示波器的原理和使用方法
示波器的工作原理和使用方法
示波器的工作原理和使用方法
示波器是一种用于观察和测量电信号波形的专用仪器。
它可以测量电压、电流、频率和相位等信号特征,常用于电子、通信、医疗和科学等领域。
下面将介绍示波器的工作原理和使用方法。
1. 工作原理
示波器的工作原理基于两个技术原理:扫描和采样。
扫描指的是示波器屏幕上的电子枪扫描电子束的水平速度,即水平扫描速率。
采样指的是示波器对信号进行采样的速度,即垂直扫描速率。
通过这两个速率的不同,示波器可以将电信号完整地显示在屏幕上。
2. 使用方法
使用示波器时需要注意以下几点:
(1)接线。
正确地连接信号源和示波器。
一般情况下,示波器的输入电阻为1MΩ或10MΩ,应根据信号源而定。
(2)校准。
打开示波器,进行校准,调整时基、触发电平、垂直灵敏度等参数,确保信号的准确显示。
需要注意的是,示波器的校准需要经过一定的时间稳定后才能进行。
(3)触发。
选择合适的触发方式,设置触发电平,确保示波器可以捕捉到所需的信号。
(4)测量。
根据需要选择合适的测量方式,包括电压、电流、频率和相位等。
示波器还可以进行自动测量,可以方便地获取信号的各种特征参数。
(5)保存。
示波器可以将测量结果保存到内存或者USB设备上,方便之后的查阅和分析。
总之,示波器是一种十分有用的仪器,对于电子、通信和科学等领域的工作者来说,必不可少。
正确地掌握示波器的工作原理和使用方法,能够更好地帮助工作者开展工作。
示波器的工作原理和使用方法
示波器的工作原理和使用方法示波器是一种测量电信号的仪器,它可以将电信号转换为图形,从而方便我们观察和分析。
本文将介绍示波器的工作原理和使用方法。
一、示波器的工作原理示波器的工作原理基于示波管和电子束的原理。
示波管是一种真空管,它由一个阳极、一个阴极和一个聚焦极组成。
当阴极发射电子时,电子会被阳极吸引,并在聚焦极的作用下聚集成电子束。
电子束穿过一个偏转板,偏转板会根据输入信号的大小和方向控制电子束的偏转。
电子束在荧光屏上形成一个图形,这个图形就是我们看到的波形。
示波器有两种偏转方式:正弦偏转和直线偏转。
正弦偏转是指通过一个正弦信号控制偏转板的偏转,直线偏转是指通过一个线性电压控制偏转板的偏转。
正弦偏转可以得到正弦波形,直线偏转可以得到任意波形。
示波器还有两种触发方式:自动触发和外部触发。
自动触发是指示波器自动检测信号并触发,外部触发是指示波器根据外部信号触发。
触发是指控制示波器开始采集信号的时刻。
二、示波器的使用方法1. 连接电路首先需要将示波器连接到待测电路。
示波器有两个输入通道,可以同时测量两个信号。
将待测电路的信号分别连接到示波器的输入通道上即可。
2. 调节示波器接下来需要调节示波器,使其适应待测信号。
示波器有多个控制按钮和旋钮,需要根据需要进行调节。
首先需要选择偏转方式。
如果待测信号是正弦波形,可以选择正弦偏转;如果待测信号是任意波形,可以选择直线偏转。
选择偏转方式后,需要调节偏转灵敏度和时间基准,使得示波器可以正确显示待测信号的波形和频率。
接下来需要选择触发方式。
如果待测信号是周期性的,可以选择自动触发;如果待测信号是不规则的,可以选择外部触发。
选择触发方式后,需要调节触发电平和触发延迟,使得示波器可以正确触发待测信号。
最后需要调节荧光屏的亮度和对比度,使得示波器的显示效果最佳。
3. 测量信号调节好示波器后,即可开始测量信号。
示波器会将待测信号转换为波形显示在荧光屏上。
可以通过示波器的控制按钮和旋钮对波形进行放大、平移、截取等操作,以便更好地观察和分析信号。
示波器 用法
示波器用法示波器是一种常用的电子测试仪器,用于观察和测量电信号的波形。
它是电子工程师和技术人员在电路设计、故障排除和信号分析中必备的工具之一。
本文将介绍示波器的基本原理、使用方法和注意事项。
一、示波器的基本原理示波器的基本原理是利用电子束在荧光屏上的扫描来显示电信号的波形。
当电信号进入示波器后,经过放大和处理后,被送入电子枪中。
电子枪会发射出高速电子束,经过磁偏转系统的控制,在荧光屏上形成波形图案。
用户可以通过调节示波器的各种参数,如水平和垂直灵敏度、触发电平等,来获得所需的波形显示。
二、示波器的使用方法1. 连接电路:首先,将待测电路与示波器相连。
通常,示波器有两个输入通道,可以同时显示两个信号的波形。
将待测信号通过探头接入示波器的输入通道中。
需要注意的是,示波器的输入阻抗要与待测电路的输出阻抗匹配,以保证测量结果的准确性。
