北师版初二数学上册培优秋季班讲义

合集下载

初二数学上册培优辅导讲义

初二数学上册培优辅导讲义

第12讲与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、同旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 .邻补角是 .⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180°∴∠EOF =21×180°=90°⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是()A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4=.【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线.⑵画出表示点B 到直线l 1的垂线段. 【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为() A .4cmB . 5cmC .不大于4cmD .不小于6cm02如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上AB C D EF AB C D EF PQ R A B CE F E A BC D O (第1题图) 1 4 3 2 (第2题图)l 2分别画出点P 、Q 的位置.⑵当汽车从A 出发向B 行驶的过程中,在的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系. 03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6:∠2和∠4: ∠3和∠5: ∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】 01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有()A .4对B . 8对C .12对D .16对 F B A OCD E C D BA EO B A CDO A B AEDC F E BA D 1 4 2 3 6 5 A BDC HG E F02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是()A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由• ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC 【解法指导】图中有即即有同旁内角,有“”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行.⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】 01.如图,推理填空. ⑴∵∠A =∠(已知)∴AC ∥ED ()⑵∵∠C =∠(已知)∴AC ∥ED () ⑶∵∠A =∠(已知)∴AB ∥DF ()02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴()又∵∠1=∠2(已知)∴()∴AB ∥DE ()03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD .04.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF .7 1 5 6 8 4 1 2 乙丙 3 23 4 5 61 23 4甲1 A B C2 3 4 5 6 7 A BC DO ABEFCABC DE A BCE 12A BCD E【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是.03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn=.演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠BB.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMFB.∠BMF C.∠ENCD.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD>BD A.0 B. 2 C.4 D.605.点A、B、C是直线l上的三点,点P是直线l外一点,且PA=4cm,PB=5cm,PC=6cm,则点P到直线l的距离是()A.4cmB.5cmC.小于4cmD.不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB+∠DOC =.l1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图07.如图,矩形ABCD沿EF对折,且∠DEF=72°,则∠AEG=.08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1a10.(a1与a10不重合)09.如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a∥b的条件的序号是.10.在同一平面内两条直线的位置关系有.11.如图,已知BE平分∠ABD,DE平分∠CDB,且∠E=∠ABE+∠EDC.试说明AB∥CD?12.如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,那么直线AB与CD的位置关系如何?13.如图,推理填空:⑴∵∠A=(已知)∴AC∥ED()⑵∵∠2=(已知)∴AC∥ED()⑶∵∠A+=180°(已知)∴AB∥FD.14.如图,请你填上一个适当的条件使AD∥BC.培优升级·奥赛检测01.平面图上互不重合的三条直线的交点的个数是()A.1,3 B.0,1,3 C.0,2,3 D.0,1,2,302.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成()部分.A.60 B.55 C.50 D.4503.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有()个交点.ABCDOAB CDEFGHabc第6题图第7题图第9题图123 4567 81AC DEBA BC DEF12AB CDEF第14题图A .35B . 40C .45D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是() A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到? 09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于() A .60°B . 75°C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点; ⑵总共有29个交点.第13讲平行线的性质及其应用考点·方法·破译 1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系;2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用. 经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】 两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键. 【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补)∴∠A =∠C ∵∠A =38°∴∠C =38° 【变式题组】 01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC 的度数为() A .155°B .50°C .45°D .25°a b AB C02.(安徽)如图,直线l 1 ∥l 2,∠1=55°,∠2=65°,则∠3为()A . 50°B . 55°C . 60°D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60°∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理)∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15° 【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D .求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC =180°即要证明DB ∥EC .要证明DB ∥EC 即要 证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180°∴DF∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】 01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B .求证:∠AED =∠ACBAB CDOE FAEBC (第1题图) (第2题图) EA FGD C B BA MC D N P (第3题图)C DA BE F 1 3 2 G3 C A 1 D 2 E (第1题图) A2 CF 3 E D1B(第2题图)DA2 E1 B C BFE AC D03.如图,两平面镜α、β的夹角θ,入射光线AO 平行于β入射到α上,经两次反射后的出射光线O′B 平行于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的:∠1=∠3)证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB .求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角.过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键.【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC=180°(两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行于同一条直线的两直线平行)∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性.A D M CN E B 3 1 A B G DC E F ED 2 1 A B Cα β P B C D A∠P =α+βγ D α βB CAFDEB CA B C AA ′ lB ′C ′结论:⑴____________________________ ⑵____________________________⑶____________________________⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路【解】过点E 作EH ∥AB .过点F 作FG ∥AB (两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD 线平行)∴∠ψ+∠4=180°∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180° 【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是() A .∠β=∠α+∠γB .∠β+∠α+∠γ=180°C .∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /. 【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离.⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点.⑷连: 按原图形顺次连接对应点. 【解】①连接AA /②过点B 作AA /的平行线l ③在l用同样的方法作/,C /A /就得到平移后的三角形A /B /C /.21cm ,作出平移后的图形.知三角形ABC 中,∠C =90°, BC =4,AC=4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC 与△A /B /C /的重叠部分的面积. 03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的B B / AA / C C /B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷西 B 30°A 北东 南 距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固反馈提高 01.如图,由A 测B 得方向是() A .南偏东30°B .南偏东60° C .北偏西30°D .北偏西60° 02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有() A .1个B .2个C .3个D .4个 03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是() A .第一次向左拐30°,第二次向右拐30°B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A .对顶角相等B .同位角相等C .内错角相等D .同旁内角互补 05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷] 从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①②B .②③C .③④D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是()A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°07.下列几种运动中属于平移的有() ①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A .1种B .2种C .3种D .4种 08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD ∥BC ,AB ∥CD ,AE ⊥BC ,现将△ABE 进行平移. 平移方向为射P .P .P .P .⑴⑵⑶⑷D5 38A F CB E150° 120° D B C E 湖432 1ABE F CD线AD 的方向. 平移距离为线段BC 的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角; ⑵两个锐角的和是锐角; ⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A =120°,第二个拐弯处∠B=150°,第三个拐弯处∠C ,这时道路CE 恰好和道路AD 平行,问∠C 是多少度?并说明理由.E 点时,与两岸码头B 、D 成64°角. 当小船行驶到河中F 点时,看B 点和D 点的视线FB 、FD 恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F 与码头B 、D 所形成的角∠BFD 的度数吗?15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC △ABC 内能与△DEF 25个,那么在△ABC 内由△DEFF E B A CG D 角形共有()个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A 2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为()A .720°B .108°或144°C .144°D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是() A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC .问:EF 与EG 中有没有与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;FEBACGD 100°⑶ ⑷CB 1AA 1C 1D 1BD . B . O. A⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC对角线作小正方形,这n12.如图将面积为a 2的小正方形和面积为b 2何求出阴影部分面积?第06讲实数 考点·方法·破译1.平方根与立方根: 若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为x a 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq (p 、q 是两个互质的整数,且q ≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2n a ≥0(n 为正整数)0(a ≥0) .1】若2m -4与3m -1是同一个数的平方根,求m 的值. 一个正数的平方根有两个,并且这两个数互为相反数.∵2m −42m −4 +3m −l =0,5m =5,m =l . ____. m m 的平方根是____.____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.F E B A C O【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -++=∴24242a b a -++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为()A .1B .-1C .2D .-2 04.已知x1x π-的值是( )A .11π-B .11π+C .11π-D .无法确定【例3】若a 、b都为有理效,且满足1a b -+=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n 2)m+(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a −2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2,b =4,即a +b =6.【变式题组】01.若3+5的小数部分是a ,3−5的小数部分是b ,则a +b 的值为____. 02.5的整数部分为a ,小数部分为b ,则(5+a )·b =____. 演练巩固反馈提高0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设3a =-,b =-2,52c =-,则a 、b 、c 的大小关系是( ) A .a <b <cB .a <c <bC .b <a <cD .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与364-C .4与364D .3与9 04.在实数1.414,2-,0.,5−16,π,3.,83125中无理数有( ) A .2个B .3个C .4个D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C .-a <bD .-b >a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,2,3…,19,20.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m=____.14.设a是大于1的实数.若a ,23a+,213a+在数轴上对应的点分别是A、B、C,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P.点P表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P′,那么点P′所表示的数是____.16.已知整数x、y满足x+2y=50,求x、y.17.已知2a−1的平方根是±3,3a+b−1的算术平方根是4,求a+b+1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B点恰好落在数轴上时,(1)求此时B点所对的数;(2)求圆心O移动的路程.19.若b=315a-+153a-+3l,且a+11的算术平方根为m,4b+1的立方根为n,求(mn−2)(3mn+4)的平方根与立方根.20.若x、y为实数,且(x−y+1)2与533x y--互为相反数,求22x y+的值.培优升级奥赛检测01.(荆州市八年级数学联赛试题)一个正数x的两个平方根分别是a+1与a−3,则a值为( )A.2 B.-1 C.1 D.002.(黄冈竞赛)代数式x+1x-+2x-的最小值是( )A.0 B.1+2C.1 D.203.代数式53x+−2的最小值为____.04.设a、b为有理数,且a、b满足等式a2+3b+b3=21−53,则a+b=____.05.若a b-=1,且3a=4b,则在数轴上表示a、b两数对应点的距离为____.06.已知实数a满足2009a a-=,则a− 20092=_______.m=,试确定m的值.08.(全国联赛)若a、b满足5b=7,S=3b,求S的取值范围.09.(北京市初二年级竞赛试题)已知0<a<1,并且123303030a a a⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a⎡⎤+++⎢⎥⎣⎦g g g2930a⎡⎤++⎢⎥⎣⎦18=,求[10a]的值[其中[x]表示不超过x的最大整数] .10.(北京竞赛试题)已知实数a、b、x、y满足y+21a=-,231x y b-=--,求22x y a b+++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【解法指导】(1)三角形的面积=12×底×高.(2)通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积.则S△ABC=S△ABD=S△BCD=12·3·5-12·3·1=6.【变式题组】01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),△ABC的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC 的面积.03.已知:A(-3,0),B(3,0),C(-2,2),若D点在y轴上,且点A、B、C、D四点所组成的四边形的面积为15,求D点的坐标.。

