数学建模初等模型

合集下载

数学建模培训讲义-建模概论与初等模型

数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619

第2讲 数学建模初等模型优秀课件

第2讲 数学建模初等模型优秀课件
2、室内温 度T1与户外温 度T2均 为常数。 3、玻璃是均匀的,热传导系数 为常数。
室 设玻璃的热传导系数 为k1,空气的

内 热传导系数 为k2,单位时间通过单

Ta
位面积由温度高的一侧流向温度低 T1 的一侧的热量为Q
T2
Tb
由热传导公式 Q =kΔT/d
dl d
Q
k1
T1
d
Ta
k2 Ta
x y 其分中 别为(x和ix,yi和i) yi
的平均值
x O
解相应方程组,求得:
a
b
y
n i 1
(xi
n
i1
x)( (xi
yi x)
2
ax
y)
例1(举重成绩的比较)
举重重量是级一(种上限一体般人都能看懂成的绩运动,它共分
九个重量重级),有两抓种举(主公要斤的) 比赛挺举方(法公:斤)抓举
Tb l
k1 Tb
T2 d
解得:
Ta
1 k1l k2d T1 T2
2 (k1l) /(k2d )
Q
k1
T1
(1
k1l k2d )T1 2 k1l k2d
d
T2
k1
d
T1 2
T2 k1l k2d
f(h)
1室
室 外
0.9 0.8
内 T1
类似有
Q
Q'
k1
T1 T2 2d
2
T2 0.7 0.6
和挺举。52 表中给出了1到09 1977年底为14止1 九个
重量级的56世界纪录。120.5
151
60
130
161.5

数学建模

数学建模
材料均匀,热传导系数为常数 Q ~单位时间单位面积传导的热量 T~温差, d~材料厚度, k~热传导系数 记双层玻璃窗传导的热量Q1 记单层玻璃窗传导的热量Q2 热量传播只有传导,没有对流
室 内 T1
d
l
d
室 外 T2
Q1

室 内 T1
2d
室 外 T2
Q2

Ta~内层玻璃的外侧温度 Tb~外层玻璃的内侧温度 k1~玻璃的热传导系数 k2~空气的热传导系数
乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x y=y0 / s
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。 • (5)模型分析:对所得结果进行数学的分析。 • (6)模型检验:将模型分析结果与实际情形 进行比较,以此来验证模型的准确性、合 理性和适用性。如果模型与实际较吻合, 则要对计算结果给出其实际含义,并进行 解释。如果模型与实际吻合较差,则应该 修改假设,再次重复建模过程。 • (7)模型应用:应用方式因问题的性质和建 模的目的而异
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变

数学建模第二章 初等模型

数学建模第二章   初等模型

第二章 初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。

通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。

需要强调的是,衡量一个模型的优劣完全在于它的应用效果,而不是它看它采用了多么高深的数学方法。

进一步说,对于某个实际问题我们如果能够用初等方法和所谓的高等方法建立了两个模型,而它们的应用效果相差无几的话,那么受人们欢迎并采用的,一定是前者而非后者。

§2.1公平的席位分配设有A 、B 两个单位,各有人数1p 、2p 个,现在要求按人数选出q 个代表召开一次代表会议。

那么怎样分配这q 个席位呢?一般的方法是令:q p p p q 211*1+= q p p p q 212*2+= (2.1)若*1q ,*2q 恰好是两个整数,就以*1q ,*2q 分别作为A ,B 两个单位的席位数,即可以获得一个完全合理的分配方案。

当*1q ,*2q 不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。

首先给出一种自然的想法,也就是通常所执行的方法。

即由(2.1)式计算出的*1q ,*2q ,用][*i i q q =表示*i q 的整数部分。

当*1q -1q >*2q -2q 时,则用1q +1与2q 分别作为A ,B 两个单位的席位数;当*2q -2q >*1q -1q 时,则用1q 与2q +1分别作为A ,B 两个单位的席位数;而当*2q -2q =*1q -1q 时,就只能由A ,B 两个单位协商来确定那多余的一个席位了。

这个方法的优点是简单、方便,并被很多人所接受,同时也容易推广到m (m >2)个单位的席位分配问题。

但是这个分配方案是存在弊病的,它有明显的不合理性。

例1 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。

若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10、6、4个席位。

数学建模初等模型ppt课件

数学建模初等模型ppt课件
2.1.1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
理学院 4
模型构成
xx
用数学语言把椅子位置和四只脚着地的关系表示出来
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
理学院 7
xx
2.1.2 分蛋糕问题
妹妹过生日,妈妈做了一块边界形状任意的 蛋糕,哥哥也想吃,妹妹指着蛋糕上的一点 对哥哥说,你能过这一点切一刀,使得切下 的两块蛋糕面积相等,就把其中的一块送给 你。哥哥利问题用归高结等为数如学下知一识道证解明决题了:这个问题,
11
理学院
xx
数学模型为
10
y y1 y2 10 x 41.6 10 x 5 2.4 15 41.6
0 x4
4 x 15 15 x