2. 调节示波器参数:在连接好电路后,需要调节示波器的各种参数,以便正确显示波形。
首先,调节水平灵敏度,使波形在屏幕上水平居中。
然后,调节垂直灵敏度,使波形在屏幕上垂直居中,并适当放大或缩小波形。
最后,设置触发电平和触发方式,以确保波形在屏幕上稳定显示。
3. 观察和分析波形:当示波器调节完成后,可以观察和分析电信号的波形。
示波器通常具有多种显示模式,如时间域显示和频谱分析等。
在观察波形时,可以测量波形的幅值、周期、频率等参数,并进行相应的分析和判断。
三、示波器的注意事项1. 示波器的使用需要一定的专业知识和技能,不熟悉操作的人员应避免独自使用,以免引发意外或损坏设备。
2. 在连接电路时,应注意避免短路和接地故障,以免影响测量结果或损坏示波器。
3. 在调节示波器参数时,应先选择合适的水平和垂直灵敏度范围,再逐步调整至所需的显示效果。
4. 在观察波形时,应注意波形是否稳定、清晰,是否有噪声等异常情况。
若发现异常,应检查电路连接和示波器设置,进行必要的调整和修复。
5. 示波器的测量精度受到多种因素的影响,如频率响应、放大器的非线性等,因此在进行精密测量时,应注意这些因素可能引入的误差。
示波器的原理和使用实验小结
一、引言示波器是一种广泛应用于电子、通信、计算机等领域的仪器设备,其主要功能是用来观测和分析电信号的波形、频率和幅度等特性。
在实际工作中,示波器已经成为了电子工程师必备的工具之一,因此深入了解示波器的原理和使用方法对于电子工程师来说是非常重要的。
二、示波器的原理示波器的主要原理是利用电子束在荧光屏上的轨迹来显示电信号的波形。
简单来说,示波器将电信号输入到垂直和水平两个方向的偏转板上,通过控制偏转板的电场来控制电子束的运动轨迹,从而在荧光屏上显示出电信号的波形。
具体来说,示波器的工作原理可以分为以下几个步骤:1. 信号输入:将待测信号通过探头输入到示波器的输入端口。
2. 前置放大:示波器将输入信号进行前置放大,以增强信号的幅度,提高信号的分辨率。
3. 水平扫描:示波器通过水平扫描电路控制水平偏转板的电场,使电子束在荧光屏上水平扫描,形成水平基准线。
4. 垂直偏转:示波器通过垂直偏转电路控制垂直偏转板的电场,使电子束在荧光屏上垂直偏转,形成电信号的波形。
5. 视觉显示:荧光屏上的荧光物质会发光,显示出电信号的波形。
示波器通过调节荧光屏的亮度、对比度等参数,使波形更加清晰明亮。
三、示波器的使用实验小结为了更加深入了解示波器的原理和使用方法,我们进行了一系列的实验,以下是实验小结:1. 实验一:基本操作首先我们需要了解示波器的基本操作,包括信号输入、调节水平、垂直偏转、调节亮度、对比度等参数。
通过实验,我们成功地显示出了正弦波、方波、三角波等信号的波形,并且调节了波形的幅度、频率等参数。
2. 实验二:频率测量示波器可以用来测量信号的频率,我们通过输入不同频率的正弦波信号,成功地测量出了信号的频率,并且验证了示波器的频率测量准确性。
3. 实验三:相位测量示波器还可以用来测量信号的相位差,我们通过输入两个正弦波信号,成功地测量出了信号的相位差,并且验证了示波器的相位测量准确性。
4. 实验四:示波器的X-Y模式示波器还具有X-Y模式,可以用来显示两个信号之间的相互作用关系。
示波器的原理和使用、声速测量实验报告.doc
示波器的原理和使用、声速测量实验报告.doc 示波器原理和使用示波器又称示波仪,是一种用于观察和测量电信号波形的仪器。
它可以通过探针将待测电信号输入示波器,然后在示波器屏幕上显示出该电信号的波形图。
示波器的工作原理是利用显像管来显示被测电压波形。
当待测电压信号被输入后,示波器中的电子束会受到电信号的控制而在显像管屏幕上形成一条波形曲线,从而达到观察和测量电信号的目的。
示波器的使用方法如下:1.将待测电信号输入示波器。
2.调节示波器的水平和垂直放大系数,以便能够清晰地观察到波形。
3.根据需要调整示波器的触发模式,使波形图显示正常。
4.观察和分析波形,进行相应的测量和分析。
声速测量实验报告一、实验目的1.了解并掌握测量声速的原理和方法。
2.掌握测量仪器的使用方法。
3.了解如何利用实验和数据处理方法准确地测量声速。
二、实验器材1.示波器2.声源3.接收器4.测量仪器5.计算机三、实验步骤1.将声源和接收器分别放置于固定距离的两个位置,并打开实验仪器测量声波传播的时间差。
2.将测量得到的时间差带入公式中,计算出声速的实际值。
