每年所发电量除保证正常用电外还能剩余电量约150 000度,能为该村创造直接收益120 000元.热点四 概率与统计的综合问题【例4】 (2021·昆明质检)手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式.在某市,随机调查了200名顾客购物时使用手机支付的情况,得到如下的2×2列联表,从使用手机支付的人群中随机抽取1人,抽到青年的概率为710. (1)根据条件完成2×2列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关〞? 2×2列联表:(2)现采用分层抽样的方法从这200名顾客中按照“使用手机支付〞和“不使用手机支付〞抽取一个容量为10的样本,再从中随机抽取3人,求这三人中“使用手机支付〞的人数的分布列及期望.附:K 2=n 〔ad -bc 〕2〔a +b 〕〔c +d 〕〔a +c 〕〔b +d 〕解 (1)∵从使用手机支付的人群中随机抽取1人,抽到青年的概率为710,∴使用手机支付的人群中的青年的人数为710×120=84人,那么使用手机支付的人群中的中老年的人数为120-84=36人,所以2×2列联表为K 2的观测值k =200〔84×48-36×32〕116×84×80×120=3 600203≈17.734,∵17.734>7.879,P (K 2≥7.879)=0.005,故有99.5%的把握认为“市场购物用手机支付与年龄有关〞. (2)根据分层抽样原理,从这200名顾客中抽取10人, 抽到“使用手机支付〞的人数为10×120200=6.“不使用手机支付〞的人数为4.设随机抽取的3人中“使用手机支付〞的人数为随机变量X . 那么X =0,1,2,3.P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16.所求随机变量X 的概率分布为期望E (X )=0×130+1×310+2×12+3×16=95.探究提高 1.此题考察统计与概率的综合应用,意在考察考生的识图能力和数据处理能力.此类问题多涉及相互独立事件、互斥事件的概率,在求解时,要明确根本领件的构成. 2.联系高中生使用手机这一生活现象,利用数学中列联表、独立性检验,予以研究二者的相关性,考察了相互独立事件同时发生、分布列.题目主旨,引导学生正确对待使用手机,切勿玩物丧志,并倡导互帮互助的学习风气.【训练5】 (2021·哈尔滨二模)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B.甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)甲厂产品的等级系数X 1的概率分布列如下所示:且X 1的数学期望E (X 1)=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望;(3)在(1)、(2)的条件下,假设以“性价比〞为判断标准,那么哪个工厂的产品更具可购置性?说明理由.注:①产品的“性价比〞=产品的等级系数的数学期望产品的零售价;②“性价比〞大的产品更具可购置性.解 (1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2,又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5,由⎩⎪⎨⎪⎧6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2. (2)由得,样本的频率分布表如下:等级系数X 2 345678 样本频率f用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:X 2 3 4 5 6 7 8 P所以E (X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8, 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购置性,理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1,因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为错误!=1.2, 所以乙厂的产品更具可购置性.1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P 〔AB 〕P 〔A 〕=n 〔AB 〕n 〔A 〕,其中,在实际应用中P (B |A )=n 〔AB 〕n 〔A 〕是一种重要的求条件概率的方法.相互独立事件是指两个事件发生的概率互不影响,计算公式为P (AB )=P (A )P (B ).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P (A ∪B )=P (A )+P (B ).3.二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有重要的地位.(1)判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进展了n 次.(2)对于二项分布,如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P (X =k )=C k n p k qn -k.其中k =0,1,…,n ,q =1-p .一、选择题1.