0.8
t 2.5
计算起来很简单。
理学院 12
xx
2.1.4 蚂蚁逃跑问题
数学建模
(Mathematical Modeling)
1
xx
第二章 初等模型
理学院 2

第二章 初等模型


生活中的问题


极限、最值、积分问题的初等模型

数学建模初等模型

数学建模初等模型

数学建模初等模型
数学建模是将现实世界的问题抽象化为数学模型,并利用数学方法和技巧来分析和解决这些问题的过程。

在数学建模中,初等模型是指使用基本的数学概念和方法来描述和解决问题的模型。

常见的初等模型包括线性模型、指数模型、对数模型、多项式模型等。

线性模型是最简单的初等模型之一,它假设变量之间的关系是线性的,可以用直线来表示。

指数模型描述的是变量之间的指数关系,对数模型则描述的是变量之间的对数关系。

多项式模型可以用多项式函数来描述变量之间的关系。

使用初等模型进行数学建模时,我们需要确定问题中的关键变量和它们之间的关系,然后建立数学方程或函数来表示这些关系。

通过对这些方程或函数进行求解和分析,我们可以得到问题的解答或结论。

初等模型的优点是简单易懂,容易理解和应用。

它适用于一些简单的实际问题,例如人口增长、物体运动、投资收益等。

但初等模型也有一些限制,它对问题的描述和解决方法有一定的限制性,不能很好地处理复杂的问题。

总之,初等模型是数学建模中的一种简单模型,通过使用基本的数学
概念和方法来描述和解决问题。

它易于理解和应用,适用于一些简单的实际问题。

但在处理复杂问题时,可能需要借助更高级的数学模型和技巧来进行建模和分析。

数学建模之初等模型

数学建模之初等模型

工作路面长度:
S (t )
令v(t)=0解得

S (0)

t
0
v(t)dt

20t 3

rt 2 30
tend 100 / r
为无法工作的时刻。此时路面工作长度
S(tend ) S(0)
tend v(t)dt 20tend
0
3
rte2nd 30
1000 3r
问题1:下雪在一小时内速度不变是不合情理的,修改这一假设。

tn
)
tn )2 2 v (t

tn
)
给定路面宽度,即可得到可以穿过十字路口的车辆数。
思考题
(1)分析绿灯亮的时间长度与穿过车辆数之间的关系。 (2) 如果给出以下四个路口的绿灯亮时的车辆通过数,
t
30
30
40
45
n
13
14
52
58
如何评价你的模型?
(3)如果只有红绿灯,则绿灯转红灯时,部分车辆在路上没有穿过十 字路口。为了解决这一问题,我们把绿灯时间的一部分变为黄灯。建 模描述黄灯的时间长度。
给出以下数据: (1)铲雪机开始工作时,雪还要下1小时; (2)降雪速度可能随时间变化,最大时积雪的增加量达0.1cm/s。 (3)积雪厚度达1.5m时铲雪机将无法工作。 (4)铲雪机在无雪的路面行驶速度为10m/s。
问题分析和建模
这个问题的解决需要找出两个关系:
(1)铲雪机的工作速度与积雪厚度的关系; (2)降雪引起的积雪厚度与时间的关系。 由于这些关系没有明确给出,而建模要从简单的情况入手,因此先做以下 模型假设:
模型的描述:

数学建模第二章初等模型

数学建模第二章初等模型

市场稳定问题
在市场经济下,当商品“供不应求”时,价格逐渐长升高,经营者会 觉得有利可图而加大生产量。然而,一旦生产量达到使市场“供过于求”, 价格立即会下跌,生产者会立即减产以避免损失,这样又极有可能造成又 一轮新的供不应求。我们关心的问题是:如此循环,市场上的商品的数量 与价格是否会趋于稳定? 所谓“需求”,指在一定条件下,消费者愿意购买并且有支付能力购 买的商品量。设p表示商品价格,q表示商品量,假设商品量q主要取决于 商品价格p,则称函数 q=f(p) 为需求函数。 需求函数q=f(p)一般是单调减少函数。因q=f(p)为单调减少函数,所 以存在反函数p=f-1(q),我们也称它为需求函数,见下图。
a, b 模型求解:我们来求步长
(1) 由图
为何值,使式 (4) 最小。
所表示,重心离开 B 点上升到最高点所需时间为
t
b 2v
(5)
1 2 gb2 h gt 2 2 8v

(1),(2),(3)