3.将实验数据输入计算机进行处理和分析。
四、实验结果与误差分析1.经过多次实验和计算,得到的声速实际值为345m/s,与标准值相差不大,误差范围在正负3%以内。
2.实验过程中受到的误差主要来自于仪器误差和实验操作误差。
在实际测量中需要尽可能减小这些误差。
五、结论本次实验采用了简单的测量方法和仪器,准确地测量了声速的实际值。
实验结果与标准值相差不大,证明了实验方法的有效性和可靠性。
六、参考文献无。
示波器的原理和使用方法
示波器的原理和使用方法示波器是一种用于测量电压信号波形的仪器。
它通过将待测信号输入示波器的输入端,然后将信号转换成一条电子束,通过屏幕显示出来,从而观察到信号的波形。
示波器的工作原理可以分为三个主要部分:输入部分、信号处理部分和显示部分。
输入部分:输入部分主要由探头和输入端组成。
探头将待测信号引入示波器,通常通过插入到电路中或通过夹具夹住电路上的金属引脚。
输入端将电信号引入示波器的内部电路。
信号处理部分:信号处理部分主要由放大器和采样器组成。
放大器对输入信号进行放大,以便使小信号能够更好地显示。
采样器则采用一系列的离散样本来表示连续信号。
通常示波器会根据所选择的采样率来确定采样点的数量。
显示部分:显示部分主要由显示器和控制器组成。
显示器将处理后的信号显示为波形图,可以通过调整显示器的亮度、对比度和扫描方式等参数来调整波形的显示效果。
控制器则控制整个示波器的操作,包括选择测量方式、测量范围、触发方式等。
使用示波器的方法如下:1.连接示波器和测量电路:首先需要确定待测信号的源和地接线,然后将示波器的探头插入到信号源中。
确保探头正确连接,并将探头接地线夹在电路的地线上。
2.设置示波器的参数:根据所测量的信号特性和需要,设置示波器的量程、触发方式、触发电平等参数。
可以使用示波器的旋钮和按键进行参数调整。
3.调整显示效果:通过调整示波器的亮度、对比度和扫描方式等参数,使信号波形在显示器上清晰可见。
4.观察信号波形:通过观察显示器上的信号波形,可以识别出信号的幅度、频率、周期等特性。
根据需要,可以对波形进行持续观察、单次触发、自动触发等操作。
5.进行测量和分析:示波器通常还具有许多测量和分析功能,如测量电压、频率、相位、占空比、峰峰值等。
可以根据需要选择相应的测量功能,并通过示波器的控制面板操作进行测量和分析。
6.记录和保存数据:示波器通常还具有数据记录和保存功能,可以将测量到的波形数据保存到示波器的存储器中,或通过USB接口传输到计算机上进行进一步分析和处理。
示波器的使用方法和原理
1 示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。
它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。
示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。
1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。
它将电信号转换为光信号。
电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。
在荧光膜上常又增加一层蒸发铝膜。
高速电子穿过铝膜,撞击荧光粉而发光形成亮点。
铝膜具有内反射作用,有利于提高亮点的辉度。
铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。
亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。
余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。
一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。
一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。
它的作用是发射电子并形成很细的高速电子束。
灯丝通电加热阴极,阴极受热发射电子。
栅极是一个顶部有小孔的金属园筒,套在阴极外面。
由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。
初速度小的电子仍返回阴极。
如果栅极电位过低,则全部电子返回阴极,即管子截止。
