数字图像处理实验_汽车牌照自动识别

合集下载

利用图像处理技术进行车牌识别研究

利用图像处理技术进行车牌识别研究

利用图像处理技术进行车牌识别研究车牌识别技术是利用图像处理技术对车辆的车牌进行自动识别的一项重要研究。

随着交通工具的激增和城市交通拥堵的加剧,车牌识别技术在交通管理、车辆追踪、停车场管理等领域具有极高的应用价值和广泛的前景。

车牌识别技术的研究和发展主要包括以下几个方面:首先,图像采集与预处理是车牌识别技术的基础。

在图像采集方面,可以利用摄像机、监控摄像头等设备对车辆进行拍摄,获取车牌图像。

而在预处理方面,主要包括图像的灰度化、二值化、去噪和增强等处理过程。

通过这些处理,可以有效提高车牌图像的质量,为后续的识别提供更好的条件。

其次,特征提取是车牌识别技术的关键。

车牌图像中包含了大量的特征信息,包括字符的大小、形状、颜色等。

通过对车牌图像进行特征提取,可以将车牌图像转化为与车牌中字符信息有关的特征向量。

常用的特征提取方法包括垂直和水平投影、边缘检测、形态学操作等。

这些方法能够有效地提取出车牌图像中的特征信息,从而实现对车牌的快速而准确的识别。

此外,字符识别是车牌识别技术的核心环节。

在字符识别中,可以利用机器学习等模式识别方法,将车牌图像中的字符与预先训练好的字符模板进行比较,从而实现对车牌中字符的识别。

常用的字符识别算法包括基于模板的匹配算法、基于统计的方法、基于神经网络的方法等。

这些算法通过对字符进行特征提取和分类,能够实现对车牌中字符的准确识别。

最后,车牌的整体识别和车辆追踪是车牌识别技术的延伸应用。

在整体识别中,可以通过对车牌图像进行连通区域分析、边界检测等处理,将车牌与车辆进行区分,实现对车牌整体的识别。

而在车辆追踪中,可以通过对车牌的连续识别和匹配,实现对车辆在不同摄像头下的准确追踪,为交通监管和车辆管理提供更全面的支持。

综上所述,车牌识别技术是一项具有重要应用价值的图像处理技术。

通过对车牌图像的采集、预处理、特征提取和字符识别等步骤的研究,可以实现对车牌的准确识别和车辆的追踪。

车牌识别技术在交通管理、车辆追踪、停车场管理等领域具有广泛的应用前景,为城市交通的智能化发展提供了重要的技术支撑。

基于图像处理技术的车牌识别研究

基于图像处理技术的车牌识别研究

基于图像处理技术的车牌识别研究随着社会的发展和技术的进步,车辆已经成为现代城市道路交通不可或缺的一部分。

无论是交通管理部门,还是普通司机,都需要对车辆进行有效的监控和识别。

而车牌作为车辆身份的唯一标识,是进行车辆识别的重要因素。

因此,基于图像处理技术的车牌识别成为近年来研究的热点之一。

一、图像处理技术在车牌识别中的应用图像处理技术是指对图像进行数字信号处理,利用计算机进行图像分析和处理的一种技术。

在车牌识别中,图像处理技术可以帮助我们提取出车牌上的信息,从而实现自动识别。

车牌识别的过程主要包括图像采集、预处理、特征提取和识别四个步骤。

图像采集:图像采集是车牌识别的第一步。

通过摄像机或者其他采集设备将车牌图像录入到计算机系统中。

在采集过程中需要注意摄像机的位置、角度以及采光等问题,确保采集到的图像清晰、完整。

预处理:预处理是车牌识别的重要环节。

对采集到的图像进行去噪、灰度化、二值化等处理,使车牌的边缘线条更清晰,方便后续的处理。

特征提取:通过对预处理后的图像进行特征提取,可以将车牌数字和字母等信息提取出来。

特征提取的方法有很多种,包括颜色、形状、纹理等。

在车牌识别中,一般采用字符分割的方法,将字符从车牌中分离出来,然后进行特征提取。

识别:最后一步是将分割出的字符进行比对,匹配出车牌号码。

在识别的过程中,涉及到机器学习和人工智能等技术的应用,可以大大提高识别的准确率。

二、车牌识别的发展与应用车牌识别技术的发展可以追溯到上世纪80年代,但是由于当时计算机硬件和软件水平的限制,识别的效果并不理想。

随着计算机硬件和软件技术的进步,车牌识别技术取得了长足的发展。

目前,车牌识别技术已经广泛应用于道路交通、停车场管理、车辆追踪等方面。

以下是一些实际应用场景:道路交通管理:道路交通管理部门可以利用车牌识别技术实现对车辆的自动监控、追踪和管理。

例如,在高速公路入口处设置车牌识别设备,可以自动抓拍车牌号码,实现对车辆的自动分类,以及对违法行为的查询和处理。

数字图像处理-车牌识别-课件

数字图像处理-车牌识别-课件

与Sobel算子类似,这也是一种边缘模板,仅是模 板权系数不一样
1 1 1 M 10 0 0
1 2 1
1 0 1 和 M 21 0 2
