平行线的性质教学设计

合集下载

平行线的性质教案

平行线的性质教案

平行线的性质教案一、教学目标通过本教案的学习,学生将能够: - 理解平行线的定义; - 掌握平行线的性质和判定方法; - 运用平行线的性质解决实际问题。

二、教学重点•平行线的定义和性质;•平行线的判定方法。

三、教学难点•运用平行线的性质解决问题。

四、教学准备•讲义和笔记;•平行线的示意图。

五、教学过程1. 导入(5分钟)教师通过提问和示意图引入平行线的概念,引发学生对平行线的思考。

2. 定义和性质(20分钟)2.1 定义 - 教师向学生介绍平行线的定义:在同一个平面上,不相交的两条直线称为平行线。

- 教师引导学生观察示意图,理解平行线的概念。

2.2 性质 - 教师向学生介绍平行线的性质: - 平行线之间的距离保持恒定; - 平行线分别与同一条直线相交,内角和外角相等; - 平行线分别与同一条直线相交,同位角相等; - 平行线分别与两条截线相交,对应角相等。

3. 判定方法(25分钟)教师向学生介绍平行线的判定方法,包括: - 两条直线被一条截线截断,同位角相等; - 两条直线被一条截线截断,内角和外角相等; - 两条直线被平行线截断,对应角相等。

4. 运用与实践(25分钟)教师给学生提供一些实际问题,要求运用平行线的性质解决。

例如:问题一:如何用直尺和圆规画一条与给定线段平行的线段?问题二:若两条平行线分别与一条截线所成的内角和为60°和120°,求这两条平行线之间的夹角是多少?5. 小结与拓展(10分钟)教师对本节课的内容进行小结,并对下一节课的拓展内容进行预告。

鼓励学生复习和巩固所学内容。

六、教学反思通过本节课的教学,学生对平行线的定义和性质有了更深入的了解。

通过解决实际问题,学生能够运用平行线的性质进行推理和解决问题。

教师可以通过更多的实例提供拓展训练,帮助学生巩固所学知识。

在教学过程中,教师应该注重引导学生思考和互动,提高课堂的参与度和学习效果。

平行线的性质教案

平行线的性质教案

平行线的性质教案一、教学目标知识与技能:1. 理解平行线的定义和性质。

2. 学会使用直尺和圆规作图。

过程与方法:1. 通过观察和操作,培养学生的观察能力和动手能力。

2. 引导学生运用平行线的性质解决问题。

情感态度与价值观:1. 培养学生的学习兴趣和积极性。

2. 培养学生合作探究的精神。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:(1) 平行线互相平行。