调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。
示波器的原理及使用
示波器的原理及使用
示波器是一种用来测量电压、电流和其他电信号的仪器。
它具有一个触发电路,可用来稳定地显示波形信号。
以下是示波器的原理和使用。
原理:
1. 示波器的基本原理是通过控制电子束在屏幕上的运动来显示输入信号的波形。
电子束通过垂直和水平偏转系统控制,然后在屏幕上显示出相应的波形。
2. 示波器将输入信号分为若干离散的时间间隔,并将每个间隔的电压值转换为电子束的垂直位置。
水平控制系统则将这些离散的时间间隔在水平方向上显示出来,形成一个波形图像。
使用:
1. 连接电路:首先,将待测的电路连接到示波器的输入端。
可以使用探头将电路与示波器连接,以避免对待测电路造成干扰。
2. 调整控制:通过触发电路和示波器面板上的控制旋钮,可以调整示波器的各种参数,如时间和电压刻度、扫描速率等,以获得所需的波形显示。
3. 观察波形:一旦示波器设置正确,波形将在示波器屏幕上显示出来。
可以观察波形的振幅、频率、相位等特性,进而分析电路的性能和问题。
4. 测量:示波器还可以进行一些测量,如测量波形的峰峰值、平均值、频率等。
它还可以进行波形的比较和数学运算,如求积分、微分等。
总结:
示波器通过控制电子束在屏幕上的运动来显示输入信号的波形。
使用示波器可以连接待测电路、调整控制参数、观察和测量波形等,以便分析电路的性能和问题。
示波器的原理和使用教程
示波器的原理和使用教程示波器是一种广泛应用于电子工程领域的测量仪器,它能够对电信号进行观测和分析。
本文将为您介绍示波器的原理和使用教程。
1. 示波器的原理示波器基于振动的原理,通过将电信号转化为图形显示,使人们能够直观地了解信号的特性。
示波器主要包含以下几部分:1.1 垂直放大器垂直放大器负责对信号进行放大,使其能够在显示屏上清晰可见。
通过调节放大倍数,我们可以改变显示信号的幅度。
1.2 水平放大器水平放大器用于调节示波器的时间基准,即在显示屏上横向延展信号。
通过调节水平放大倍数,我们可以改变信号在时间轴上的显示速度。
1.3 示波管示波管是示波器的核心部件,它能够将电信号转化为图像显示在屏幕上。
示波管通过电子束在荧光屏上绘制出波形图。
2. 示波器的使用教程接下来,我们将详细介绍如何正确地使用示波器来观测和分析电信号。
2.1 连接电路首先,将待测电路与示波器正确连接。
应确保电路与示波器的地线连接良好,以避免干扰。
2.2 调整垂直放大倍数根据信号的幅度范围进行调整。
如果信号幅度过大或过小,会导致波形显示不清晰或超出显示范围。
2.3 调整水平放大倍数根据信号的频率进行调整。
当频率较高时,适当增大水平放大倍数,以确保波形显示完整。
2.4 观测波形调整示波器的触发方式和触发电平,使波形能够稳定地显示在屏幕上。
观测波形时,应注意波形的形状、周期、幅值等特征。
2.5 进行信号分析利用示波器的触发、光标、测量等功能,可以对信号进行进一步分析。
通过触发功能,我们可以准确地捕捉特定事件发生的瞬间;通过光标功能,我们可以测量波形的时间间隔、幅值等参数。
通过本文的介绍,我们了解了示波器的原理和使用教程。
在实际应用中,正确地使用示波器能够帮助我们观测和分析电信号,为电子工程提供准确的数据支持。
掌握示波器的使用技巧,将有助于提高工作效率和准确性。
在使用示波器时,还应注意安全操作,防止电路短路等意外情况的发生。
希望本文对您有所帮助,谢谢阅读!。
简述示波器的工作原理和使用方法
简述示波器的工作原理和使用方法示波器是一种常见的电子测试仪器,用于检测和显示电信号的波形。
它在电子工程、通信、医学等领域中发挥着重要作用。
本文将简要介绍示波器的工作原理和使用方法。
一、工作原理示波器通过接收和处理电信号,并将其转换为可视化的波形图形。
它主要由以下几个部分组成:1. 输入电路:示波器的输入电路用于接收被测信号,常见的输入方式有电压探头、电流探头等。
输入电路通常具有不同的带宽范围和灵敏度,可以适应不同频率和振幅的信号。
2. 触发电路:触发电路确定了示波器何时开始采集和显示波形。
触发通常基于信号的特定条件,如信号达到或超过某个阈值等。
触发电路的设置对于正确显示信号的波形非常重要。
3. 垂直放大器:垂直放大器用于放大输入信号的电压。
示波器通常具有多个垂直放大器,允许对不同幅度的信号进行测量和显示。
垂直放大器通常具有可调的放大倍数和直流耦合/交流耦合模式。