(5)
式,
(4)
式化成
2 (a b)bmg 1 W m, v2 2 2 8v
又完成一个大步所需时间为
跑步时如何节省能量
• 问题的提出:我们每个人都有跑步的经历, 有人会因此而疲惫不堪,但是有谁会想:怎 样跑步能使我们消耗的能量最少? • 模型假设:为解决上述问题,我们做下述假 设:
(1 )跑步所花费的时间分成两部分:第一部分为两 条腿同时离地的时间;在第二部分时间内一条腿 或两条腿同时落地。这样,人体重心的运动轨迹 如图(1)。
a b v
,因此单位时间内消耗的能量为
2 W bmg m, v3 P a b 8v 2(a b) v
(6)

数学建模例题[1]

数学建模例题[1]

数学建模习题指导第一章 初等模型讨论与思考讨论题1 大小包装问题在超市购物时你注重到大包装商品比小包装商品便宜这种现象吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1,试用比例方法构造模型解释这种现象。

(1)分析商品价格C 与商品重量w 的关系。

(2)给出单位重量价格c 与w 的关系,并解释其实际意义。

提示:决定商品价格的主要因素:生产成本、包装成本、其他成本。

单价随重量增加而减少单价的减少随重量增加逐渐降低思考题2 划艇比赛的成绩赛艇是一种靠浆手划桨前进的小船,分单人艇、双人艇、四人艇、八人艇四种。

各种艇虽大小不同,但形状相似。

T .A .M c M a h o n 比较了各种赛艇1964—1970年四次2000m 比赛的最好成绩(包括1964年和1968年两次奥运会和两次世界锦标赛),见下表。

建立数学模型解释比赛成绩与浆手数量之间的关系。

329434w w c γβ+=''-各种艇的比赛成绩与规格第二章 线性代数模型森林管理问题森林中的树木每年都要有一批砍伐出售。

为了使这片森林不被耗尽且每年都有所收获,每当砍伐一棵树时,应该就地补种一棵幼苗,使森林树木的总数保持不变。

被出售的树木,其价值取决于树木的高度。

开始时森林中的树木有着不同的高度。

我们希望能找到一个方案,在维持收获的前提下,如何砍伐树木,才能使被砍伐的树木获得最大的经济价值。

思考:试解释为什么模型中求解得到的 为每周平均销售量会略小于模型假设中给出的1。

练习:857.0 nR将钢琴销售的存贮策略修改为:当周末库存量为0或1时订购,使下周初的库存达到3架;否则,不订购。

建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

2.将钢琴销售的存贮策略修改为:当周末库存量为0时订购本周销售量加2架;否则,不订购。

建立马氏链模型,计算稳态下失去销售机会的概率和每周的平均销售量。

数学建模-初等模型讲义

数学建模-初等模型讲义

123
2083.3
1341.8
3425.2 256250.0 250365.4
237
2083.3
45.5
2128.8 493750.0 328794.3
238
2083.3
34.1
2117.4 495833.3 328828.5
239
2083.3
240
2083.3
22.7
2106.1 497916.7 328851.2
9
7
9
11.3
4
8.5
21
21 21
ai比惯例 分配的要小
第21席应该分配乙系, 标准1的分配方案:10, 7, 4.
可用列表方法解决标准1(类似可解决标准2与3) 计算 ni 成表, k 1,2, k
1 2 3 4 5 6 7 8 9 10 11 甲 103 51.5 34.3 25.8 20.6 17.2 14.7 12.9 11.4 10.3 9.4 乙 63 31.5 21.0 15.8 12.6 10.5 9.0 7.9 7.0 6.3 5.7 丙 34 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4 3.1
2. 按揭还款
用房产在银行办理的贷款, 该贷款要按照银行规
定的利率支付利息。 贷款形式
商业贷款和公积金贷款. 还款形式
等额本息和等额本金.
如贷款50万, 分20年还清, 年利率r , 问月供是多少?
调整日期
2015.08.26 2015.06.28 2015.05.11 2015.03.01 2014.11.22 2012.07.07 2012.06.09 2011.07.07 2011.04.06 2011.02.09 2010.12.26 2010.10.20 2008.12.23

数学建模初等模型

数学建模初等模型

1032 632 342 96.4, Q2 94.5, Q3 96.3 第20席 Q1 1011 67 3 4 1032 80.4, Q2 , Q3 同上 第21席 Q1 1112
Q值方法 分配结果
Q1最大,第20席给甲系 Q3最大,第 21席给丙系
甲系11席,乙系6席,丙系4席
进一步深入考虑