(2) 平行线与横穿它们的直线相交,交角相等。

(3) 平行线间的距离相等。

三、教学重点与难点重点:平行线的定义和性质。

难点:平行线的性质的理解和运用。

四、教学方法采用观察、操作、讨论、讲解相结合的方法,引导学生自主学习,合作探究。

五、教学准备直尺、圆规、白板、教学卡片。

教学过程:一、导入新课利用教学卡片展示平行线的图片,引导学生观察并思考:这些直线有什么特殊的关系?引入平行线的概念。

二、探究平行线的性质1. 平行线的定义:引导学生通过观察和操作,总结平行线的定义。

2. 平行线的性质:引导学生分组讨论,观察平行线与横穿它们的直线的交角,总结平行线的性质。

3. 平行线间的距离:引导学生利用直尺和圆规作图,测量并比较平行线间的距离,总结平行线间的距离相等。

三、巩固练习出示练习题,让学生独立完成,巩固对平行线性质的理解。

四、课堂小结总结本节课所学平行线的性质,强调平行线互相平行、平行线与横穿它们的直线交角相等、平行线间的距离相等。

五、作业布置完成课后练习题,加深对平行线性质的理解。

六、板书设计平行线的性质1. 平行线互相平行。

2. 平行线与横穿它们的直线相交,交角相等。

3. 平行线间的距离相等。

六、教学拓展1. 利用平行线的性质解释生活中的现象,如双轨火车、电梯等。

2. 探讨平行线在几何图形中的应用,如平行四边形、梯形等。

七、课堂活动组织学生进行小组讨论,探讨如何利用平行线的性质解决实际问题,如设计平行线布局的图形、计算平行线间的距离等。

七年级数学上册《平行线的性质》教案、教学设计

七年级数学上册《平行线的性质》教案、教学设计
4.教师引导学生总结平行线性质的应用规律,提高学生的几何推理能力。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如:如何利用平行线性质求解角度或线段长度。
2.学生在小组内展开讨论,互相交流想法,共同解决问题。
3.教师巡回指导,参与学生讨论,引导学生深入思考,拓展思维。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平行线的定义、性质和应用规律。
2.学生分享学习心得,交流学习方法,提高学习效率。
3.教师强调平行线在几何学习中的重要性,激发学生学习几何的兴趣。
4.布置课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好准备。
五、作业布置
3.结合平行线的性质,让学生尝试证明以下几何问题:在三角形中,若两边平行,则这两边所对的角相等。
4.完成一份关于平行线性质的思维导图,要求涵盖平行线的定义、判定方法、性质及应用等方面,培养学生系统梳理知识的能力。
5.针对本节课的学习内容,写一篇学习心得体会,要求学生从知识掌握、能力提升、情感态度等方面进行反思,以提高学生的学习自我监控能力。
为了巩固本节课所学的平行线性质,提升学生的几何素养,特布置以下作业:
1.完成课本第chapter页的练习题,包括选择题、填空题和解答题,要求学生在理解平行线性质的基础上,熟练运用相关知识解决问题。
2.设计一道实际生活中的问题,让学生运用平行线的性质进行求解。例如:在学校的操场上,有一条跑道和两条平行的跳远沙坑,如果已知跑道的宽度为w米,求跳远沙坑的宽度。
6.预习下一节课内容,了解平行线与相交线之间的关系,为后续学习奠定基础。
请同学们认真完成作业,及时发现问题,通过自主学习、合作交流等方式解决疑惑,不断提升自己的几何素养。教师将根据作业完成情况,给予针对性的指导和评价,助力学生成长。

《平行线的性质》教学设计

《平行线的性质》教学设计

《平行线的性质》教学设计
授课时间:_____年___月___日
如图,直线a与直线b平行,直线c与它们相交.
(1)量一量:用量角器量图中8个角的度数.
(2)说一说:由测量的结果,你发现∠1与∠5、∠2与∠6、
∠3与∠7、∠4与∠8、∠3与∠6、∠4与∠5、∠3与∠5、
∠4与∠6的大小有什么关系?
(3)想一想:(2)中的各对角分别是什么角?
(4)议一议:两条平行直线被第三条直线所截,所得的同位
角、内错角、同旁内角有什么关系?
探究点:平行线的性质
问题1:画两条平行线a//b,然后画一
条截线c与a、b相交,标出如图所示的角.
(1)度量所形成的8个角的度数,哪些是同
位角?它们的度数之间有什么关系?说出你的猜想.
猜想:两条平行线被第三条直线所截,同位角.
(2)再任意画一条截线d,同样度量各个角的度数,你的猜想还成立吗?
(3)如果两直线不平行,上述结论还成立吗?
问题2:如图,已知a//b,那么∠2与∠3相等吗?为什么?
问题3:如图,已知a//b,那么∠2与∠4
有什么关系呢?为什么?
巩固新知:观看微课总结所学
四、典例精析
例1:如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角的度数分别是多少?
五、导学点拨
思考:平行线的判定和性质的区别?性质和判定的条件与结论互逆。

六、巩固提升
校本作业
七、课堂总结
平行线的性质几何语言图示
如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF ∥BC,且DE交BC边与点P.探究:∠ABC与∠DEF有怎样的数量关系?并说明理由.。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:(1)理解平行线的定义;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。

2. 过程与方法:(1)通过观察、思考、交流,培养学生的抽象思维能力;(2)利用几何画板软件,直观展示平行线的性质,提高学生的动手操作能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。

二、教学重点与难点1. 教学重点:(1)平行线的定义;(2)平行线的性质。

2. 教学难点:(1)平行线性质的推导与理解;(2)运用平行线性质解决实际问题。

三、教学方法1. 情境创设:利用生活实例引入平行线的概念,激发学生兴趣;2. 合作学习:分组讨论,共同探索平行线的性质;3. 直观展示:利用几何画板软件,动态展示平行线的性质;4. 练习巩固:设计相关习题,巩固所学知识。

四、教学过程1. 导入新课:(1)利用生活实例,如同一平面内两条永不相交的直线;(2)引导学生思考:如何判断两条直线是否平行?2. 探究平行线的性质:(1)学生分组讨论,共同探究平行线的性质;(2)每组汇报探究成果,师生共同总结平行线的性质。

3. 直观展示:(1)利用几何画板软件,动态展示平行线的性质;(2)引导学生观察、思考,加深对平行线性质的理解。

4. 练习巩固:(1)设计相关习题,让学生运用所学知识解决问题;(2)教师点评,纠正错误,巩固知识点。

五、课后作业1. 概念巩固:回顾平行线的定义,加深对平行线概念的理解;2. 性质练习:完成课后习题,运用平行线的性质解决问题;3. 拓展延伸:探究平行线在实际生活中的应用,如交通规则等。

六、教学评估1. 课堂提问:通过提问了解学生对平行线性质的理解程度;2. 课后作业:检查学生完成作业的情况,巩固所学知识;3. 小组讨论:观察学生在小组讨论中的表现,了解合作学习能力;4. 期中期末考试:检验学生对平行线知识的掌握程度。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。

2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等。

(2)平行线之间的夹角相等。

(3)平行线与截线所形成的内错角相等。

(4)平行线与截线所形成的同位角相等。

三、教学重点与难点1. 教学重点:平行线的性质及其应用。

2. 教学难点:平行线性质的推理和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。

2. 利用几何画板等软件,直观展示平行线的性质。

3. 组织小组讨论,培养学生的合作能力。

五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。

2. 自主探究:学生独立观察、操作,发现平行线的性质。

3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。

4. 教师讲解:总结平行线的性质,并进行推理和证明。

5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。

6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。

7. 作业布置:布置适量作业,巩固所学知识。

六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。

2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。

3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。

3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。

《平行线的性质》数学教案

《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。

2. 通过实例让学生熟练掌握平行线的性质。

3. 培养学生的空间观念和逻辑思维能力。

二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。

2. 教学难点:如何理解和应用平行线的性质。

三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。

- 提出问题,引导学生思考平行线的相关知识。

2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。

- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。

- 鼓励学生动手操作,亲自验证平行线的性质。

4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。

- 对学生的解答进行点评,帮助他们改正错误,加深理解。

5. 小结与反思:
- 引导学生总结本节课的学习内容。

- 鼓励学生分享自己的学习心得,提出疑问或困惑。

四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。

五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。

- 思考如何改进教学方法,提高教学质量。

平行线的性质教学设计(多篇)