八年级数学上册培优系统讲义

八年级数学上册培优系统讲义

八年级数学上册培优系统讲义第1讲 认识三角形经典·考题·赏析【例1】若的三边分别为4,x ,9,则x 的取值范围是______________,周长l 的取值范围是______________ ;当周长为奇数时,x =______________.【解法指导】运用三角形三边关系,即第三边小于两边之和而大于两边之差故5<x <13,18<l <26;周长为19时,x =6,周长为21时,x =8,周长为23时,x =10,周长为25时,x =12,【变式题组】01.若△ABC 的三边分别为4,x ,9,且9为最长边,则x 的取值范围是______________,周长l 的取值范围是______________.02.设△ABC 三边为a ,b ,c 的长度均为正整数,且a <b <c ,a +b +c =13,则以a ,b ,c为边的三角形,共有______________个.03.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是( ). A .1 B .2 C .3 D .4【例2】已知等腰三角形的一边长为18cm ,周长为58cm ,试求三角形三边的长.【解法指导】对等腰三角形,题目没有交代底边和腰,要给予讨论.当18cm 为腰时,底边为58-18×2=22,则三边为18,18,22. 当18cm 为底边时,腰为58182=20,则三边为20,20,18.此两种情况都符合两边之和大于第三边.解:18cm ,18cm ,22cm 或18cm , 20,20cm . 【变式题组】01.已知等腰三角形两边长分别为6cm ,12cm ,则这个三角形的周长是( )A .24cmB .30cmC .24cm 或30cmD .18cm02.已知三角形的两边长分别是4cm 和9cm ,则下列长度的四条线段中能作为第三条边的是( ) A .13cm B .6cm C .5cm D .4cm 03.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为______________. 【例3】如图AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线,若S △GFC =1cm 2,则S △ABC =______________.【解法指导】中线将原三角形面积一分为二,由FG 为△EFC 的中线,知S △EFC =2S △GFC =2.又由EF 为△DEC 中线,S △DEC =2S △EFC =4.同理S △ADC =8,S △ABC =16.FDC【变式题组】01.如图,已知点D 、E 、F 分别是BC 、AD 、BE 的中点,S △ABC =4,则S △EFC =______________.02.如图,点D 是等腰△ABC 底边BC 上任意一点,DE ⊥AB 于E ,DF ⊥AC 于F ,若一腰上的高为4cm ,则DE +DF =______________.03.如图,已知四边形ABCD 是矩形(AD >AB ) ,点E 在BC 上,且AE =AD ,DF ⊥AE 于F ,则DF 与AB 的数量关系是______________.【例4】已知,如图,则∠A +∠B +∠C +∠D +∠E =______________.【解法指导】这是本章的一个基本图形,其基本方法为构造三角形或四边形内角和,结合八字形角的关系即,∠A +∠B =∠C +∠D .故连结BC 有∠A +∠D =∠DBC +∠ACB ,∴∠A +∠B +∠C +∠D +∠E =180°【变式题组】01.如图,则∠A +∠B +∠C +∠D +∠E =______________.02.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.03.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.(第1题图)(例4题图)CD(第3题图)(第2题图)C(第3题图)(第2题图)B(第1题图)B(例6题图)E D(第1题图)【例5】如图,已知∠A =70°,BO 、CO 分别平分∠ABC 、∠ACB .则∠BOC = ______________.【解法指导】这是本章另一个基本图形,其结论为∠BOC =12∠A +90°.证法如下: ∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A )= 90°+12∠A .所以∠BOC =125°.【变式题组】01.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC =______________.°,点P 、O 分别是∠ABC 、∠ACB 的三等分线的交点,则∠OPC =______________.03.如图,∠O =140°,∠P =100°,BP 、CP 分别平分∠ABO 、∠ACO ,则∠A =______________.【例6】如图,已知∠B =35°,∠C =47°,AD ⊥BC ,AE 平分∠BAC ,则∠EAD =【解法指导】∵∠EAD =90°-∠AED =90°-(∠B +∠BAE )= 90°-∠B -12(180°-∠B -∠C )= 90°-∠B -90°+12∠B + 12∠C =12(∠C -∠B ) ,故∠EAD =6°. 【变式题组】01.(改)如图,已知∠B =39°,∠C =61°,BD ⊥AC ,AE 平分∠BAC ,则∠BFE =__________.(说明:原题题、图不符.由已知得△A =98°, BD ⊥AC ,则点D 在CA 的延长线上.)BC(第1题图)BC(第2题图)C(第3题图)C02.如图,在△ABC 中,∠ACB =40°,AD 平分∠BAC ,∠ACB 的外角平分线交AD 的延长线于点P ,点F 是BC 上一动点(F 、D 不重合) ,过点F 作EF ⊥BC 交于点E ,下列结论:①∠P +∠DEF 为定值,②∠P -∠DEF 为定值中,有且只有一个答案正确,请你作出判断,并说明理由.【例7】如图,在平面内将△ABC 绕点A 逆时针旋转至△AB ′C ′,使CC ′∥AB ,若∠BAC =70°,则旋转角α=______________.【解法指导】利用平移、旋转不改变图形的形状这条性质来解题.∵CC ′∥AB ,∴∠C ′CA =∠CAB =70°,又AC =AC ′,∴∠C ′AC =180°-2×70°=40°【变式题组】01如图,用等腰直角三角形板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的直角α=______________.02.如图,在平面内将△AOB 绕点O 顺时针旋转α角度得到△OA ′B ′,若点A ′在AB 上时,则旋转角α=______________.(∠AOB =90°,∠B =30°)03.如图,△ABE 和△ACD 是△ABC 沿着AB 边,AC 边翻折180°形成的,若∠BAC =130°,则∠α=______________.(第1题图)M(第2题图)B(第2题图)(第3题图)演练巩固·反馈提高01.如图,图中三角形的个数为( )A .5个B .6个C .7个D .8个02.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定03.有4条线段,长度分别是4cm ,8cm ,10cm ,12cm ,选其中三条组成三角形,可以组成三角形的个数是( ) A .1个 B .2个 C .3个 D .4个 04.下列语句中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一个外角等于这个三角形的两个内角的和C .三角形的外角中,至少有两个钝角D .三角形的外角中,至少有一个钝角05.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定 06.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定07.如果等腰三角形的一边长是5cm ,另一边长是9cm ,则这个三角形的周长是______________. 08.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是______________.09.如图,在△ABC 中,△A =42°,△B 与△C 的三等分线,分别交于点D 、E ,则△BDC 的度数是______________.10.如图,光线l 照射到平面镜上,然后在平面镜△、△之间来回反射,已知△α=55,△γ=75°,△β=______________.11.如图,点D 、E 、F 分别是BC 、AD 、BE 的中点,且S △EFC =1,则S △ABC =______________. 12.如图,已知: △1=△2,△3=△4,△BAC =63°,则△DAC =______________. 13.