(2021·广州模拟)三国时期吴国的数学家赵爽曾创制了一幅“勾股圆方图〞,用数形结合的方法给出了勾股定理的详细证明.如下图的“勾股圆方图〞中,四个全等的直角三角形与中间的小正方形拼成一个大正方形,其中一个直角三角形中较小的锐角α满足tan α=34,现向大正方形内随机投掷一枚飞镖,那么飞镖落在小正方形内的概率是( ) A.425B.325C.225D.125解析 在Rt △ABC 中,tan α=34.不妨设BC =3,AC =4,那么DC =1,AB =5.∴所求事件的概率P =S 小正方形S 大正方形=DC 2AB 2=125.答案 D2.甲、乙、丙、丁、戊5名同学参加“?论语?知识大赛〞,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,答复者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名〞;对乙说“你当然不会是最差的〞.从上述答复分析,丙是第一名的概率是( ) A.15B.16C.14D.13解析 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊,又考虑到所有的限制条件与丙、丁或戊都无关,所以这三个人获得第一名是等概率事件,概率为13.答案 D3.(2021·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为pX 为该群体的10位成员中使用移动支付的人数,D (X )=2.4,P (X =4)<P (X =6),那么p =( ) A.0.7B.0.6C.0.4解析 由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以D (X )=10p (1-p )=2.4,所以ppP (X =4)<P (X =6),得C 410p 4(1-p )6<C 610p 6(1-p )4,即(1-p )2<p 2,所以p >0.5,所以p =0.6. 答案 B4.(2021·长郡中学二模)设随机变量X 服从正态分布N (4,σ2),假设P (X >m )=0.3,那么P (X >8-m )=( )A.0.2C.0.7σ的值有关解析 ∵随机变量X 服从正态分布N (4,σ2), ∴正态曲线的对称轴是x =4,∵P (X >m )=0.3,且m 与8-m 关于x =4对称, 由正态曲线的对称性,得P (X >m )=P (X <8-m )=0.3, 故P (X >8-m )=1-0.3=0.7. 答案 C5.(2021·浙江卷)设0<p <1,随机变量ξ的分布列是那么当p 在(0,1)内增大时( ) A.D (ξ)减小B.D (ξ)增大C.D (ξ)先减小后增大D.D (ξ)先增大后减小 解析 由题可得E (ξ)=12+p ,所以D (ξ)=-p 2+p +14=-⎝ ⎛⎭⎪⎫p -122+12,所以当p 在(0,1)内增大时,D (ξ)先增大后减小. 答案 D 二、填空题6.(2021·全国Ⅰ卷)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,那么不同的选法共有________种(用数字作答).解析 法一 可分两种情况:第一种情况,只有1位女生入选,不同的选法有C 12C 24=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 14=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.法二 从6人中任选3人,不同的选法有C 36=20(种),从6人中任选3人都是男生,不同的选法有C 34=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种). 答案 167.(2021·济南模拟)⎝⎛⎭⎪⎫x 2-2x 5的展开式中,常数项为________(用数字作答).解析 T r +1=C r 5(x 2)5-r ⎝⎛⎭⎪⎫-2x r=(-2)r C r 5x 10-5r 2.依题意,10-5r 2=0,那么r =4.∴展开式中常数项T 5=C 45(-2)4=80. 答案 808.(2021·安徽江南名校联考)如图,圆M 、圆N 、圆P 彼此相外切,且内切于正△ABC 中,在正△ABC 内随机取一点,那么此点取自△MNP (阴影局部)的概率是________.解析 设内切圆的半径为r ,正△ABC 的边长为a ,那么a =2r +23r ,△MNP 的边长a ′=2r .∴所求事件的概率P =S △MNP S △ABC =〔2r 〕2[2r 〔1+3〕]2=1-32.答案 1-32三、解答题9.(2021·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 14050300200800510 好评率好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系.解 (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为502 000=0.025.(2)设事件A 为“从第四类电影中随机选出的电影获得好评〞,事件B 为“从第五类电影中随机选出的电影获得好评〞.故所求概率为P (AB -+A -B )=P (AB -)+P (A -B )=P (A )(1-P (B ))+(1-P (A ))P (B ).