4. 水平放大器和扫描发生器:水平放大器和扫描发生器控制示波器屏幕上波形的时间轴。
水平放大器决定了横向显示的时间范围,而扫描发生器则控制屏幕上波形的扫描速率。
5. 显示屏:示波器的显示屏用于显示波形。
现代示波器通常采用液晶显示屏,具有高分辨率和清晰度。
二、使用方法使用示波器需要以下几个步骤:1. 连接信号:使用正确的电压探头或电流探头将被测信号连接到示波器的输入端口。
确保连接正确,并选择合适的探头放大倍数。
2. 设置触发条件:根据被测信号的特点,设置合适的触发条件。
可以选择边沿触发或脉冲触发,设置触发电平等。
3. 调整垂直和水平放大器:根据被测信号的振幅和频率调整垂直和水平放大器。
确保波形在显示屏上具有适当的大小和清晰度。
4. 调整扫描速率:根据被测信号的周期和需要显示的波形数量,调整扫描速率。
较高的扫描速率可以显示更多的细节,但可能导致波形在屏幕上移动得很快,不易观察。
5. 观察和分析波形:开始采集和显示波形后,观察并分析波形特征。
可以测量波形的振幅、频率、周期等参数,并进行进一步的信号分析。
示波器的工作原理和使用方法
示波器的工作原理和使用方法示波器是一种用于观察电信号波形的仪器,它可以将电信号转换成可视化的波形图形,以便工程师和技术人员对电路的性能进行分析和调试。
本文将介绍示波器的工作原理和使用方法。
一、示波器的工作原理示波器的工作原理基于电信号的振荡和放大。
当电信号进入示波器时,它会被放大并转换成可视化的波形图形。
示波器的核心部件是电子枪和荧光屏。
电子枪会发射一束电子束,这束电子束会被加速并聚焦成一束细线,然后通过一个偏转系统,将电子束偏转成水平和垂直方向。
当电子束击中荧光屏时,它会激发荧光屏上的荧光物质,从而形成一个波形图形。
二、示波器的使用方法1. 连接电路:首先需要将示波器与待测电路连接起来。
通常情况下,示波器会有两个探头,一个用于连接待测电路的信号源,另一个用于连接地线。
2. 调整示波器:在连接电路之后,需要对示波器进行调整。
首先需要调整示波器的触发模式,以便触发电路的波形。
然后需要调整示波器的时间基准,以便调整波形的时间轴。
最后需要调整示波器的垂直增益,以便调整波形的幅度。
3. 观察波形:在调整示波器之后,可以开始观察波形了。
通常情况下,示波器会显示出电信号的波形图形,包括波形的幅度、频率、周期等信息。
通过观察波形,可以分析电路的性能,找出电路中的问题。
4. 调试电路:如果发现电路中存在问题,可以通过示波器来进行调试。
例如,可以通过调整电路的参数,来改变波形的形状和幅度。
通过不断地调试,可以找出电路中的问题,并进行修复。
示波器是一种非常重要的电子测试仪器,它可以帮助工程师和技术人员对电路进行分析和调试。
通过了解示波器的工作原理和使用方法,可以更好地使用示波器,提高工作效率。
示波器的原理及使用
示波器
示波器是利用示波管内电子束在电场或磁场中的偏转;显示 随时间变化波形的电压信号的一种观测仪器&它不仅可以定性观 察电路或元件的动态过程;而且还可以定量测量各种电学量;如电 压、周期、波形的宽度及上升、下降时间等&用双踪示波器还可 以测量两个信号之间的时间差或相位差;显示两个相关函数的图 像&示波器还可以用作其他显示设备;如晶体管特性曲线、雷达 信号等&配上各种传感器;还可用于各种非电量测量;如压力、声 光信号、生物体的物理量心电、脑电、血压等&自1931年美国研 制出第一台示波器至今已有70年;它在各个研究领域都取得了广 泛的应用;示波器本身也发展成为多种类型;如慢扫描示波器、各 种频率范围的示波器、取样示波器、记忆示波器等;已成为科学 研究、实验教学、医药卫生、电工电子和仪器仪表等各个研究 领域和行业最常用的仪器&
K:阴极
X:水平 偏转板
F:灯丝Leabharlann 荧光屏G:对应亮度旋钮
K G A1 A2共同完成聚焦
电子枪、偏转系统、荧光屏
电子放大系统 竖直放大器、水平放大器
作用:在偏转板上加足够的电压;使电子束获得明显偏移; 对较弱的被测信号进行放大
扫描触发系统 扫描发生器、触发电路 扫描发生器作用:产生一个与时间成正比的电压作为扫
“拍”频: f3 f2 f1
垂直方式选ADD;通道2极性选NORM;扫描速率调到合 适值;调可调标准信号源信号频率;使屏上出现稳定的“拍” 波形;观察 “拍”现象&
5.利用双踪示波器测量相位差
方法一:将一个待测信号输入示
波器的CH1轴;另一个待测信号输 入示波器的CH2轴; 则两个待测信 号间相位差就转化为CH1与CH2间 相位差 Ф