如图,已知点D 、E 是BC 上的点,且BE =AB ,CD =CA ,△DAE =13△BAC ,求△BAC 的度数(第9题图)(第10题图)(第11题图)(第13题图)D E C(第12题图)第2讲认识多边形经典·考题·赏析【例1】如图所示是一个六边形.(1)从顶点A出发画这个多边形的所有对角线,这样的对角线有几条?它们将六边形分成几个三角形?(2)画出此六边形的所有对角线,数一数共有几条?【解法指导】本题主要考查多边形对角线的定义,对于n边形,从n边形的一个顶点出发,可引(n-3)条对角线,它们将这n边形分成(n-2)个三角形,n边形一共有(3)2n n条对角线,解:(1)从顶点A出发,共可画三条对角线,如图所示,它们分别是AC、AD、AE.将六边形分成四个三角形:△ABC、△ACD、△ADE、△AEF;(2)六边形共有9条对角线.【变式题组】01.下列图形中,凸多边形有( )A.1个B.2个C.3个D.4个02.过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线条数等于边数,则m=______,n=______,k=________.03.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,则此多边形的边数是.【例2】(1)八边形的内角和是多少度?(2)几边形的内角和是八边形内角和的2倍?【解法指导】(1)多边形的内角和公式的推导:从n边形一个顶点作对角线,可以作(n -3)条对角线,并且将n边形分成(n-2)个三角形,这(n-2)个三角形内角和恰好是多边形内角和,等于(n-2)·1800;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.解:(1)八边形的内角和为(8-2)×1800=10800;(2)设n边形的内角和是八边形内角和的2倍,则有(n-2)×1800=10800×2,解得n=14. 故十四边形的内角和是八边形内角和的2倍.【变式题组】01.已知n边形的内角和为21600,求n边形的边数.02.如果一个正多边的一个内角是1080,则这个多边形是()A.正方形B.正五边形C.正六边形D.正七边形03.已知一个多边形的内角和为10800,则这个多边形的边数是()A.8B.7C.6D.504.如图,∠1、∠2、∠3、∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=700,则∠AED的度数为()A.1100B.1080C.1050D.100005.当多边形的边数增加1时,它的内角和与外角和()A.都不变B.内角和增加1800,外角和不变C.内角和增加1800,外角和减少1800D.都增加1800【例3】一只蚂蚁从点A出发,每爬行5cm便左转600,则这只蚂蚁需要爬行多少路程才能回到点A?解:蚂蚁爬行的路程构成一个正多边形,其路程就是这个正多边形的周长,根据已知可得这个正多边形的每个外角均为600,则这个多边形的边数为36060=6.所以这只蚂蚁需要爬行5×6=30(cm)才能回到点A.【解法指导】多边形的外角和为3600.(1)多边形的外角和恒等于3600,它与边数的多少无关.(2)多边形的外角和的推导方法:由于多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于1800·n,外角和等于n·1800-(n-2)·1800=3600.(3)多边的外角和为什么等于3600,还可以这样理解:从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发点时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于3600.(4) 多边形的外角和为3600的作用:①已知各相等外角度数求多边形边数;②已知多边形边数,求各相等外角的度数.【变式题组】01.(无锡)八边形的内角和为_____.度.02.(永州)如图所示,已知△ABC中,∠A=400,剪去∠A后成四边形,则∠1+∠2=_____03.(资阳)n(n为整数,且n≥3)边形的内角和比(n+1)边形的内角和少____度. 04.(株洲)如图所示,小明在操场上从点A出发,沿直线前进10米后向左转400,再沿直线前进10米后,又向左转400,……,照这样下去,他第一次回到出发地A点时,一共走了_____米.【例4】已知两个多边形的内角和为18000,且两多边形的边数之比为2:5,求这两个多边形的边数.【解法指导】因为两个多边形的边数之比为2:5,可设两个多边形的边数为2x和5x,利用多边形的内角可列出方程.解:设这两个多边形的边数分别是2x和5x,则由多边形内角和定理可得:(2x-2)·1800+(5x-2)·1800=18000,解得x=2,∴2x=4,5x=10,故这两个多边形的边数分别为4和10.【变式题组】01.一个多边形除去一个角后,其余各内角的和为22100,这个多边形是___________02.若一个多边形的外角和是其内角和的25,则此多边形的边数为_____03.每一个内角都相等的多边形,它的一个外角等于一个内角的23,则这个多边形是()A.三角形B.四边形C.五边形D.六边形04.内角和与其外角和相等的多边形是___________【例5】某人到瓷砖商店去购买一种多边形瓷砖,用来铺设无缝地面,他购买的瓷砖不可以是()A.正三角形B.长方形C.正八边形D.正六边形【解法指导】根据平面镶嵌的定义可知:在一个顶点处各多边形的内角和为3600,由于正三角形、长方形、正六边形的内角都是3600的约数,因此它们可以用来完成平面镶嵌,而正八边形的每个内角为1350,不是3600的约数,所以正八边形不能把平面镶嵌.解:选C.【变式题组】01.用一种如下形状的地砖,不能把地面铺成既无缝隙,又不重叠的是()A.正三角形B.正方形C.长方形D.正五边形02.小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,要铺满地面而不重叠,瓷砖的形状可能有()A.正三角形、正方形、正六边形B.正三角形、正方形、正五边形C.正方形、正五边形D.正三角形、正方形、正五边形、正六边形03.只用下列正多边形•能作平面镶嵌的是()A.正五边形B.正六边形C.正八边形D.正十边形04.(晋江市)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后将其中的一个正方形再剪成四个小正方形,共得7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2011个小正方形,则需要操作的次数是()A.669B.670C.671D.672【例6】有一个十一边形,它由若干个边长为1的等边三角形和边长为1的正方形无重叠、无间隙地拼成,求此十一边形各内角的大小,并画出图形.【解法指导】正三角形的每个内角为600,正方形的每个内角为900,它们无重叠、无间隙可拼成600、900、1200、1500四种角度,根据十一边形内角和即可判断每种角的个数.解:因为正三角形和正方形的内角分别为600、900,由此可拼成600、900、1200、1500四种角度,十一边形内角和为(n-2)×1800=(11-2)×1800=16200.因为1200×11<16200<1500×11,所以这个十一边形的内角只有1200和1500两种.设1200的角有m个,1500的角有n个,则有1200m+1500n=16200,即4m+5n=54此方程有唯一正整数解110mn=⎧⎨=⎩,所以这个十一边形内角中有1个角为1200,10个角为1500,此十一边形如图所示.【变式题组】01.如图是某广场地面的一部分,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石砖镶嵌,从里向外共铺了12层(不包括中央的正六边形地砖),每一层的外边界都围成一个正多边形,若中央正六边形的地砖边长为0.5m,则第12层的外边界所围成的多边形的周长是___________.02.(黄冈)小明的书房地面为210cm×300cm的长方形,若仅从方便平面镶嵌的角度出发,最适宜选用的地砖规格为()A.30cm×30cm的正方形,B.50cm×50cm的正方形,C.60cm×60cm的正方形,D.120cm×120cm的正方形,03.正m边形、正n边形及正p边形各取一个内角,其和为3600,求111m n p++的值.演练巩固·反馈提高01.在一个顶点处,若正n边形的几个内角的和为______,则此正n边形可铺满地面,没有空隙.02.(宜昌市)如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为______块,当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为______块.03.(嘉峪关)用黑白两种颜色的正六边形地板砖按图所示的规律拼成如下若干地板图案:则第n个图案中白色的地板砖有______块.04.