平行线的性质教学设计(多篇)

平行线的性质教学设计在教学工作者开展教学活动前,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

优秀的教学设计都具备一些什么特点呢?以下是收集整理的平行线的性质教学设计,欢迎阅读与收藏。

4月6日在我校召开了一场有关于高效课堂的研讨会,应区教研室要求,我上了一节示范课。

本节课我选择了一节有关于平行线性质和判定的综合应用课。

我理解的高效课堂应该是教师对学生数学思想的正确引导和数学学习方法的指导,以及学生对知识的正确理解和灵活运用。

所以本节课我设计了五个环节。

第一环节,复习回顾——说一说,利用课本例题1对平行线判定的方法进行复习,增加了自己提问同伴回答的环节,提高了对本例题的要求,从方法、观察图形上对学生进行指导。

第二环节,应用知识——做一做,利用课本中的例3对平行线的性质进行复习,增加了求任意夹角的环节,为进一步的两到三步证明奠定基础。

第三环节,总结方法——辨一辨,总结方法中指导学生学会观察图像,明确每个图像中角与线的位置关系。

第四环节,深化提高——想一想,尝试用两步证明去解决一道关于命题的证明,让学生从中体验逻辑推理,一题多解,以及对知识的灵活运用。

第五环节,层层递进——考一考,对学生当堂所学内容进行检测,在书写过程中体会证明的逻辑关系,对学生的书写格式加以规范。

反思:能够完成本节课的教学任务,学生能够参与到所设计的教学活动中,效果较好。

需要改进的方面:在第一环节中的讨论应更具有多样性,给出例1的图形后应该将这道题目彻底放开,学生通过观察图像,自然得出由角相等得到线平行,或者由线平行得到角相等。

老师应将学生回答的问题在黑板上板书并按性质和判定两类分开,按这样的方式比之前的设计应该更好一些。

一、教学目标1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。

2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。

3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。

二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线互相平行。

(2)平行线与横穿它们的直线相交,交角相等。

(3)平行线之间的距离相等。

三、教学重点与难点1. 教学重点:平行线的概念及性质。

2. 教学难点:平行线性质的理解和应用。

四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。

2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。

3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。

五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。

2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。

(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。

3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。

(2)设置练习题,让学生运用平行线的性质解决问题。

4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。

(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。

5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。

六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。

2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。

3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。

七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。

2. 针对学生的学习情况,调整教学策略,提高教学效果。

3. 关注学生的学习需求,不断优化教学内容,提升教学质量。

八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。

平行线的性质教学设计

平行线的性质教学设计

平行线的性质教学设计一、教学目标:1.知识与技能:了解平行线的定义,学习平行线的性质及判定方法;2.过程与方法:通过观察、实验、归纳等方式学习和掌握平行线的性质;3.情感态度价值观:培养学生对几何知识的兴趣和热爱,提高其分析和解决问题的能力。

二、教学重点与难点:1.重点:平行线的定义、平行线的性质及判定方法;2.难点:通过观察和实验归纳平行线的性质。

三、教学过程设计:【导入】(5分钟)1.激发学生的兴趣:教师出示两条平行线和两条不平行线的图像,引导学生观察并比较它们的特点,引发学生对平行线的好奇心。

2.提出问题:教师问学生如何定义平行线,学生回答并给出例子。

3.引入学习目标:教师引入本课的学习目标,即学习平行线的性质和判定方法。

【学习内容展示与讲解】(15分钟)1.平行线的定义:教师呈现平行线的定义,即两条直线在同一平面内,且不存在交点,称为平行线。

2.平行线的性质:教师讲解平行线的性质,如平行线上的任意两点与直线上的第三点的角度相等等。

3.平行线的判定方法:教师介绍两种常见的平行线判定方法,即直线与直线判定和平行线与交线判定。

【学习活动】(30分钟)1.观察实验:教师组织学生进行观察实验,要求学生用直尺和铅笔在纸上画一些直线,并通过实验找出平行线的特点。

2.归纳总结:教师引导学生归纳整理实验结果,总结平行线的性质,并将其写在黑板上。

3.练习巩固:教师出示一些图形,让学生判断图中的线段是否平行,如果平行,让学生给出证明,如果不平行,让学生找出另一条平行线。

【拓展延伸】(15分钟)1.制作模型:教师组织学生分组制作平行线模型,并通过模型的比较分析来归纳平行线的性质。

2.趣味游戏:教师设计一些趣味游戏,例如“平行线接龙”,让学生通过接龙的方式练习判定平行线。

【总结反思】(10分钟)1.学生总结:让学生自己总结今天学到的知识点,并回答教师提出的问题。

2.教师点评:教师对学生的总结进行点评和补充,强调平行线的重要性和应用价值。

初中数学平行线的性质教案

初中数学平行线的性质教案

初中数学平行线的性质教案初中数学平行线的性质教案作为一名默默奉献的教育工作者,往往需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。