若设k=0.05并仍设 t=4秒,则可求 得h≈73.6米。 多测几次,取平均 值 听到回声再按跑表,计算得到的时间中包含了 将e-kt用泰勒公式展开并 令k→ 0+ ,即可 反应时间 得出前面不考虑空气阻力时的结果。 不妨设平均反应时间 为0.1秒 ,假如仍 设t=4秒,扣除反 应时间后应 为3.9秒,代入 式①,求得h≈69.9米。 再一步深入考虑
计算 Qi
ni (ni 1)
, i 1,2, , m
11
该席给Q值最大的一方
Q 值方法
三系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
17
常识:刹车距离与车速有关
问 题 分 析
10英里/小时(16公里/小时)车速下2秒钟行驶 29英尺( 9米) >>车身的平均长度15英尺(=4.6米) “2秒准则”与“10英里/小时加一车身”规则 不同 反 司机 制动系统 反应时间 应 状况 灵活性 距 车速 离 常数
刹 车 距 离
制 制动器作用力、车重、车速、道路、气候… … 动 最大制动力与车质量成正比, 常数 距 离 使汽车作匀减速运动。

数学建模培训初等模型

数学建模培训初等模型

人口增长模型
总结词
人口增长模型是用来描述人口随时间变化的 规律和趋势的数学模型。
详细描述
该模型通常由一组微分方程组成,表示人口 在不同年龄和性别的增长率。通过求解这组 微分方程,可以预测未来人口数量和结构的 变化,为政策制定提供依据。
经济增长模型
总结词
经济增长模型是用来描述一个国家或地区经 济随时间变化的规律和趋势的数学模型。
幂函数模型
总结词
幂函数模型描述一个变量与另一 个变量的幂之间的关系。
详细描述
幂函数模型的一般形式为 y = x^r, 其中 r 是常数。这种模型适用于描 述一些自然现象,如地球上的人口 分布、城市规模等。
幂函数模型
总结词
幂函数模型描述一个变量与另一 个变量的幂之间的关系。
详细描述
幂函数模型的一般形式为 y = x^r, 其中 r 是常数。这种模型适用于描 述一些自然现象,如地球上的人口 分布、城市规模等。
求解模型
运用数学方法和计算工具对建 立的模型进行求解。
明确问题
首先需要明确建模的目标和问 题,理解实际问题的背景和需 求。
建立模型
根据问题的特点和收集的数据, 选择合适的数学模型进行建模。
验证与优化
对求解结果进行验证,并根据 实际情况对模型进行优化和改 进。
建立数学模型的步骤
收集数据
根据问题收集相关数据,包括 实验数据、观测数据、统计数 据等。
02
它能将现实世界中的问题转化为 数学问题,并运用数学方法进行 求解,进而对现实世界的问题作 出预测和决策。
什么是数学建模
01
数学建模是运用数学语言和方法 ,通过抽象、简化建立能近似刻 画并解决实际问题的一种强有力 的数学手段。

数学建模_初等模型

数学建模_初等模型
模型1:谁将是胜利者
1805年,英国和法国进行了一场惨烈的海战。其中,尼尔 森担任英国统帅,他的对手则是大名鼎鼎的拿破仑。尼尔森的 舰队有27艘战舰,而拿破仑的舰队却有33艘战舰。根据以往的 战争经验,若两军相遇,一方损失兵力大约是对方兵力的10%。 如果按照这一公式计算,显然人多势众的法军将获胜,而且在 第11次遭遇战中全歼英军,如表所示。
(k3 ∈ R+ ) (k4 ∈ R+ )
⎧⎨⎩TOnn++11
= On + ΔOn = Tn + ΔTn =

= (1 (1 +
+ k1)On k2 )Tn −
− k3OnTn k4OnTn
现在,取k1=0.2、 k2=0.3、 k3=0.001、 k4=0.002,解得平衡 点(O,T)=(150,200)或(0,0)【舍去】
在什么情况下双方的核军备精神才不会无限扩张而存在暂 时的平衡状态,处于这种平衡状态下双方拥有最少的核武器数 量是多大,这个数量受哪些因素影响,当一方采取诸如加强防 御、提高武器精度、发展多弹头导弹等措施时,平衡状态会发 生什么变化?
最后英军战胜了法军,而且双方伤亡情况与历史事实也很 相近。当年,英军在战役A和战役B中战胜法军,但法军没有增 援C,而是选择了撤退,大约有13艘战舰退回法国海港。
点评:数学建模以解决某现实问题为目的,从问题中抽象 并归结出来的数学问题。从现象到模型,数学建模必须反映现 实,既然是一种模型,它就不是现实问题的全部复制,常常会 忽略一些次要因素,作一些必要的简化,但本质上必须反映现 实问题的数量规律。
斑点猫头鹰
老鹰 天数 老鹰 斑点猫头鹰 天数
情况4:老鹰仍然成为胜利者, 斑点猫头鹰最后还是灭绝了。与 数量 前面三种情况相比,两个种群的 初始数量相同,可以说是站在同 一条起跑线上。但是,老鹰种群 以绝对的优势赢得胜利,而斑点 10 猫头鹰种群惨遭灭绝。