由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)由题意可知,定义随机变量如下:ξk =⎩⎪⎨⎪⎧0,第k 类电影没有得到人们喜欢,1,第k 类电影得到人们喜欢,那么ξk 显然服从两点分布,故D (ξ1)=0.4×(1-0.4)=0.24,D (ξ2)=0.2×(1-0.2)=0.16, D (ξ3)=0.15×(1-0.15)=0.127 5, D (ξ4)=0.25×(1-0.25)=0.187 5, D (ξ5)=0.2×(1-0.2)=0.16, D (ξ6)=0.1×(1-0.1)=0.09.综上所述,D (ξ1)>D (ξ4)>D (ξ2)=D (ξ5)>D (ξ3)>D (ξ6).10.(2021·西安调研)在一次诗词知识竞赛调查中,发现参赛选手分为两个年龄(单位:岁)段:[20,30),[30,40],其中答对诗词名句与否的人数如下图.(1)完成下面2×2列联表:年龄段 正确 错误 合计 [20,30) [30,40](2)是否有90%的把握认为答对诗词名句与年龄有关,请说明你的理由;(3)现按年龄段分层抽样选取6名选手,假设从这6名选手中选取3名选手,求3名选手中年龄在[20,30)岁范围人数的分布列和数学期望.注:K 2=n 〔ad -bc 〕2〔a +b 〕〔c +d 〕〔a +c 〕〔b +d 〕,其中n =a +b +c +d解 (1)2×2的列联表为(2)根据2×2列联表中的数据,得K 2的观测值为k =n 〔ad -bc 〕2〔a +b 〕〔c +d 〕〔a +c 〕〔b +d 〕=120〔70×10-30×10〕220×100×40×80=3>2.706,∴有90%的把握认为答对诗词名句与年龄有关.(3)按年龄段分层抽取6人中,在范围[20,30)岁的人数是2(人),在[30,40]岁范围的人数是4(人).现从6名选手中选取3名选手,设3名选手中在范围[20,30)岁的人数为ξ,那么ξ的可能取值为0,1,2. P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.∴ξ的分布列为故ξ的数学期望为E (ξ)=0×15+1×35+2×15=1.11.(2021·武汉三模)2018年3月5日上午,李克强总理做政府工作报告时表示,将新能源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.4.2 随机变量及其分布
必备知识精要梳理
1.超几何分布
在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则
P (X=k )=C M k C N -M
n -k C N n ,k=0,1,2,…,m ,其中m=min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.
2.二项分布
一般地,在n 次独立重复试验中,事件A 发生的次数为X ,设每次试验中事件A 发生的概率为
p ,则P (X=k )=C n k p k q n-k ,其中0<p<1,p+q=1,k=0,1,2,…,n ,称X 服从参数为n ,p 的二项分布,记作
X~B (n ,p ),且E (X )=np ,D (X )=np (1-p ).
3.正态分布
一般地,如果对于任何实数a ,b (a<b ),随机变量X 满足P (a<X ≤b )=∫b a φμ,σ(x )d x ,则称X 的分布为正态分布.正态分布完全由参数μ和σ确定,因此正态分布常记作N (μ,σ2).如果随机变量X 服从正态分布,则记为X~N (μ,σ2).满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.
4.离散型随机变量的分布列
设离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i=1,2,…,n )的概率P (X=x i )=p i ,
关键能力学案突破
热点一 依据频率求概率的
综合问题
【例1】某公司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A 地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B 地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.
解题心得频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率,在实际问题中,常用事件发生的频率作为概率的估计值.频率本身是随机的,而概率是一个确定的数,是客观存在的,因此概率与每次试验无关.
(1)利用基本概念:①互斥事件不可能同时发生;②对立事件是互斥事件,且必须有一个要发生.
(2)利用集合的观点来判断:设事件A与B所含的结果组成的集合分别是A,B,全集为I.①事件A与B互斥,即集合A∩B=⌀;②事件A与B对立,即集合A∩B=⌀,且A∪B=I,也即A=∁I B或
B=∁I A.
(3)对立事件是针对两个事件来说的,而互斥事件则可以是多个事件间的关系.
(4)如果A1,A2,…,A n中任何两个都是互斥事件,那么我们就说A1,A2,…,A n彼此互斥.
(5)若事件A1,A2,A3,…,A n彼此互斥,则P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).
应用互斥事件的概率加法公式解题时,一定要注意首先确定各个事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.对于较复杂事件的概率,可以转化为求其对立事件的概率.
(6)将所求事件转化成彼此互斥的事件的和。