那么问题来了,教案应该怎么写?下面是小编收集整理的初中数学平行线的性质教案,欢迎阅读与收藏。

初中数学平行线的性质教案1一、主题分析与设计本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。

本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

二、教学目标1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

初中数学教育叙事3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

三、教学重、难点1、重点:对平行线性质的掌握与应用2、难点:对平行线性质1的探究四、教学用具1、教具:多媒体平台及多媒体课件2、学具:三角尺、量角器、剪刀五、教学过程(一)创设情境,设疑激思1、播放一组幻灯片。

平行线的性质教案设计

平行线的性质教案设计

平行线的性质教案设计一、教学目标1. 知识与技能:(1)理解平行线的定义;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。

2. 过程与方法:(1)通过观察、实践、探究等活动,培养学生的空间观念和逻辑思维能力;(2)学会用直尺和圆规作图,提高学生的动手能力。

3. 情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

二、教学重点与难点1. 教学重点:平行线的性质及应用。

2. 教学难点:平行线性质的证明及运用。

三、教学准备1. 教具:黑板、粉笔、直尺、圆规、多媒体设备。

2. 学具:学生用书、练习本、铅笔、橡皮、直尺、圆规。

四、教学过程1. 导入新课利用多媒体展示生活中常见的平行线现象,引导学生观察、思考,引出平行线的概念。

2. 探究新知(1)介绍平行线的定义;(2)引导学生通过实践探究平行线的性质;(3)讲解平行线性质的证明过程;(4)举例说明平行线性质在实际问题中的应用。

3. 课堂练习布置练习题,让学生独立完成,巩固所学知识。

4. 课堂小结总结本节课所学内容,强调平行线的性质及应用。

五、课后作业1. 完成学生用书上的练习题;2. 结合生活实际,寻找平行线的应用实例,下节课分享。

六、教学策略1. 采用问题驱动法,引导学生主动探究平行线的性质;2. 运用实例分析法,让学生感受数学与生活的紧密联系;3. 利用小组合作学习法,培养学生的团队合作精神和沟通能力。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 练习完成情况:检查学生课后作业的完成质量,评估学生对知识的掌握程度;3. 小组讨论:评价学生在小组合作中的表现,包括沟通交流、合作解决问题等。

八、教学拓展1. 引导学生思考:平行线在现实生活中有哪些应用?2. 布置研究性学习任务:调查并报告平行线在建筑、交通、设计等领域的应用。

九、教学反思课后总结本节课的教学效果,反思教学过程中的优点和不足,为改进教学方法提供依据。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的定义和性质;2. 学生能够运用平行线的性质解决实际问题。

过程与方法:1. 学生通过观察、实验和推理,探索平行线的性质;2. 学生能够运用归纳和演绎的方法,证明平行线的性质。

情感态度价值观:1. 学生培养对数学的兴趣和好奇心;2. 学生培养合作和交流的能力。

二、教学重点:平行线的性质三、教学难点:平行线的性质的证明和应用四、教学准备:课件、黑板、粉笔、直线模型、平行线模型五、教学过程:1. 导入:教师通过展示直线和平行线的模型,引导学生回顾直线的定义和平行线的定义。

2. 探索平行线的性质:教师引导学生观察平行线模型,让学生自己发现平行线的性质。

学生可以分组讨论,分享自己的发现。

3. 证明平行线的性质:教师引导学生运用归纳和演绎的方法,证明平行线的性质。

学生可以分组讨论,共同完成证明过程。

4. 应用平行线的性质:教师给出实际问题,让学生运用平行线的性质解决问题。

学生可以独立思考,也可以分组讨论。

5. 总结:教师引导学生总结平行线的性质,并强调其在几何学中的应用。

6. 作业布置:教师布置相关的练习题,让学生巩固所学知识。

7. 板书设计:平行线的性质同一平面内,不相交的两条直线叫做平行线。

平行线之间的距离相等。

平行线上的对应角相等。

平行线上的内错角相等。

平行线上的同位角相等。

六、教学反思:教师在课后进行教学反思,分析学生的学习情况,教学效果,以及可能需要改进的地方。

教师可以根据学生的作业完成情况和课堂表现来进行评估。

七、评价与反馈:教师对学生的学习情况进行评价,包括学生的理解程度、解决问题的能力、合作交流的能力等。

教师可以通过考试、作业、课堂表现等方式来进行评价。

教师需要给予学生及时的反馈,帮助学生提高。

八、拓展与延伸:教师可以给学生提供一些拓展和延伸的题目,帮助学生深入理解平行线的性质,并能够灵活运用。

这些题目可以包括证明题、应用题等,难度可以适当增加。

《平行线的性质》教学设计

《平行线的性质》教学设计

平行线的性质教学设计一、教学目标1.知识目标:了解平行线的定义和性质。

2.能力目标:能够判定两条直线是否平行,并根据平行线的性质解决简单问题。

3.情感目标:培养学生对几何知识的兴趣,提高解决问题的能力。

二、教学重点1.平行线的定义和性质。

2.判定两条直线是否平行的方法。

三、教学难点1.应用平行线性质解决问题。

四、教学过程第一步:导入新知(5分钟)在导入环节,可以通过提问引导学生复习直线的基本概念,并引出本节课的学习内容。

教师可以提问以下问题:1.直线的定义是什么?2.两条直线如何判断它们平行?3.平行线有哪些性质?第二步:讲解平行线的定义和性质(10分钟)在这一步中,教师通过板书或投影仪展示相关概念和性质的定义,对平行线的概念进行解释。