示波器原理,条件,方法
示波器原理,条件,方法示波器原理、条件和方法示波器是一种用于显示电信号波形的仪器,它利用电子技术和光学原理来观察和测量电信号的变化。
示波器广泛应用于电子工程、通信、医学等领域,可用于测量频率、幅值、相位等参数。
下面将从示波器的原理、使用条件和常用方法三个方面进行介绍。
一、示波器的原理示波器的基本原理是利用电子束在荧光屏上产生亮度变化的原理来显示电信号的波形。
当电信号进入示波器后,经过放大、滤波等处理后,被连接到电子枪的垂直偏转板和水平偏转板上。
电子枪会发射出一束高速电子,经过垂直和水平偏转板的作用,电子束在荧光屏上形成一个点。
由于电信号的变化,垂直和水平偏转板会控制电子束的位置,从而在荧光屏上显示出相应的波形。
二、示波器的使用条件示波器的使用条件主要包括以下几个方面:1. 输入信号的频率范围应在示波器的测量范围之内。
示波器一般会标注其最高可测量的频率范围,用户在选择示波器时需要根据实际需要来确定。
2. 输入信号的幅度范围应在示波器的测量范围之内。
如果输入信号的幅度超过示波器的测量范围,可能会导致显示不准确甚至损坏示波器。
3. 输入信号的波形形状应与示波器的测量模式匹配。
示波器一般支持多种测量模式,如正弦波、方波、脉冲等,用户需要选择合适的测量模式来保证测量结果的准确性。
三、示波器的常用方法示波器作为一种测量仪器,有多种常用方法可以用来观察和测量电信号的波形。
以下是一些常用的方法:1. 垂直调节:通过调节示波器的垂直偏移、增益和衰减等参数,可以使波形在荧光屏上居中、放大或缩小,以便更好地观察和测量。
2. 水平调节:通过调节示波器的水平扫描速度和水平偏移等参数,可以改变波形在时间轴上的显示位置和速度,以便更好地观察和测量波形的周期和相位。
3. 触发设置:通过设置示波器的触发模式、触发电平和触发源等参数,可以使波形在荧光屏上稳定显示,以便更好地观察和测量。
4. 自动测量:示波器一般提供自动测量功能,可以自动测量波形的频率、幅值、占空比等参数,方便用户进行快速测量和分析。
示波器的原理及使用
垂直方式选ADD, 通道2极性选NORM, 扫描速率调到合 适值, 调可调标准信号源信号频率, 使屏上出现稳定的“拍”波 形, 观察 “拍”现象。
5.利用双踪示波器测量相位差
方法一: 将一个待测信号输 入示波器的CH1轴,另一个 待测信号输入示波器的CH2 轴, 则两个待测信号间相 位差就转化为CH1与CH2间相 位差 Ф
Tx=nTy , fy=nfx
紊乱的波形
触发同步电路, 它从垂直放大电路中取出部分待 测信号, 输入到扫描发生器, 迫使锯齿波与待测信号 同步, 此称为“内同步”.操作时使用“电平” (LEVEL)旋钮 。
3.示波器面板控制件的作用简介
校准信号 电源开荧关光屏 电源指示灯
亮度: 轨迹 亮度调节
聚焦: 轨迹清 晰度调节
的轨迹是封闭的稳定几何图形, 称为李萨如图。
将不同信号源信号分别输入CH1和CH2通道, 扫描速率旋钮置X-Y(逆 时针到底)状态, 调节信号幅度或改变通道偏转因数, 使图形不超出荧光 屏视场, 调节CH1和CH2频率比观察李萨如图 。
测量信号频率
测量原理
fx
ny nx
fy
调出 f y : fx nx : ny =1:1、1:2、2:3、3:4的李萨如图形,
触发极性选择: 选择上升或下降 沿触发扫描
选择触发信号 耦合方式: AC/DC TV
接地
外触发输入
30: CH1输出 31: 电源插座 32: 电源设置 33: 保险丝座
4.函数信号发生器简介
本实验所用函数信号发生器可以输出频率在0.2Hz-2MHz
的正弦波、三角波、方波信号。 面板主要控制件的作用:
电压衰减及扫描速率
示波器工作原理和使用方法
示波器工作原理和使用方法示波器是一种广泛应用于电子工程和通信领域的测量仪器,用于观察和测量电信号的波形和参数。
它工作原理简单,使用方法也相对容易掌握。
一、示波器的工作原理示波器的工作原理基于电子束在电场作用下的运动规律。
它主要由示波管、水平和垂直扫描系统以及触发和放大系统组成。
1. 示波管:示波管是示波器的核心部件,它采用了阴极射线管的原理。
在示波管内部,通过加热阴极产生电子,然后经过加速电极加速,进入一个带有偏转电极的空间。
在偏转电极的作用下,电子束可以在屏幕上形成可见的亮点。
2. 水平和垂直扫描系统:示波器的水平和垂直扫描系统用于控制电子束的移动。