1 0 1
ቤተ መጻሕፍቲ ባይዱ
11
G i f(jm ,kn)M i(m ,n) m 1n1
输出: g(j,k)maG x 1,G {2}
快速边缘检测
在车牌系统中还常采用一种更简单的模板来提取 边缘(对于有干扰的图像效果不理想)
数字图像处理-车 牌识别
精品
一、车牌识别技术简介
车牌识别是现代交通管理的重要措施,是 智能交通系统的重要环节
内容: 车牌识别系统是采用数字摄像技术和计算 机信息管理技术,对运行车辆实现智能管 理的综合运用技术
理论基础:数字图像处理和模式识别 车牌识别技术具有典型性,容易推广到其
它识别对象
主要应用领域
高斯-拉普拉斯算子法
二阶微分算子 该算子对噪声不敏感(5×5)
2 4 4 4 2 4 0 8 0 4 2 4 8 24 8 4 4 0 8 0 4 2 4 4 4 2
输出: g(j,k)2f(j,k)
哈夫(Hough)变换提取直线
利用图像全局特性将边缘像素连接起来形成区域 封闭边界的一种方法
定位、分割后输出
下步工作是对分割输出进行字符识别
车徽边缘提取与识别
1、彩色图像灰度化
CCD摄像头输出的图像一般是24位真彩色图像,需 进行灰度化,使不同颜色车体统一化,同时实现 快速处理
两种制式都可以采用
PAL制: 亮度 NTSC制:亮度
Y 0 .2R 2 0 .7 2 G 0 0 .0 7B 71 Y 0 .2R 9 0 .5 9 G 7 0 .1 8B 14

数字图像处理-车牌识别技术

数字图像处理-车牌识别技术

实际应用案例二
总结词
停车场管理系统
详细描述
在停车场管理中,车牌识别技术被广泛应用于车辆进出控制和停车位寻找。通过在停车场出入口安装 车牌识别设备,可以快速准确地识别进出车辆的车牌号码,实现自动计时计费、车辆进出记录等功能 ,提高停车场的运营效率和便利性。
实际应用案例三
总结词
智能安防系统
详细描述
车牌识别技术也可以应用于智能安防系统中,如小区、校园、重要场所等。通过 安装监控摄像头和车牌识别设备,可以实时监测和记录车辆进出情况,有效防范 非法入侵和车辆盗窃等安全问题,提高安防系统的可靠性和安全性。
特征提取的目的是降低数据维度,提高分类器的识别效率,同时保留足够的信息以 区分不同的车牌。
支持向量机分类器
支持向量机(SVM)是一种常用 的分类器,用于对车牌进行分类
和识别。
SVM通过找到能够将不同类别 的车牌数据点最大化分隔的决
策边界来实现分类。
在车牌识别中,SVM通常与特 征提取技术结合使用,以实现 对车牌的准确识别。
增强的目标是使车牌区域在图像中更 加突出,同时保持车牌字符清晰可辨。
常见的图像增强技术包括对比度增强、 直方图均衡化、边缘检测等,可以根 据车牌的特点选择适合的增强算法。
图像变换
图像变换是将图像进行几何变换 或频率域变换的过程,以便提取
车牌特征或进行模式识别。
常见的图像变换包括平移、旋转、 缩放、翻转等几何变换,以及傅 里叶变换、小波变换等频率域变
字符识别是车牌识别技术的最 后一步,将分割后的字符与预 定义的字符集进行匹配,以识 别出车牌上的字符。常用的识 别算法包括模板匹配、神经网 络等。
处理识别结果
详细描述
在识别出车牌上的字符后,需 要对识别结果进行处理,如去 除无关字符、合并相邻字符等 ,以提高识别准确率。

车辆牌照识别中如何运用数字图像处理技术-数字图像处理论文-计算机论文

车辆牌照识别中如何运用数字图像处理技术-数字图像处理论文-计算机论文

车辆牌照识别中如何运用数字图像处理技术-数字图像处理论文-计算机论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:随着我国经济实力得到很大的提升, 汽车已经成为人们的出行的主要交通工具之一, 这对于交通控制以及安全管理也提出了更高的要求, 我国的交通管理也朝着智能交通方向逐渐的完善, 而其中的一个重要组成便是车牌识别, 通过对车牌实现自动识别, 对于交通管理来说有着极大的便利作用。

对此本文利用数字图像识别运用在车牌识别中进行一定的研究, 主要对技术原理极其应用中存在的问题进行分析。

关键词:数字图像处理; 车辆牌照识别; 应用研究; 模式识别;前言随着我国社会取得了快速发展, 目前我国的道路监控与收费软件无法与发展需求相适应, 随着城市内汽车数量快速的增长, 完善的交通管理系统对于道路管理而言非常的必要, 而目前使用的管理系统已经不能很好的适用于社会发展。

要想实现智能化的道路交通系统, 首要便是对车牌实现有效地识别, 其能够对城市道路安全以及实现汽车有序管理具有着非常大的作用, 对此将数字图像处理运用其中是一种非常有效地方式。