并通过示意图引导学生理解平行线的性质。

教师可以使用如下的板书设计:定义:如果两条直线在同一个平面上,且它们不相交,那么这两条直线称为平行线。

性质1:平行线与同一条横线的交点到另一条平行线的距离相等。

性质2:被平行线截取的两个相交线段比相交线段之比相等。

第三步:解决实际问题(15分钟)在这一步中,教师通过提供一些实际问题来引导学生运用平行线的性质进行解决。

示例问题:1.若一条平行线截取另一条平行线上的一段为5cm,这段线截取了另一条线上一段为8cm,求这两条平行线的长度比例。

2.如果一个三角形的两边分别和平行线上的两边成比例,那么这个三角形和哪个三角形相似?第四步:巩固练习(20分钟)在这一步中,教师可以设计一些练习题让学生巩固所学内容。

示例题目:1.已知一个四边形的边AB与边CD平行,边AD与边BC平行,证明这个四边形是平行四边形。

2.两条直线分别与一条平行线交于不同点A、B,C、D,如果∠ACB=∠ADB,那么证明ABCD是平行四边形。

第五步:小结与拓展(5分钟)在这一步中,教师对本节课进行小结,并展开拓展。

小结内容可以包括:1.平行线的定义和性质。

2.平行线的判定方法。

平行线的性质初中数学教案

平行线的性质初中数学教案

平行线的性质初中数学教案一、教学目标:1. 让学生理解平行线的概念,掌握平行线的性质。

2. 培养学生运用平行线的性质解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队合作能力。

二、教学内容:1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的任意一对对应角相等。

(2)平行线之间的任意一对内错角相等。

(3)平行线之间的任意一对同位角相等。

(4)如果两条直线都与第三条直线平行,这两条直线也互相平行。

三、教学重点与难点:重点:平行线的性质。

难点:平行线性质的证明和应用。

四、教学方法:1. 采用问题驱动法,引导学生探索平行线的性质。

2. 使用多媒体辅助教学,展示平行线的性质和应用。

3. 组织学生进行小组讨论,培养团队合作能力。

4. 进行课堂练习,及时巩固所学知识。

五、教学过程:1. 导入:通过生活实例引入平行线的概念,引导学生思考平行线的特点。

2. 新课讲解:讲解平行线的性质,结合图形进行演示,让学生直观理解。

3. 案例分析:分析实际问题,运用平行线的性质解决问题。

4. 小组讨论:让学生分组讨论,探索平行线性质的证明方法。

5. 课堂练习:布置练习题,让学生巩固所学知识。

6. 总结与拓展:总结本节课所学内容,提出拓展问题,激发学生思考。

7. 课后作业:布置作业,让学生进一步巩固平行线的性质。

六、教学评估:1. 课堂问答:通过提问方式检查学生对平行线概念的理解和对平行线性质的掌握。

2. 练习题:布置课堂练习,评估学生对平行线性质的应用能力。

3. 小组讨论:评估学生在小组讨论中的参与程度和逻辑思维能力。

七、教学反思:1. 教师反思:回顾课堂教学,评估教学方法的有效性,思考如何改进教学策略以提高学生学习效果。

2. 学生反馈:收集学生对课堂学习的反馈,了解学生的学习需求和困惑。

八、教学延伸:1. 拓展活动:组织学生进行平行线相关的拓展活动,如制作平行线的手工制品或进行平行线的户外观察。

平行线的性质优秀教案设计

平行线的性质优秀教案设计

平行线的性质优秀教案设计平行线的性质优秀教案设计「篇一」七年级数学下册《平行线的性质》教案范文【教学目标】1.经历从性质公理推出性质的过程;2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。

【对话探索设计】〖探索1反过来也成立吗过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的。

现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?结论:如果一个句子是正确的,反过来说(因果对调),就未必正确。

〖探索2上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?〖探索3(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测。

结论:两条平行线被第三条直线所截,同位角相等。

与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中总结出来的.结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质。

〖探索4如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质。

现在我们来试一试:如何根据性质1说出性质2成立的道理。

如图。

∵a∥b(已知)。

∴∠1=∠3(____________________)。

又∠3=________(对顶角相等)。

∴∠1=∠2(___________)。

以上过程说明了:由性质1可以得出性质2。

〖探索5我们学过判定两直线平行的第三种方法:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)把这条定理反过来,可以简单说成_____________________。