《数学建模》课程标准

《数学建模》课程标准

《数学建模》课程标准一、课程性质与目的要求数学建模课程是各专业的选修课,是数学科学联系实际的主要途径之一。

通 过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法, 培养和训练学生的数学建模素质;要求学生具有熟练的计算推导能力,逻辑推理 能力,空间想象能力及综合运用所学知识分析和解决问题的能力;同时为使学生 适应现代社会奠定必要的基础。

要求掌握:(一)理论知识方面1. 根据理论结合实际的原则,要求学生重点掌握数学模型的建立和求解方法。

2. 基本掌握的内容: 初等模型、数学规划模型、微分方程模型、稳定性模型、 图论与网络模型、离散模型、概率统计模型、随机模拟等理论。

(二)实践技能方面要求学生重点掌握数据处理的一些基本方法,能够使用 Lindo/Lingo 求解各 种规划问题,使用 matlab 求解方程(组)、微分方程(组),进行数据拟合,参 数估计、假设检验、回归分析(特别是多项式回归)等概率问题。

二、学习用书教材:《数学建模与数学实验》(校本教材),谢珊主编,2010年,主要参考书:《数学模型》(第三版),姜启源等编,高等教育出版社,2004年,张珠宝主编,高等教育出版社,2005年《数学建模与数学实验》三、课程内容与考核标准(一)数学建模简介1, 教学目的与要求了解数学模型的概念。

掌握数学建模的一般步骤。

掌握人口增长模型的建立。

掌握 matlab函数拟合的方法。

2,教学内容(1)数学模型的概念及数学建模意义。

(2)介绍全国大学生数学建模竞赛。

(3)数学建模示例:人口增长模型。

3,考核要求l了解数学模型的概念及数学建模意义l会建立人口增长模型,并且能够用 matlab进行函数拟合,确定人口增长 模型中的参数。

(二)matlab入门1,教学目的与要求了解 matlab 的数组、矩阵、函数的定义与使用。

掌握 matlab 程序设计的基 本方法。

2,教学内容(1)介绍 matlab变量、数组、矩阵、表达式、流程控制、函数。

数学建模 第一章 初等模型

数学建模 第一章 初等模型
2 2
型. 由此模型可解决这两个问题.
2V0
⑴炮弹发射后落地时纵坐标 y
2
0,
2


kx l (k 1) x , ( x 0), k x . 2 l (k 1)
dx 1 1 k 0 k 1. 2 2 dk l (k 1) k 1为函数的极大值点, 即最佳角度满足
第一章 初等模型
在这一章中, 我们介绍几个初等模型及相应的求解方法. 所谓初等模型, 指的是该模型并不涉及高深的数学问题,
用常用的数学工具即可求解此类问题.
一、微积分方法寻找最优点
问题一
铁路线上 AB 段的距离为100km, 工厂C 距 A 处
20km, 并且 AC AB.(见下图) 为了运输需要, 要在 AB上选定一点 D, 向工厂修筑一条公路. 已知铁路每公里 货运的运费与公路每公里货运的运费之比为3: 5, 问D 点

该方法就称为最小二乘法.
最小二乘法的几何意义
y
y ax b
O
x
进一步地, 若所求曲线为以多项式时, 则也有相应的方 程.
曲线拟合关系中的方程⑼常称为法式方程.
利用软件MatLab,可以简单地得到拟合多项式中的各 项系数. MatLab中曲线拟合命令是 polyfit.
基本格式 polyfit
应选在何处? 建模 设 AD xkm, 则
A x D B
DB 100 x,
20km
C
CD 400 x 2 .
再设铁路上货运的运费为 3k / km, 公路上货运的运费为
5k / km, 从 B 到 C 的总运费为 y, 则
y 5k CD 3k DB