如图所示的图案是由正六边形密铺而成,黑色正六边形周围的第一层有六个白色正六边形,则第n层有______个白色正六边形.05.如果只用一种正多边形作平面镶嵌,而且在每一个正多边形的每一个顶点周围都有6个正多边形,则该正多边形的边数为()A.3B.4C.5D.606.下列不能镶嵌的正多边组合是()A.正三角形与正六边形B.正方形与正六边形C.正三角形与正方形D.正五边形与正十边形07.用两种以上的正多边形镶嵌必须具备的条件是()A.边长相同B.在每一点的交接处各多边形的内角和为1800C.边长之间互为整数倍D.在每一点的交接处各多边形的内角和为3600,且边长相等08.(荆门市)用三块正多边形的木板铺地,拼在一起且相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数是()A.4B.5C.6D.809.[自贡(课改)]张珊的父母打算购买形状和大小都相同的正多边形瓷砖来铺卫生间的地面,张珊特意提醒父母,为了保证铺地面时既没缝隙、又不重叠,所购瓷砖形状不能是()A.正三角形B.正方形C.正六边形D.正八边形10.我们常常见到如图所示那样图案的地板,它们分别是由正方形、等边三角形的材料铺成的,(1)为什么用这样形状的材料能铺成平整、无空隙的地板?(2)你想一想能否用一些全等的任意四边形或不等边三角形镶嵌成地板,请画出图形. 11.某单位的地板由三种各角相等、各边也相等的多边形铺成,假设它们的边数为x、y、z,你能找出x、y、z之间有何种数量关系吗?请说明理由.12.黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满,按第1,2,3个图案[如图(1)、(2)、(3)]规律依次下去,则第n个图案中黑色正三角形和白色正六边形的个数分别是()A.n2+n+2,2n+1B.2n+2,2n+1C.4n,n2-n+3D.4n,2n+1B AC D EF第3讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等A FC E DB C .有两边和其中一边上的中线对应相等的两个三角形全等 D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A BCD OFEA CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAE第1题图A BCDEBCDO第2题图AFECB DB (E )OC F 图③FA B C DE FAB (E )C DDA图②图①E F B A B P D E C 第1题图 A C DG 第2题图【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角△1=△2即可. 证AP ⊥AQ ,即证∠PAQ =90°,∠PAD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,BFACE NMPDDA CBFE21ABCPQE F DA B C DF E∴AP =AQ⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .02.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40°AECBA 75° C45° BNM第2题图第3题图D第3题图第1题图C AO DB P第2题图ACA /B B /a αcca50° b72° 58°03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SAS B .ASA C .AAS D .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________. 08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,△C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____.E2 1N AB DC 第5题图ABCDEAB CD第4题图第6题图M第10题图AB CDE 第9题图EABC DABC AEBD 第7题图 第8题图第4讲 角平分线的性质与判定经典·考题·赏析【例1】如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PN【解法指导】由于PM ⊥BD ,PN ⊥AD .欲证PM =PN 只需∠3=∠4,证∠3=∠4,只需∠3和∠4所在的△OBD 与△OAD 全等即可.证明:∵OD 平分∠AOB ∴∠1=∠2在△OBD 与△OAD 中,12OB OA OD OD =⎧⎪∠=∠⎨⎪=⎩∴△OBD ≌△OAD∴∠3=∠4 ∵PM ⊥BD ,PN ⊥AD 所以PM =PN 【变式题组】01.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.02.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN【例2】(天津竞赛题)如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果∠D =120°,求∠B 的度数 【解法指导】由已知∠1=∠2,CE ⊥AB ,联想到可作CF ⊥AD 于F ,得CE =CF ,AF =AE ,又由AE =12(AB +AD )得DF =EB ,于是可证△CFD ≌△CEB ,则∠B =∠CDF =60°.或者在AE 上截取AM =AD 从而构造全等三角形. 解:过点C 作CF ⊥AD 于点F .∵AC 平分∠BAD ,CE ⊥AB ,点C 上一点,∴CE =CF在Rt △CFA 和Rt △CEA 中,CF CEAC AC=⎧⎨=⎩ ∴Rt △ACF ≌Rt △ACE ∴AF =AE又∵AE =12(AE +BE +AF -DF ),2AE =AE +AF +BE -DF ,∴BE =DF ∵CF ⊥AD ,CE ⊥AB ,∴∠F =∠CEB =90°在△CEB 和△CFD 中,CE CF F CEB DF BE =⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△CFD∴∠B =∠CDF 又∵∠ADC =120°,∴∠CDF =60°,即∠B =60°. 【变式题组】01.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACDCBDS S ∆∆ 02.(河北竞赛)在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.【例3】如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BD 【解法指导】由于BE 平分∠ABC ,因而可以考虑过点D 作BC 的垂线或延长CE 从而构造全等三角形.证明:延长CE 交BA 的延长线于F ,∵∠1=∠2,BE =BE ,∠BEF =∠BEC∴△BEF ≌△BEC (ASA ) ∴CE =EF ,∴CE =12CF ∵∠1+∠F =∠3+∠F =90°, ∴∠1=∠3在△ABD 和△ACF 中,13AB AC BAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△ACF∴BD =CF ∴CE =12BD 【变式题组】01.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .第1题图第2题图第3题图第4题图第5题图第6题图02.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .演练巩固·反馈提高01.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( )A .13mn B .12mn C . mn D .2 mn02.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC =∠PCB .其中正确的结论个数有( )个 A . 1 B .2 C .3 D .403.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( ) A . ①③ B .②③ C .①② D .①②③04.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( ) A .②③ B .②④ C .②③④ D .①②③④ 05.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( ) A .50° B .45° C .40° D .35°06.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( ) A .①②③④ B .①②③ C .①②④ D .②③④。