平行线的性质的教案设计

平行线的性质的教案设计

平行线的性质教案设计教学目标:知识与技能:1. 理解平行线的定义和性质。

2. 学会使用直尺和圆规作图。

过程与方法:1. 通过观察和操作,培养学生的观察能力和动手能力。

2. 利用几何图形的变换,引导学生发现平行线的性质。

情感态度价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。

2. 培养学生的团队合作意识,鼓励学生在小组中积极交流。

教学重点:平行线的性质。

教学难点:平行线的性质的证明和应用。

教学准备:直尺、圆规、几何模型。

教学过程:一、导入(5分钟)1. 利用多媒体展示生活中的平行线现象,引导学生关注平行线。

二、探究平行线的性质(15分钟)1. 学生分组,每组利用直尺和圆规作图,尝试找出平行线之间的性质。

三、验证平行线的性质(15分钟)1. 学生利用几何模型,自行验证平行线的性质。

四、练习与巩固(10分钟)1. 学生独立完成练习题,检测对平行线性质的理解。

2. 教师点评练习题,针对学生的错误进行讲解。

2. 学生思考:平行线的性质在实际生活中有哪些应用?教学反思:本节课通过观察、操作、验证等环节,让学生深入了解平行线的性质。

在教学过程中,注意引导学生主动参与,培养学生的观察能力、动手能力和思考能力。

通过练习题的设置,让学生巩固所学知识,提高解决问题的能力。

在今后的教学中,要注重对学生的个别辅导,提高学生的学习兴趣和自信心。

六、课堂活动与实践(15分钟)活动目的:通过实践活动,增强学生对平行线性质的理解和应用。

活动步骤:1. 教师布置实践活动:利用直尺和圆规,画出两条平行线,并找出它们之间的对应角。

2. 学生分组进行实践活动,教师巡回指导。

3. 各组展示实践活动成果,教师点评并指导。

七、案例分析与讨论(15分钟)活动目的:通过分析实际案例,培养学生解决实际问题的能力。

活动步骤:1. 教师展示一个实际案例:在一条马路上,有两辆车的车轮痕迹是平行的,求这两辆车的速度是否相同。

2. 学生分组讨论,分析问题,并提出解决方案。

平行线的性质教案人教版(优秀教案)

平行线的性质教案人教版(优秀教案)

平⾏线的性质教案⼈教版(优秀教案)《平⾏线的性质》教案平⾏线的性质(⼀)教学⽬标.经历观察、操作、想像、推理、交流等活动,进⼀步发展空间观念,推理能⼒和有条理表达能⼒。