初等模型-数学模型

初等模型-数学模型

几何模型
01
02
03
平面几何
平面几何是几何模型的基 础,通过点、线、面等基 本元素描述实际问题,如 三角形、四边形、圆等。
立体几何
立体几何是描述三维空间 中物体形状和位置关系的 数学模型,如长方体、球 体、圆柱体等。
解析几何
解析几何是将几何问题转 化为代数问题的数学模型, 通过代数方法解决几何问 题。
提高数学模学模型具有强大的预测和决策支持功能 ,可以提高决策的科学性和准确性。通过 数学模型的建立和应用,可以解决实际问 题,推动科学技术和社会经济的发展。
影响力
加强数学模型的宣传和推广,提高其在社 会、经济、科技等领域的认知度和影响力 。同时,加强国际交流与合作,推动数学 模型在全球范围内的应用和发展。
感谢观看
THANKS
通过数学模型可以模拟物种进化过程, 解释生物多样性的起源和演化。
在商业决策中的应用
市场预测
通过分析历史数据和市场趋势, 可以建立一个数学模型来预测未
来的市场需求和销售情况。
投资决策
利用数学模型评估投资组合的风 险和回报,帮助投资者做出明智
的投资决策。
供应链管理
通过数学模型优化库存管理、物 流和运输,降低成本并提高效率。
01
02
03
04
解析法
通过数学公式推导求解,适用 于有解析解的简单问题。
数值法
通过数值计算求解,适用于大 多数实际问题。
近似法
通过近似计算求解,适用于难 以精确求解的问题。
模拟法
通过模拟实验求解,适用于难 以建立数学模型的问题。
数学模型的验证与优化
模型验证
通过对比模型的预测结果与实际数据 进行验证,确保模型的准确性。

数学建模中的初等模型

数学建模中的初等模型

y0= s2(x–y)+ s(2y– x )
y y0 1 s x s(2 s) 2 s
y0=s2y
y=y0/s2
分析 模型 x<y, y= y0+(1-s)x
x=y, y=y0/s
x=a y,
y
y0 sa
y0 sx/ y
y
x=y
x=2y
y<x<2y, y y0 1 s x s(2 s) 2 s
初等模型
• 研究对象的机理比较简单 • 用静态、线性、确定性模型即可达到建模目的 可以利用初等数学方法来构造和求解模型 如果用初等和高等的方法建立的模型,其应用效果 差不多,那么初等模型更高明,也更受欢迎.
尽量采用简单的数学工具来建模
1. 双层玻璃窗的功效


问 双层玻璃窗与同样多材料的单层
内 T1
平衡点PP´
xm xm , ym ym
y
y0 y=f(x)
0
x0
P(xm , ym )
P(xm,ym) x=g(y)
x
甲方的被动防御也会使双方军备竞赛升级.
模型解释
• 甲方将固定核导弹基地改进为可移动发射架.
乙安全线y=f(x)不变 y
甲方残存率变大
威慑值x 0不变
x减小,甲安全线
y0
x=g(y)向y轴靠近
x=2y, y=y0/s2 y0~威慑值 s~残存率
利用微积分知识可知 y是一条上凸的曲线,且
y=f(x)
y0 0
• y0变大,曲线上移、变陡. • s变大,y减小,曲线变平.
x
模型解释
• 甲方增加经费保护及疏散工业、交通中心等目标.
乙方威慑值 y0变大 (其他因素不变) 乙安全线 y=f(x)上移