初二数学北师大版秋季讲义

初二数学北师大版秋季讲义

第四讲 实数回顾与思考一、知识清单:1、实数:和统称实数;2、与数轴上的点成一一对应。

3、二次根式:式子叫作二次根式。

满足条件:①被开方数不含;②被开方数不含能开得尽方的因数或因式。

4、性质及运算:()()=≥02a a ,=2a ;()0,0≥≥⋅=b a b a ab ;=b a ()。

5、同类二次根式:几个二次根式化成后,如果那么这几个二次根式叫作同类二次根式。

6、二次根式加减:实质上就是。

7、分母有理化:把中的根号化去叫作分母有理化;分子有理化:中的根号化去叫作分子有理化。

二、典题精炼:例1、在数轴上画出表示13的数。

例2、(1)计算:()()()3322345738-+---+;(2)化简:233221-+-+-。

例3、如果最简二次根式83-a 与a 217-是同类二次根式,则a =。

例4、计算:(1()()2323+--; (3)12125520++-+;(412213⨯-÷例5、化简求值:(1)已知实数x 、y 满足322+---=x x y ,试求yx y x --+22的值。

(2)已知:22,22-=+=b a ,求22b ab a +-的值。

(3)已知052422=+--+b a b a ,求代数式a b b a 23-+。

例6、(1)已知139+与139-的小数部分分别是a 和b ,则843++-b a ab 的值是。

(2)若24422+-+-=x x x y ,求2x+y 的值。

x ,化简x x x x +++-+414122。

2x例7、如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,求△PEB 的周长的最小值。

三、B 卷必刷:1、若14+a 有意义,则a 能取的最小整数为。

若12+x 有意义,则x 范围是。

北师大版八年级上册数学《认识二元一次方程组》二元一次方程组培优说课教学复习课件

北师大版八年级上册数学《认识二元一次方程组》二元一次方程组培优说课教学复习课件
方程组的解.
新知探究
1.二元一次方程组的解是一对数,要将这对数代入方程组中的
每一个方程进行检验,这对数只有满足方程组中的每一个方程,
这对数才能是这个方程组的解.
新知探究
2.一般情况下,二元一次方程的解有无数个,
而二元一次方程组的解是唯一的.但当对二元
一次方程的解加以限制时也可能变为有限个了,
x 1,
都是
y=4呢?你还能找出适合方程x+y=8的x,y的值吗? 例如x=5,y=3
(2)x=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?
(3)你能找到一组x,y的值,同时适合方程x+y=8和
5x+3y=34吗?
x=5,y=3
适合一个二元一次方程的一组未知数的值,叫做这
个二元一次方程的一个解.
0
【解析】根据题意,得|m|=1且|m-1|≠0,2n-1=1,解得m=-1,n=1.
所以m+n=0,故填0.
【总结】二元一次方程必须符合以下三个条件:
(1)方程是整式方程;
(2)方程中只含有两个未知数;
(3)含未知数的项的次数都是1.
新知学习
x-y=2
x+1=2(y-1)
相同
相同
上面两个方程中,x所代表的对象_____,y所代表的对象_____.
− = ,
= ,
【例4】已知
是二元一次方程组
= −
+ =
的解,求a,b的值.
解:将x=1,y=-2代入方程组中,得
5-(-2)a=7,b-2=3,
解得a=1,b=5.
实际应用
根据题意列方程组:
小明购买单价分别是1元和2元的贺卡共8张,花了10元.小明

北师大版八年级上册数学全册教学课件(2021年秋整理)

北师大版八年级上册数学全册教学课件(2021年秋整理)

我发现
因为12 1,22 4,32 9,整数的平方
差越来越大,所以a应该在1和2之间,故
a不可能是整数
,又
(1 2
)
2
1 ,(1 )2 43
1, 9
(2 )2 3
4,两个相同因数的乘积都为分数, 9
所以a不可能是分数.
所以a不是有理数
做一做
判断一下这3个正方形的边长之间有怎样的 大小关系呢?
CD
A
EB
解:设滑道AC的长度为xm,则AB的长度为xm, AE的长度为(x-1)m.
在Rt△ACE中,∠AEC=90°,由勾股定理得
AE2+CE2=AC2, 即(x-1)2+32=x2,解得x=5.
CD
故滑道AC的长度为5m.
A
EB
随堂练习
甲、乙两位探险者,到沙漠进行探险。某日早晨8:00甲 先出发,他以6千米/时的速度向东行走。1小时后乙出发, 他以5千米/时的速度向北进行,行驶至10:00,甲、乙两 人相距多远?
4.在直角三角形ABC中,它的两直角边长的比 是 3:4,斜边长是20,则两直角边长分别
是 12 、 16 。
课后作业
布置作业:习题1.1 1、2、4题。 完成练习册中本课时的习题。
谢谢 大家
第2课时 勾股定理(2)
北师大版 八年级上册
情景导入
上一节课,我们通过测量和数格子的方法发现了 直角三角形三边的关系,但是这种方法是否具有 普遍性呢?
器量一量,他们都是直角三角形吗? 3.如果三角形的三边长为a、b、c,并满
足a2+b2=c2.那么这个三角形是直角三角形吗?
得出结论
如果三角形的三边长a、b、c满足a2+b2=c2,