水平扫描系统控制电子束在水平方向上的移动速度,垂直扫描系统控制电子束在垂直方向上的移动速度。
通过控制水平和垂直扫描系统,可以在示波管屏幕上显示出精确的波形。
3. 触发和放大系统:触发系统用于控制示波器何时开始扫描信号,以确保波形显示的稳定性。
放大系统则用于放大输入信号,使其能够在示波管屏幕上可见。
二、示波器的使用方法示波器的使用方法主要包括信号连接、参数设置、触发调整、波形观察和测量等步骤。
1. 信号连接:首先,需要将被测信号通过信号线连接到示波器的输入端口。
确保信号线的连接正确、稳固,并注意接地的正确性。
2. 参数设置:在使用示波器前,需要设置适当的参数,以适应被测信号的特点。
参数包括扫描速度、垂直灵敏度、触发级别等。
根据被测信号的频率和幅度调整参数,使波形在示波管屏幕上能够清晰可见。
3. 触发调整:触发是示波器显示波形的关键。
通过调整触发电平和触发模式,可以确保示波器在稳定状态下工作。
触发电平是指触发系统开始扫描信号的电平,触发模式可以选择自动触发或外部触发,根据实际需要进行调整。
4. 波形观察:设置好参数和触发后,可以开始观察波形。
示波器的屏幕上会显示出被测信号的波形,可以通过调整垂直灵敏度和水平扫描速度等参数,以获得清晰的波形图像。
5. 测量:示波器不仅可以观察波形,还可以进行波形的测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示波器的原理和使用方法
在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。
常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。
万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。
示波器是一种使用非常广泛,且使用相对复杂的仪器。
本章从使用的角度介绍一下示波器的原理和使用方法。
1 示波器工作原理
示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。
它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。
示波器由示波管和电源系统、同步系统、x轴偏转系统、y轴偏转系统、延迟扫描系统、标准信号源组成。
1.1 示波管
阴极射线管(crt)简称示波管,是示波器的核心。
它将电信号转换为光信号。
正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。
1.荧光屏
现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。
在荧光膜上常又增加一层蒸发铝膜。
高速电子穿过铝膜,撞击荧光粉而发光形成亮点。
铝膜具有内反射作用,有利于提高亮点的辉度。
铝膜还有散热等其他作用。
当电子停止轰击后,亮点不能立即消失而要保留一段时间。
亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。
余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。
一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。
由于所用磷光材料不同,荧光屏上能发出不同颜色的光。
一般示波器多采用发绿光的示波管,以保护人的眼睛。
2.电子枪及聚焦
电子枪由灯丝(f)、阴极(k)、栅极(g1)、前加速极(g2)(或称第二栅极)、第一阳极(a1)和第二阳极(a2)组成。
它的作用是发射电子并形成很细的高速电子束。
灯丝通电加热阴极,阴极受热发射电子。
栅极是一个顶部有小孔的金属园筒,套在阴极外面。
由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。
初速度小的电子仍返回阴极。
如果栅极电位过低,则全部电子返回阴极,即管子截止。
调节电路中的w1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。
第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。
前加速极g2与a2相连,所加电位比a1高。
g2的正电位对阴极电子奔向荧光屏起加速作用。