.经历探索直线平⾏的性质的过程,掌握平⾏线的三条性质,并能⽤它们进⾏简单的推理和计算.重点、难点重点:探索并掌握平⾏线的性质,能⽤平⾏线性质进⾏简单的推理和计算.难点:能区分平⾏线的性质和判定,平⾏线的性质与判定的混合应⽤.教学过程⼀、引导学⽣逆向思维现在同学们已经掌握了利⽤同位⾓相等,或者内错⾓相等,或者同旁内⾓互补, 判定两条直线平⾏的三种⽅法.在这⼀节课⾥:⼤家把思维的指向反过来: 如果两条直线平⾏,那么同位⾓、内错⾓、同旁内⾓的数量关系⼜该如何表达?⼆、实践探究.学⽣画图活动:⽤直尺和三⾓尺画出两条平⾏线∥,再画⼀条截线与直线、相交,标出所形成的⼋个⾓(如课本图)...图中哪些⾓是同位⾓?它们具有怎样的数量关系?图中哪些⾓是内错⾓?它们具有怎样的数量关系?图中哪些⾓是同旁内⾓?它们具有怎样的数量关系?在详尽分析后,让学⽣写出猜想..学⽣验证猜测.学⽣活动:再任意画⼀条截线,同样度量并计算各个⾓的度数,你的猜想还成⽴吗?.师⽣归纳平⾏线的性质,教师板书.c b a4321平⾏线具有性质:性质:两条平⾏线被第三条直线所截,同位⾓相等,简称为两直线平⾏, 同位⾓相等.性质:两条平⾏线被第三条直线所截,内错⾓相等,简称为两直线平⾏, 内错相等.性质:两条直线按被第三条线所截,同旁内⾓互补,简称为两直线平⾏, 同旁内⾓互补.教师让学⽣结合右图,⽤符号语⾔表达平⾏线的这三条性质,教师同时板书平⾏线的性质和平⾏线的判定.平⾏线的性质平⾏线的判定因为∥, 因为∠∠, 所以∠∠所以∥. 因为∥, 因为∠∠, 所以∠∠, 所以∥. 因为∥, 因为∠∠°, 所以∠∠°, 所以∥..教师引导学⽣理清平⾏线的性质与平⾏线判定的区别. 学⽣交流后,师⽣归纳:两者的条件和结论正好相反:由⾓的数量关系(指同位⾓相等,内错⾓相等,同旁内⾓互补), 得出两条直线平⾏的论述是平⾏线的判定,这⾥⾓的关系是条件,两直线平⾏是结论.由已知的两条直线平⾏得出⾓的数量关系(指同位⾓相等,内错⾓相等, 同旁内⾓互补)的论述是平⾏线的性质,这⾥两直线平⾏是条件,⾓的关系是结论. .进⼀步研究平⾏线三条性质之间的关系.教师:⼤家能根据性质,推出性质成⽴的道理吗?结合上图,教师启发分析:考察性质、性质的结论发⽣了什么变化? 学⽣回答∠换成∠,教师再问∠与∠有什么关系?并完成说理过程,教师纠正学⽣错误,规范地给出说理过程. 因为∥,所以∠∠(两直线平⾏,同位⾓相等); ⼜∠∠(对顶⾓相等),所以∠∠.教师说明:这是有两步的说理,第⼀步推理根据平⾏线性质,第⼆步推理的条件不仅有∠∠,还有∠∠.∠∠是根据等式性质.根据等式性质得到的结论可以不写理由. 学⽣仿照以下说理,说出如何根据性质得到性质的道理. .平⾏线性质应⽤.例(课本)如图是⼀块梯形铁⽚的线全部分,量得∠°,∠°, 梯形另外两个⾓分别是多少度?教师把学⽣情况,可启发提问:①梯形这条件如何使⽤?②∠与∠、∠与∠的位置关系如何,数量关系呢?为什么? 讲解按课本.三、巩固练习 .课本练习()..补充:如图是⼀条直线,∠°,∠°,∠°,求∠的度数.E21DCBA本题综合应⽤平⾏线的判定和性质,教师要引导学⽣观察图形,考察已知⾓的数量关系,确定解题的思路. 四、作业 .课本..补充作业: ⼀、判断题..两条直线被第三条直线所截,则同旁内⾓互补.( ).两条直线被第三条直线所截,如果同旁内⾓互补,那么同位⾓相等.( )D C BA.两条平⾏线被第三条直线所截,则⼀对同旁内⾓的平分线互相平⾏.( ) ⼆、填空题..如图(),若∥,则∠∠,∠∠, ∠∠°; 若∥,则∠∠, ∠∠,∠∠°.87654321DC BAFEDC B A() () ().如图(),在甲、⼄两地之间要修⼀条笔直的公路, 从甲地测得公路的⾛向是南偏西°,甲、⼄两地同时开⼯,若⼲天后公路准确接通,则⼄地所修公路的⾛向是,因为. .因为∥∥,所以∥,理由是. .如图()∥,∠∠,则∥.说理如下: 因为∠∠,所以∥( ) ⼜∥,所以∥( ). 三、选择题..∠和∠是直线、被直线所截⽽成的内错⾓,那么∠和∠的⼤⼩关系是( ) .∠∠ .∠>∠; .∠<∠ .⽆法确定.⼀个⼈驱车前进时,两次拐弯后,按原来的相反⽅向前进, 这两次拐弯的⾓度是( ) .向右拐°,再向右拐°; .向右拐°,再向左拐° .向右拐°,再向右拐°; .向右拐°,再向左拐° 四、解答题 .如图,已知:∠°,∠°,∠°,求∠的度数.4321DCBA.如图,已知∥,∠∠,求证平分∠.E21DCB5.3.2平⾏线的性质(第课时)平⾏线的性质(⼆)教学⽬标.经历观察、操作、推理、交流等活动,进⼀步发展空间观念,推理能⼒和有条理表达能⼒. .理解两条平⾏线的距离的含义,了解命题的含义,会区分命题的题设和结论. .能够综合运⽤平⾏线性质和判定解题. 重点、难点重点:平⾏线性质和判定综合应⽤,两条平⾏的距离,命题等概念. 难点:平⾏线性质和判定灵活运⽤. 教学过程⼀、复习引⼊.平⾏线的判定⽅法有哪些?(注意:平⾏线的判定⽅法三种,另外还有平⾏公理的推论).平⾏线的性质有哪些. .完成下⾯填空.已知:如图是的延长线∥∥,若∠°,则∠, ∠,∠.⊥⊥,那么与的位置关系如何?为什么?cba⼆、进⾏新课.例已知:如上图∥⊥,直线与垂直吗?为什么?学⽣容易判断出直线与垂直.鉴于这⼀点,教师应引导学⽣思考:()要说明⊥,根据两条直线互相垂直的意义, 需要从它们所成的⾓中说明某个⾓是°,是哪⼀个⾓?通过什么途径得来?E D C B A()已知⊥,这个“形”通过哪个“数”来说理,即哪个⾓是°.()上述两⾓应该有某种直接关系,如同位⾓关系、内错⾓关系、同旁内⾓关系,你能确定它们吗? 让学⽣写出说理过程,师⽣共同评价三种不同的说理. .实践与探究()下列各图中,已知∥,∠的度数并填⼊表格.通过上述实践,FECBAFECBA() () 教师投影题⽬:学⽣依据题意,画出类似图()、图()的图形,测量并填表,并猜想:∠∠∠.在进⾏说理前,教师让学⽣思考:平⾏线的性质对解题有什么帮助? 教师视学⽣情况进⼀步引导: ①虽然∥,但是∠与∠不是同位⾓,也不是内错⾓或同旁内⾓. 不能确定它们之间关系.②∠与∠是直线、被直线所截⽽成的内错⾓,但是与不平⾏.能不能创造条件,应⽤平⾏线性质,学⽣⾃然想到过点作∥,这样就能⽤上平⾏线的性质,得到∠∠. ③如果要说明∠∠,只要说明与平⾏,你能做到这⼀点吗?以上分析后,学⽣先推理说明, 师⽣交流,教师给出说理过程.FEDCB A作∥,因为∥∥,所以∥(两条直线都与第三条直线平⾏, 这两条直线也互相平⾏). 所以∠∠(两直线平⾏,内错⾓相等).因为∥. 所以∠∠(两直线平⾏,内错⾓相等).所以∠∠∠. ()教师投影课本探究的图(图)及⽂字.①学⽣读题思考:线段1C 2C……5C 都与两条平⾏线的横线和2C 垂直吗?它们的长度相等吗?②学⽣实践操作,得出结论:线段1C 2C……5C 同时垂直于两条平⾏直线和2C,并且它们的长度相等.③师⽣给两条平⾏线的距离下定义.学⽣分清线段1C 的特征:第⼀点线段1C 两端点分别在两条平⾏线上,即它是夹在这两条平⾏线间的线段,第⼆点线段1C 同时垂直这两条平⾏线. 教师板书定义:(像线段1C)同时垂直于两条平⾏线, 并且夹在这两条平⾏线间的线段的长度,叫做这两条平⾏线的距离.④利⽤点到直线的距离来定义两条平⾏线的距离.F EDCBA教师画∥,在上任取⼀点,作⊥,垂⾜为.学⽣思考是否垂直直线?垂线段的长度是平⾏线、的距离吗? 这两个问题学⽣不难回答,教师归纳:两条平⾏线间的距离可以理解为:两条平⾏线中,⼀条直线上任意⼀点到另⼀条直线的距离. 教师强调:两条平⾏线的距离处处相等,⽽不随垂线段的位置改变⽽改变. .了解命题和它的构成.()教师给出下列语句,学⽣分析语句的特点.①如果两条直线都与第三条直线平⾏,那么这条直线也互相平⾏; ②等式两边都加同⼀个数,结果仍是等式; ③对顶⾓相等;④如果两条直线不平⾏,那么同位⾓不相等.这些语句都是对某⼀件事情作出“是”或“不是”的判断. ()给出命题的定义.判断⼀件事情的语句,叫做命题.教师指出上述四个语句都是命题,⽽语句“画∥”没有判断成分,不是命题.教师让学⽣举例说明是命题和不是命题的语句. ()命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论. 有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师⽣共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在⼀个等式”⽽且“这等式两边加同⼀个数”是题设, “结果仍是等式”是结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线的性质》教学设计
岳阳市汨罗市新市镇中学湛建伟
教学目标:
1、知识与技能:探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