北师大版八年级上册数学《一定是直角三角形吗》勾股定理培优说课教学复习课件

北师大版八年级上册数学《一定是直角三角形吗》勾股定理培优说课教学复习课件

活动二:
“我们选择3,4,5这组数来验证一下.”
(1)请同学们以3cm,4cm,5cm为三边
长画三角形,看看它是什么三角形?
(2)用三角尺或量角器量一量,都是
直角三角形吗?
一个实验结果,是必然还是巧合呢?
活动三:
接下来分为三个小组进行验证
(1)5cm, 12cm, 13cm
(2)8cm, 15cm, 17cm
B
变式: 四边形ABCD中已知AB=3,AD=4,BC=12,
CD=13,且∠A=900,求这个四边形的面积.
随堂演练
1、如果三条线段a、b、c满a2=b2-c2
那么这三条线段组成的三角形是直角三角形吗?
2、下列哪几组数据能作为直角三角形的三边长?请说明理由.
①9,12,15; ②15,36,39; ③0.3,0.4,0.5 ; ④12,18,22
A.锐角三角形B.直角三角形
C.钝角三角形D.等腰三角形
课堂检测
基 础 巩 固 题
1.下列各组数是勾股数的是 (
B
A.3,4,7
B.5,12,13
C.1.5,2,2.5
D.1,3,5
)
2.将直角三角形的三边长扩大同样的倍数,则得到的三角形
(
A
)
A.是直角三角形
B.可能是锐角三角形
C.可能是钝角三角形
探究新知
问题4 据此你有什么猜想呢?
由上面几个例子,我们猜想:
如果三角形的三边长a,b,c满足a2+b2=c2,那么这
个三角形是直角三角形.
我觉得这个猜
想不准确,因
我也觉得猜想不严
为测量结果可
谨,前面我们只取
能有误差.

北师大版八年级上册初二数学全册课件(精心整理汇编)

北师大版八年级上册初二数学全册课件(精心整理汇编)

图所示的图形,则下列结论中正确的是( A )
2
A.c2=a2+b2
B.c2=a2+2ab
+b2
3
C.c2=a2-2ab+b2
D.c2=(a+b)2
2021/1/28
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
相等;若相等,则是直角三角形,且最长边所对 的是直角;若不相等,则此三角形不是直角三 角形.
2021/1/28
知1-讲
例1 一个零件的形状如图1所示,按规定这个零 件中∠A和∠DBC都应为直角.工人师傅量得 这个零件各边尺寸如图2所示,这个零件符 合要求吗?
2021/1/28
图1
图2
知1-讲
解:在△ABD中,AB2+AD2=9+16=25=BD2, 所以△ABD是直角三角形,∠A是直角. 在△BCD中,BD2+BC2=25+144=169=CD2, 所以△BCD是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
第2课时 勾股定理的 验证与应用
2021/1/28
1 课堂讲解 勾股定理的验证 2 课时流程 勾股定理的应用
逐点 导讲练
课堂 小结
2021/1/28
作业 提升
上一节课,我们通过测量和数格子的方法发现了 勾股定理.在下图中,分别以直角三角形的三条边为边 长向外作正方形,你能利用这个图说明勾股定理的正 确性吗?你是如何做的?与同伴进行交流.
新北师大版八年级上册数学 全册课件

最新北师大版初二上册数学全册优秀课件(精心整理)

最新北师大版初二上册数学全册优秀课件(精心整理)
2021/6/25
当堂练习
1.图中阴影部分是一个正方形,则此正方 形的面积为 36 cm² .
8 cm
10 cm
A
13 5
C
2021/6/25
12
B
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的
平方.如果a,b和c分别表示直角三角形的
两直角边和斜边,那么a2+b2=c2.
几何语言:
B
∵在Rt△ABC中 , ∠C=90°,
a
c

定理∴揭a示2+了b2=直c角2(三勾角股形定三理边)之. 间的关系. C b A
2021/6/25
例3 在△ABC中,AB=20,AC=15,AD为BC边 上的高,且AD=12,求△ABC的周长.
解:当高AD在△ABC内部时,如图①. 在Rt△ABD中,由勾股定理, 得BD2=AB2-AD2=202-122=162, ∴BD=16; 在Rt△ACD中,由勾股定理, 得CD2=AC2-AD2=152-122=81, ∴CD=9. ∴BC=BD+CD=25, ∴△ABC的周长为25+20+15=60.
CQ B
(3)正方形R的面积是 2 平方厘米.
(图中每一格代表
上面三个正方形的面积之间有什么关系?
一平方厘米)
SP+SQ=SR
等腰直角三角形ABC三边长度之间存在什么关系吗?
Sp=AC2 SQ=BC2 SR=AB2
2021/6/25
AC2+BC2=AB2
填一填:观察右边两
幅图:完成下表(每
C
个小正方形的面积为
=2AD2+DB2+DC2+2DE(DC-DB).
又∵AD是△ABC的中线,

北师版初二数学上学期培优全套学案

北师版初二数学上学期培优全套学案

学科教师辅导讲义学员编号:年级:八年级(上) 课时数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲——勾股定理授课类型T同步课堂P实战演练S归纳总结教学目标①了解探索勾股定理的各种方法;②运用勾股定理解决一些实际问题;③掌握直角三角形的判别条件,掌握勾股数的概念。

授课日期及时段T(Textbook-Based)——同步课堂1、直角三角形:有一个角是直角的三角形叫做直角三角形。

2、直角三角形的两个锐角互余。

3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

4、直角三角形中,30°角所对的直角边是斜边的一半。

一、知识梳理1、我国古代把直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”。

体系搭建2、勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果用,a b 和c 分别表示直角三角形的两直角边和斜边,那么有222a b c += 。

3、勾股定理的常见证明:4、勾股数:我们把满足勾股定理的这样一组数称为够股数。

常见的够股数有:3、4 、5; 5、12、13 ; 6、8、10 ; 7、24、25;8、15、 17; 9、12、15;5、直角三角形的判定:若三角形的三条边满足两边的平方等于第三边的平方,则这个三角形是直角三角形。

其中第三边所对的角是直角。

考点一:勾股定理例1、在△ABC中,AB=AC=5,BC=6,D为BC中点,则AD的长为()A.3 B.4C.5 D.6例2、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个例3、如图,Rt△ABC的周长为(553)cm正方形的面积之和为25 cm2,则△ABC的面积是 cm2.考点二:勾股定理的证明例1、2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19C.25 D.169例2、中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.例3、在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2.即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A'B'C',并把它们拼成如图形状(点C和A'重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.例4、勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结,过点B作,则.∵S五边形ACBED=S△ACB+S△ABE+S△ADE= .又∵S五边形ACBED= =ab+c2+a(b﹣a),∴=ab+c2+a(b﹣a),∴a2+b2=c2.考点三:直角三角形的判定例1、满足下列条件的△ABC,不是直角三角形的是()A.b2=a2﹣c2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:5例2、甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达点A,乙客轮用20min 到达点B,若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是()A.北偏西30°B.南偏西30°C.南偏东60°D.南偏西60°例3、适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°.A.1个B.2个C.3个D.4个例4、三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三边长是.例5、已知a,b,c是直角三角形的三条边,且a<b<c,斜边上的高为h,则下列说法中正确的是.(只填序号)①a2b2+h4=(a2+b2+1)h2;②b4+c2h2=b2c2;③由可以构成三角形;④直角三角形的面积的最大值是.考点四:勾股数例1、下列各组数中不是勾股数的是()A.3,4,5 B.4,5,6C.5,12,13 D.6,8,10例2、下列几组数中,是勾股数的是()A.1,,B.15,8,17C.13,14,15 D.,,1P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个2、如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个3、如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.76 B.72C.68 D.524、下列条件中,不能判断△ABC为直角三角形的是()A.a=1.5,b=2,c=2.5 B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:55、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.6、中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形A n B n C n D n的面积为(用含n的式子表示,n为正整数).➢课后反击1、如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B 在围成的正方体上的距离是()A.0 B.1C.D.2、在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,则下列条件中不能判断是直角三角形的是()A.∠A=∠B﹣∠C B.∠A:∠B:∠C=1:1:2C.a:b:c=4:5:6 D.a2﹣c2=b23、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形4.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.5、在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为三角形;当△ABC三边分别为6、8、11时,△ABC为三角形.(2)猜想,当a2+b2 c2时,△ABC为锐角三角形;当a2+b2 c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.直击中考1、【2006•临沂】△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图1,根据勾股定理,则a2+b2=c2.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.2、【2016•东湖区】我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.学科教师辅导讲义二、 知识梳理1、直角三角形的判定直角三角形的判定:若三角形的三边满足222a b c +=,则这个三角形是直角三角形。