实物交换、核军备竞赛—数学建模初等模型的应用

实物交换、核军备竞赛—数学建模初等模型的应用

乙安全线
y0 0 x
y1 y0 0
y=f ( x)
y0 y f ( x) y0 x
x0
P(xm,ym)甲 安 x=g(y) 全 区 x1 x
P~平衡点(双方最少导弹数)
精细 模型
x<y x=y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。 甲方以 x攻击乙方 y个基地中的 x个, sx个基地未摧毁,y–x个基地未攻击。 y0=sx+y–x y0=sy y= y0+(1-s)x
xm , ym ym xm
0
x0
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架 乙安全线y=f(x)不变
y
, ym ) P( xm
甲方残存率变大
威慑值x 0和交换比不变 x减小,甲安全线 x=g(y)向y轴靠近 PP´
y0 0
P(xm,ym)
.
D
B
p
0
A
.
C
xo x
设X单价a, Y单价b, 则等价交换下ax+by=s (s=ax0=by0)
2.7
背 景
核军备竞赛
• 冷战时期美苏声称为了保卫自己的安全,实行“核威 慑战略”,核军备竞赛不断升级。 • 随着前苏联的解体和冷战的结束,双方通过了一系列 的核裁军协议。 • 在什么情况下双方的核军备竞赛不会无限扩张,而存 在暂时的平衡状态。 • 估计平衡状态下双方拥有的最少的核武器数量,这个 数量受哪些因素影响。 • 当一方采取加强防御、提高武器精度、发展多弹头导 弹等措施时,平衡状态会发生什么变化。
模 型 假 设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LB L B[0.45 (B 60)/900]
的大小比较成绩优劣的建议。
上述公式具有各不相同的基准,无 法相互比较。为了使公式具有可比性, 需要对公式稍作处理。例如,我们可以 要求各公式均满足在 B=75公斤时有 L’=L,则上述各公式化为
(1)Austin公式:
(2)经典公式:
(1) L=k1Aa, a<1 (2) A=k2Lb, b<2
(3) B-Bo =k3L3
k越大成绩越好。因而建议 1 根据的大小 L L(B 35) 假设(1)、(2)是解剖学中的统计规律,在假设 (3)中 3 来比 较选手成绩的优劣。 O’ Carroll将体重划分成两部分:B=B0+B1,B0为非肌 肉重量。 根据三条假设可 得L=k(B-B0)β, k和β为两个常数, β=ab/3<2/3,
2.4 经验模型
当问题的机理非常不清楚难以直接利用其他知 识来建模时,一个较为自然的方法是利用数据 进行曲线拟合,找出变量之间的近似依赖关系 即函数关系。
最小二乘法
插值方法
最小二乘法
设经实际测量已得到n组数据(xi , yi), i=1,…, n。将数据画在平面直角坐标系中,见 图。如果建模者判断 这n个点很象是分布在某 条直线附近,令 该直线方程 为y=ax+b,进而 利用数据来求参 数a和b。由于该直线只是数 据近似满足的关系式,故 yi-(axi+b)=0一般不 成立,但我们希望
[ y i (axi b)] 2
i 1
n
最小。
y
y=ax+b
此式对a和b的偏导数均为 0,解相应方程组, 求得:
n i 1 ( xi x )( yi y) a n 2 i 1 ( xi x ) b y ax
(xi ,yi) 其中 和 y 分别为xi和yi 的平均值
模型3(经典模型)
经典模型是根据生理学中的已知结果和比例关系推导 出来的公式,应当说,它并不属于经验公式。为建立 数学模型,先提出如下一些假设:
(1)举重成绩正比于选手肌肉的平均横截 面积A, 即L=k1A (2)A正比于身高 L的平方,即 A=k2L2 (3)体重正比于身高 L的三次方, 即B=k3L3
(1 k1l k 2 d )T1 T2 T1 2 k1 l k 2 d T1 T2 k1 k1 d d 2 k1l k 2 d
2.3 崖高的估算
假如你站在崖顶且身上带着一只具有跑表功 能的计算器,你也许会出于好奇心想用扔下 一块石头听回声的方法来估计山崖的高度, 假定你能准确地测定时间,你又怎样来推算 山崖的高度呢,请你分析一下这一问题。 我有一只具有跑 表功能的计算器。
在寒冷的北方, 许多住房的玻璃窗都是双层 玻璃的,现在我们来建立一个简单 的数学模 型,研究一下双层玻璃到底有多 大的功效。 不妨可以提出以下 假设: 比较两座其他条件完全相同的房屋,它们 的 1、设室内热量的流失是热传导引起的, 差异仅仅在窗户不同。 不存在户内外的空气对流。 2、室内温 度T1与户外温 度T2均为常 数。 3、玻璃是均匀的,热传导系数为常数。
方法一假定空气阻力不计ຫໍສະໝຸດ 可以直接利用自由落体运动的公 式 1
h
2
gt 2
来计算。例如, 设t=4秒,g=9.81米/秒2,则可求得 h≈78.5米。

我学过微积分,我 可以做 得更好,呵 呵。
除去地球吸引力外,对石块下落影响最大的当 属空气阻 力。根据流体力学知识,此时可设空气阻力正比于石块下 落的速度,阻力系 数K为常数,因而,由牛顿第二定律可 得: dv
此外,根据统计结果,他 得出B0≈35公斤,β ≈1/3.
故有 L=k(B-35)1/3
模型5(Vorobyev公式)
这是一个前苏联使用的公式。建模者认为举重选手举起 的不光是重物,也提高了自己的重心,故其举起的总重 量为L+B,可以看出,他们更重视的是腿部肌肉的爆发 力。应用与模型4类似的方法,得出了按
根据上述假设,可得
2 3
K k1k2 k3
2 3
2 3
L k1k 2 ( B ) KB k3
显然,K越大则成绩越好,故可用 比赛成绩的优劣。
L LB

2 3
来比较选手
模型4(O’ Carroll公式)
经验公式的主要依据是比例关系,其假设条件非常粗 糙,可信度不大,因而大多数人认为它不能令人信服。 1967年,O’ Carroll基于动物学和统计分析得出了一 个现在被广泛使用的公式。O’ Carroll模型的假设条 件是:
§2.5 参数识别
在建立数学模型时常常需要确定一些参数,选什 么量为参数,怎样选取参数,其中也有一些技巧, 参数选得不好,会使问题变得复杂难解,给自己 增添许多不必要的麻烦。确定参数以后,一般需 要利用数据来获得这些参数的具体取值,例如在 使用经验方法建模时,假如你准备用线性函 数 ax+b来表达变量间的关系,你还要用最小二乘法 去求出参 数a、b的值,这一过程被称 为“参数 识 别”。总之,参数的选取应使其后的识别尽可 能简便,让我们来考察一个实例。
67.5
141.5
180
模型1(线性模型)