2、过程与方法:让学生经历动手操作、发现、猜想、交流、归纳等活动,培养学生的观察能力、操作能力、说理能力和数学语言规范表达能力,在操作中学会与人合作,学会交流自己的思想方法。

3、情感、态度与价值观:使学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学生兴趣。

教学重难点:
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

难点:有条理的写出推理的过程。

教学法:
学法:自主学习法、探究学习法
教法:讲授、讨论、演示、练习等方法
教学过程:
一、导
复习提问:同学们,我们知道在同一平面内,如果两条直线被第三条直线所截就会形成“三线八角”,那么“三线八角”是指什么呢?
二、探
探索新知(一)平行线的性质
(1)画直线a∥b,且直线a、b被直线c所截。

(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系?
(3)大胆猜想:两直线平行,同位角之间有什么关系?
(4)进一步探究:两平行线被第三条直线所截得到的内错角、同旁内角各有怎样的关系。

如图:已知a∥b,那么∠3与∠2是什么关系?∠2与∠4又会有什么关系呢?
(5)我会说平行线的性质:
(6)知识应用:
如图,已知AB∥CD,∠1=150°
∠1与∠2是角,
因此∠2 ∠1=
∠1与∠4是角,
因此∠4 ∠1=
∠1与∠3是角,
因此∠3= =
探索新知(二)平行线性质的计算与应用
例1:如图,直线AB,CD被直线EF所截,AB∥CD,∠1=100°,试求∠3的度数。

做一做:如图,已知直线a、b被直线c所截,a∥b,∠1=60°,试求∠2的度数。

例2:如图有一块梯形的玻璃,已知量的∠A=115°,∠D=100°,请你想一想,梯形的另外两个角各是多少度?
练一练:
如图,AD∥BC,∠B=∠D,试问∠A与∠C相等吗?为什么?
三、结
通过这节课的学习,你有什么收获?你感受最深的是什么?
四、用
1、如图1,a∥b, a、b被c所截,得到∠1=∠2的依据是()
A、两直线平行,同位角相等
B、两直线平行,内错角相等
C、同位角相等,两直线平行
D、内错角相等,两直线平行
2、如图2,AB∥CD,那么()
A、∠1=∠4
B、∠1=∠3
C、∠2=∠3
D、∠1=∠5
3、如图3,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()
A、30°
B、60°
C、90°
D、120°
4,、如图4,AB∥EF,BC∥DE,则∠E+∠B的度数为()
5、如图5,在平行四边形ABCD中,下列各式不一定正确的是()
A、∠1+∠2=180°
B、∠2+∠3=180°
C、∠3+∠4=180°
D、∠2+∠4=180°
6、如图,直线a∥b,∠1=75°,∠2=35°。

求∠3的度数。

相关文档
最新文档