北师大版初二数学秋季班(教师版) 第6讲 函数--基础班

北师大版初二数学秋季班(教师版) 第6讲 函数--基础班

北师大初二数学8年级上册秋季版(教师版)最新讲义第6讲 函数常量与变量函数的概念函数自变量的取值范围和函数值函数的图象⎧⎪⎪⎨⎪⎪⎩知识点1 常量与变量1.变量与常量:在某一变化过程中,数值保持不变的量叫做常量,可以取不同数值的量叫做变量. 注:变量中,自己会变的量叫做自变量,因为自变量而随之改变的量叫做因变量.【典例】1.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,结果如下:则下列说法中正确的是( )A. 定价是常量,销量是变量B. 定价是变量,销量是不变量C. 定价与销售量都是变量,定价是自变量,销量是因变量D. 定价与销量都是变量,销量是自变量,定价是因变量【答案】C.【解析】解:定价与销售量都是变量,而随着定价的改变,销量也在随之改变,所以定价是自变量,销量是因变量,故C 正确.故选:C .【方法总结】本题主要考查了常量和变量的概念,解题的关键能根据题干叙述,准确判断出不变的量和变化的量,并能够从变量中确认出谁是引起变化的量,进而正确区分自变量和因变量.【随堂练习】1.(2018春•丹东期末)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.故选:B.2.(2018春•迁安市期末)李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:C.知识点2 函数的概念1.一般地,在一个变化过程中的两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量,y是因变量.2.函数的图像:在平面直角坐标系中,以函数的自变量的值为横坐标、相应的函数值为纵坐标的点所组成的图形叫做这个函数的图像.【典例】1.下列说法正确的是()A. 在球的体积公式V=43πr2中,V不是r的函数B. 若变量x、y满足y2=x,则y是x的函数C. 在圆锥的体积公式V=13πR2h中,当h=4厘米,R=2厘米时,V是π的函数D. 若变量x、y满足y=13x+13,则y是x的函数【答案】D.【解析】解:A、在球的体积公V=43πr2中,变量是V和r,给定一个r值,都有唯一的V值与它对应,则V是r的函数,故A错误;B、变量x、y满足y2=x,给定一个x=4,则有两个y值(±2)与之对应,则y不是x的函数,故B错误;C、在圆锥的体积公式V=13πR2h中,π是常量,所以当h=4厘米,R=2厘米时,V是π的函数是错误的,故C错误;D、变量x、y满足y=13x+13,给定一个x值,都有唯一的y值与之对应,则y是x的函数,故D正确;故选:D.2.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法正确的是______________.①x与y都是变量;②弹簧不挂重物时的长度为0cm;③物体质量每增加1kg,弹簧长度增加0.5cm;④所挂物体质量为7kg时,弹簧长度为13.5cm.【答案】①③④【解析】解:①x与y都是变量,且x是自变量,y是因变量,正确;②弹簧不挂重物时的长度为10cm,错误;③物体质量每增加1kg,弹簧长度增加0.5cm,正确;④所挂物体质量为7kg时,弹簧长度为10+7×0.5=13.5cm,正确故答案为:①③④3.下列图形中的图象不表示y是x的函数的是()A. B.C. D.【答案】C.【解析】解:根据函数的概念可知,给定一个x值,就有唯一的y值与它对应,即x是自变量,y是因变量.观察四个图象,A选项,给自变量x一个值,有且只有一个y值与其对应,故A是函数,B选项,给自变量x一个值,有且只有一个y值与其对应,故B是函数,C选项,根据图象知给自变量一个值,有的有3个函数值与其对应,故C不是函数,D选项,根据图象知给自变量x一个值,有且只有一个y值与其对应,故D是函数,故选:C.4.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有________米;(2)邮亭离公共阅报栏有________米;(3)小红从邮亭走回家用了________分.【答案】略【解析】解:(1)公共阅报栏离小红家有300米;。

北师大版初二数学秋季班(学生版) 第4讲 平面直角坐标系--尖子班

北师大版初二数学秋季班(学生版) 第4讲 平面直角坐标系--尖子班

北师大初二数学8年级上册秋季版(学生版)最新讲义第4讲 平面直角坐标系知识点1 有序数对像“9排7号”“第1列第5排”这样含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b ).注意:当a b ≠时,()a b ,和()b a ,是不同的两个有序数对. 【典例】1.如下图所示,B 表示为(4,5),B 左侧第二个人的位置是 ( )A. (2,5)B. (5,2)C. (2,2)D. (5,5)2.如下图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法,分别为?D C B A 五行三行六行六列五列四列三列二列一行一列【方法总结】第一题解题步骤:(1)明确本题是由行数和列数两个量来表示一个确定的位置;(2)由已知点确定行与列的前后位置:列数在前,行数在后;(3)用有序数对表示所求各点的位置.第二题,先明确2街4巷与4街2巷的具体位置为点(2,4)和点(4,2);理解题意,因为“走最短的路线”,所以只能向右或向下走,否则就不是最短路线.由此一一找出符合条件的线段.【随堂练习】1.(2018春•嘉祥县期中)雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m ,α),其中,m 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中,目标A 的位置表示为A (5,30°),目标C 的位置表示为C (3,300°).用这种方法表示目标B 的位置,正确的是( )A .(﹣4,150°)B .(4,150°)C .(﹣2,150°)D .(2,150°)(街)(巷)23541145322.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)3.(2018•北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④知识点2 各象限内点的坐标特征1、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴叫做横轴或x轴,习惯上取向右方向为正方向;竖直的数轴叫做纵轴或y轴,取向上的方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2、象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限,第二象限,第三象限和第四象限.坐标轴上的点不属于任何象限.。