将数据画在直角坐标系中可以发现,运动成绩 与体量近似满足线性关系,只有110公斤级有 点例外,两项成绩都显得较低。应用前面叙述 的方法可求出近似关 系式L=kB+C,其中B为 体重,L为举重成绩。你在作图 时L轴可以放 在50公斤或52公斤处,因为没有更轻级别的 比赛,具体计算留给读者自己去完成。
室 外
室 内 Ta
Tb T1
设玻璃的热传导系数 为k1,空气的 热传导系数 为k2,单位时间通过单 位面积由温度高的一侧流向温度低 的一侧的热量为θ 由热传导公式 θ=kΔT/d
T2
d
l 解得:
d
Ta
1 k1l
k 2 d T1 T2 2 (k1l ) /( k 2 d )
T1 Ta Ta Tb Tb T2 k1 k2 k1 d l d
插值方法
在使用 最小二乘法 时,我们并未要求得到的拟合曲线一定 要经过所有的样本点,而只是要求 了总偏差最小。当实际 问题要求拟合曲线必须 经过样本点 时,我们可以应用数值 逼近中的 插值法。 根据实际问题的不同要求,存在多种不同的插值方法,有 只要求过样本点的 拉格朗日插值 法、牛顿插值法 等,有既 要求过插值点(即样本点)又对插值点处的导数有所要求 对插值法感兴趣的 同学可以查 的样条(Spline)插值,甚至还有对插值曲线的凹凸也有 阅相关书籍,例如由 李岳生编著上 要求的B样条插值法 。本课不准备详细介绍这些细致的插 海科学技术出版社出版的《样条与 值方法,只是提请读者注意,在建立经验模型时,插值法 插值》(1983年出版)等。 也是可以使用的数学工具之一。
模型2(幂函数模型)
线性模型并未得到广泛的接受,要改进结果, 能够想到的自然首先是幂函数模型,即令L=kBa, 对此式取对数,得 到lnL=lnk+a lnB。将原始数 据也取对数,问题即转化了线性模型,可用最 小二乘法求出参数。几十年前英国和爱尔兰采 用的比较举重成绩优劣 的Austin公式: L′=L/B3/4就是用这一方法求得的。
F m
令k=K/m,解得
v ce
dt
mg Kv
kt
g k
代入初始条件 v(0)=0,得c=-g/k,故有
g g kt v e k k g g kt 再积分一次,得: h t 2 e c k k
g g kt g g 1 kt g h t 2 e 2 (t e ) 2 k k k k k k
若设k=0.05并仍设 t=4秒,则可求 得h≈73.6米。 多测几次,取平均 令k→ 0+ ,即可 值 听到回声再按跑表,计算得到的时间中包含了 得出前面不考虑空气阻力时的结果。 将e-kt用泰勒公式展开并 进一步深入考虑

反应时间,不妨设平均反应时间 为0.1秒 ,假如 仍 设t=4秒,扣除反应时间后应 为3.9秒,代入 式①,求得h≈69.9米。
(3)O’ Carroll公式:
75 4 L L B 2 75 3 L L B 1 40 3 L L B 35
29250( B ) L L 75 B(465 B )
3
(4)Vorobyev公式:
将公式(1)—(4)用来比较1976年奥运会的抓举成绩,各 公式对九个级别冠军成绩的优劣排序如表 所示,比较结果 较为一致,例如,对前三名的取法是完全一致的,其他排序 的差异也较为微小。 体重 (公斤) 52 56 60 67.5 75 42.5 90 110 抓举成绩 (公斤) 105 117.5 125 135 145 162.5 170 175 O’ Austin 经典公式 Vorobyev Carroll 138.2(7) 134.0(8) 139.7(8) 138.8(7) 146.3(4) 142.8(6) 145.7(4) 146.6(4) 147.8(3) 145.0(3) 146.2(3) 147.7(3) 146.1(5) 144.8(5) 144.7(6) 145.8(5) 145.0(6) 145.0(3) 145.0(5) 145.0(6) 151.3(1) 152.2(1) 153.5(1) 152.1(1) 148.3(2) 150.5(2) 152.9(2) 150.3(2) 131.8(8) 135.6(7) 141.9(7) 138.5(8)
第二讲
初等模型
制作人:王兵贤
2.1 舰艇的会合
某航空母舰派其护卫舰去搜寻其跳伞的 飞行员,护卫舰找到飞行员后,航母通知它 尽快返回与其汇合,并通报了航母当前的航 速与方向,问护卫舰应怎样航行,才能与航 母汇合。
相关文档
最新文档