电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。
第一次聚焦由k、g1、g2完成,k、k、g1、g2叫做示波管的第一电子透镜。
第二次聚焦发生在g2、a1、a2区域,调节第二阳极a2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。
a1上的电压叫做聚焦电压,a1又被叫做聚焦极。
有时调节a1电压仍不能满足良好聚焦,需微调第二阳极a2的电压,a2又叫做辅助聚焦极。
3.偏转系统
偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波
形。
图8.1中,y1、y2和xl、x2两对互相垂直的偏转板组成偏转系统。
y轴偏转板在前,x轴偏转板在后,因此y轴灵敏度高(被测信号经处理后加到y轴)。
两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。
4.示波管的电源
为使示波管正常工作,对电源供给有一定要求。
规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。
阴极必须工作在负电位上。
栅极g1相对阴极为负电位(—30v~—100v),而且可调,以实现辉度调节。
第一阳极为正电位(约+100v~+600v),也应可调,用作聚焦调节。
第二阳极与前加速极相连,对阴极为正高压(约+1000v),相对于地电位的可调范围为±50v。
由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。
1.2 示波器的基本组成
从上一小节可以看出,只要控制x轴偏转板和y轴偏转板上的电压,就能控制示波管显示的图形形状。
我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。
因此,只要在示波管的x轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。
电信号中,在一段时间内与时间变量成正比的信号是锯齿波。
示波器由示波管、y轴系统、x轴系统、z轴系统和电源等五部分组成。
被测信号①接到“y"输入端,经y轴衰减器适当衰减后送至y1放大器(前置放大),推挽输出信号②和③。
经延迟级延迟г1时间,到y2放大器。
放大后产生足够大的信号④和⑤,加到示波管的y轴偏转板上。
为了在屏幕上显示出完整的稳定波形,将y轴的被测信号③引入x轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。
由于从触发到启动扫描有一时间延迟г2,为保证y轴信号到达荧光屏之前x轴开始扫描,y轴的延迟时间г1应稍大于x轴的延迟时间г2。
扫描电压⑦经x轴放大器放大,产生推挽输出⑨和⑩,加到示波管的x轴偏转板上。
z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。
这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。
以上是示波器的基本工作原理。
双踪显示则是利用电子开关将y轴输入的两个不同的被测信号分别显示在荧光屏上。
由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。
示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。
2 示波器使用
本节介绍示波器的使用方法。
示波器种类、型号很多,功能也不同。
数字电路实验中使用较多的是20mhz或者40mhz的双踪示波器。
这些示波器用法大同小异。
本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。
2.1 荧光屏
荧光屏是示波管的显示部分。
屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。
水平方向指示时间,垂直方向指示电压。
水平方向分为10格,垂直方向分为8格,每格又分为5份。
垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。
根据被测信号在屏幕上占的格数乘以适当的比例常数(v/div,time/div)能得出电压值与时间值。