2022年秋期八年级数学上册 专题提高讲义 第6讲 一次函数 北师大版

2022年秋期八年级数学上册 专题提高讲义 第6讲 一次函数 北师大版

x y x y 0b >0b <0k >0k <x y O x y O x y O xy O0b >0b <A B C D 第六讲:一次函数的图像及其性质1◆ 【考点梳理】◆【要点1】---函数定义及自变量的取值范围:函数的概念----在某个变化过程中,有两个变量x 和y ,如果给定一个x 的值,相应地就确定了唯一一个y 值,那么我们称 是 的函数。

其中 是自变量, 是因变量。

〔1〕、函数的三种表示方法:①、图象法;②、列表法;③、解析法; 〔2〕、确定自变量的取值范围:①实际问题中自变量取值范围要使实际问题有意义;②解析式中要考虑使表达式有意义 ◆【要点2】---函数图像及其画法:〔点与坐标的关系〕 〔1〕、函数图象上任意点P 〔x ,y 〕中的x ,y 满足函数关系式,满足函数关系式的任意一对x ,y 的值所对应的点一定在该函数的图象上。

点即解,解亦点。

〔2〕描点法作函数图象的步骤:①、列表 ②、描点 ③、连线 ◆【要点3】---一次函数的图像及其性质1、形如y kx b =+〔0,k k b ≠、为常数〕的函数。

当0b =时,函数(0)y kx k =≠叫正比例函数。

注意:判断一次函数的要点: 〔1〕自变量x 的次数为一次;〔2〕一次项系数0k ≠;〔3〕解析式为整式; 2、一次函数的图像性质:特例:(0)y kx k =≠的图像是经过坐标原点的一条直线 ◆【要点4】----待定系数法确定一次函数解析式:两点确定一条直线,设直线解析式:y kx b =+,代点的坐标求系数k 、b 。

◆【方法聚焦•典例解析】◆【考点题型1】---函数定义及函数图像 【例1】以下各图中,是函数图象的是〔 〕【例2】〔天津〕如图,是一对变量满足的函数关系的图象,有以下3个不同的问题情境:Axy Oxy Oxy OxyOBCD①、小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x 分,离出发地的距离为y 千米;②、有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒桶中的水,设时间为x 分,桶内的水量为y 升; ③、长方形ABCD 中,4AB =,3BC =,动点P 从点B 出发,依次沿边BC 、CD 、DA 匀速运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 、B 不重合时,ABP y S ∆=;当P 与点A 、B 重合时,0y =.其中符合图中所 示函数关系的问题情境的个数为〔 〕、0 B 、1 C 、2 D 、3【例3】求以下函数中自变量x 的取值范围; 〔1〕31-=x y 〔2〕43-=x y 〔3〕xx y 1+= 〔4〕2r s π=〔r 为圆的半径〕【例4】假设点A 〔3,1-m 〕在函数22-=x y 的图像上,那么m = ; ◆点拨:1、注意理解函数定义中,x 每取一个确定的值,与之对应的y 的值的唯一性; 2、自变量的取值范围:〔1〕解析式为整式---一切实数;〔2〕解析式为分式---分母不为0;〔3〕解析式含二次根式---被开方数非负;〔4〕实际问题---实际问题有意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本题综合考查了全等三角形的性质和判定、等边三角形的性质和判定、等腰三角形的性质、平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键.此题培养了学生综合分析问题和解决问题的能力,难度适中.
【随堂练习】
1.如图,点E是正方形ABCD对角线ACቤተ መጻሕፍቲ ባይዱ一点,AF⊥BE于点F,交BD于点G,则下述结论中不成立的是( )
4.如图①,美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,如图②,现将这四个全图②等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积___
综合运用
1.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于_____________.
【方法总结】
在AC上截取CF=AB,利用“边角边”证明△ABO和△FCO全等,根据全等三角形的性质可得OF=AO,∠AOB=∠FOC,然后判定出△AOF是等腰直角三角形,根据等腰直角三角形的斜边等于直角边的 倍求出AF,再根据AC=AF+CF,代入数据进行计算即可得解.
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,作辅助线构造出全等三角形与等腰直角三角形是解题的关键,也是本题的难点.
2.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC边于D,求DE的长.
【方法总结】
过P作PF∥BC交AC于F,得出三角形APF是等边三角形,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,由AAS证出△PFD≌△QCD,推出FD=CD,推出DE= AC即可.
2.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2 EF,则正方形ABCD的面积为______
【方法总结】
设AM=2a,BM=b,则正方形ABCD的面积=4a2+b2.由题意可知EF=(2a-b)-2(a-b)=2a-b-2a+2b=b,由AM=2 EF可得a与b的关系.分别用b表示正方形ABCD和正方形EFGH的面积,即可得出结果.
2.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若两直角边BC=4,AC=6,现将四个直角三角形中边长为6的直角边分别向外延长一倍,延长后得到下图所示的“数学风车”,则该“数学风车”所围成的总面积是_____.
3.在正方形ABCD中,E是AB上一点,F是BC上一点,且EF=AE+CF,则∠EDF度数为_____________.
第1讲复杂的“旋转型”与弦图
+
知识点1 复杂的“旋转型”
在一些特殊图形中,由两边相等可以利用“旋转”的方式将三角形“转移”,从而达到转移边或角的目的.在没有明确给出“旋转”后的图形时,有的需要作辅助线进行构造.
常见的一些模型如下:
【典例】
1.如图,以Rt△ABC的斜边BC为一边作正方形BCDE,对角线的交点为O,连接AO,如果AB=3,AO= ,求AC的长.
2.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x•y=2,③2xy+4=49,④x+y=9.其中说法正确的是___(填序号)
3.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是_____
A.等腰三角形
B.直角三角形
C.等边三角形
D.不等边三角形
知识点2 弦图及其拓展
“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,如下图.
图中的等量关系有:
a2+b2=c2;
4个小三角形的面积和=2ab;
大正方形的边长为c,面积=a2+b2=c2;
小正方形的边长为b-a= ,面积=(b-a)2=c2﹣2ab;
(a+b)2=a2+b2+2ab=c2+2ab;
(a-b)2=a2+b2-2ab=c2-2ab.
【典例】
1.在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,求a4+b4的值.
本题考查勾股定理、线段的垂直平分线的定义等知识,解题的关键是用直角三角形的两直角边长表示已知面积的正方形的边长.
【随堂练习】
1.如图是2002年在北京召开的国际数学家大会的会徽,它由4个相同的直角三角形拼成,已知直角三角形的两条直角边长分别为3和4,则大正方形ABCD和小正方形EFGH的面积比是( )
4.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c,若a与b之间的距离是5,b与c之间的距离是7,则正方形ABCD的面积是________.
5.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由“赵爽弦图”变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若正方形EFGH的边长为2,求S1+S2+S3的值.
A.AG=BEB.△ABG≌△BCE
C.AE=DGD.∠AGD=∠DAG
2.如图,点E是边长为5的正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.若EF=6,则CF的长为( )
3.如图,D是等边△ABC的边AC上的一点,E是等边△ABC外一点,若BD=CE,∠1=∠2,则对△ADE的形状最准确的是( )
【方法总结】
根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和.将a4+b4变形成包含a2+b2和ab的式子,从而求得a4+b4的值.
本题考查了勾股定理、弦图、完全平方式等知识,解题的关键是掌握弦图中的有关等量关系,灵活运用所学知识解决问题.
相关文档
最新文档