1 数字图像处理实现车牌识别的技术原理运用数字图像处理与车牌识别之中主要由如下五个步骤构成, 第一步, 图像预处理, 由于车牌识别过程中所采集到的图像一般为真彩图, 其常常受到采集环境以及硬件设备等造成的影响, 使图像相对较为模糊, 采集图像中存在的背景以及噪声将会对字符分割与识别造成不利影响, 通过与处理能够在很大程度上提升图像质量[1]。

第二步, 车牌定位, 完成预处理之后的得到二值车牌图片, 通过形态学对其实现滤波, 从而使车牌区域可以实现区域的连通, 之后根据车牌先验知识对上述得到的连通区域进行筛选, 以此来获取到相对准确地车牌位置, 最终实现在图片中将车牌进行提取。

第三步, 车牌校正, 由于摄像头在拍摄过程中会与车辆本身具有一定的夹角, 导致获取的车牌图片并非是水平状态, 要想可以对车牌实现有效地分割与识别, 就必须对车牌加以一定的角度校正, 一般是利用Radon变换来使车牌得以校正[2]。

基于数字图像处理技术在汽车牌照识别系统的应用研究

基于数字图像处理技术在汽车牌照识别系统的应用研究

基于数字图像处理技术在汽车牌照识别系统的应用研究摘要:随着生活水平的日益提高,各大城市汽车数量也不断增加,因此交通状况日益受到人们的重视。

如何进行有效地交通管理,成为各政府相关部门越来越关注的焦点。

汽车牌照自动识别是智能交通管理系统中的关键技术之一,本文介绍一种基于数字图像处理的车牌识别系统,该系统主要由图像的采集、图像预处理、牌照定位、字符分割和字符识别五部分组成。

牌照自动识别技术的工作是处理并分析摄取的视频流中具有复杂背景的车辆图像,即牌照字符定位、字符分割,最后自动识别汽车牌照上的字符。

关键词:汽车牌照识别;智能交通管理;数字图像处理中图分类号:tp391.41 文献标识码:a 文章编号:1007-9599 (2012)19-0000-02车辆牌照识别系统(vehicle license plate recognition system,简称lpr)是现代智能交通系统中的一项重要研究课题,是实现智能交通的重要环节,涉及领域异常广阔,包括模式识别、计算机视觉以及数字图像处理技术等。

随着智能交通系统的迅猛发展,对于汽车牌照识别技术的研究也随之发展起来。

如今的世界已经发展成为数字化信息时代,很多难以解决的问题依托这一平台得到完美的解决。

智能交通系统可以在不影响汽车正常行驶的状态下自动完成对牌照的有效识别,很显然这一技术的发明对于交通管理工作起到了很大的推动作用。

目前,车辆牌照识别技术已经广泛应用于高速公路的监测,电子收费,安全停车管理,交通违规管理,偷盗车辆辨别等重要领域,其发展对于人民的生活、社会经济以及城市的建设产生了积极而深远的影响,因此对于汽车牌照识别技术的研究具有重要的现实意义。

数字图像处理技术作为车牌识别系统中最为重要的技术之一,在其中发挥了不可估量的作用。

随着近些年来数字图像处理技术的高速发展,也为车牌识别系统的建立提供了有效的技术保障。

电子摄像得到的结果是彩色图像,而且不可避免地含有各种噪声干扰,为了能够分割出车牌的有效区域并在有效区域中分离中单个车牌字符,我们可以数字图像处理技术来进行相关处理,从而达到清晰识别的目的。

基于数字图像处理的车牌识别技术研究报告

基于数字图像处理的车牌识别技术研究报告

基于数字图像处理的车牌识别技术研究报告随着计算机和视频技术的发展,车牌自动识别系统己成为智能交通系统的重要组成部分,并已广泛应用于车辆追查和跟踪、车辆出入控制、公路收费监控等领域。

完整的车牌自动识别系统由图像采集、图像处理、模糊识别等模块组成,其中对一幅已知车辆数字图像进行预处理、车牌定位、二值转换、车牌分类、车牌分割、字符识别、结果优化的过程简称车牌模糊识别。

目前国内已有众多单位开展了车牌识别技术研发,虽然各家都取得一定的成功,但车牌识别技术本身毕竟要符合实战要求,为此笔者综观各家实际车牌识别系统后提出了车牌识别系统的几点不足之处和改进方法,供该领域的专业人士和领导参考。

一、图像预处理根据三基色原理,世界上任何色彩都可以由红绿蓝(RGB)三色不同比例的混合来表示,如果红绿蓝(RGB)三个信号分别由一个字节表示,则该图像颜色位数就达到二十四位真彩,也就是说在二十四位真彩的数字图像中每个像素点由三个字节来表示,根据数字图像水平和垂直方向像素点数(即图像分辨率)可计算出一幅图像实际位图大小。

事实上,在车牌自动识别系统中车辆图像是通过图像采集卡将运动的车辆图像抓拍下来,并以位图的格式存放在系统内存中。

这时的车辆数字图像虽然没有被人为损伤过,但在实际道路上行驶的车辆常会因为各种各样的原因使得所拍摄的车辆图像效果不理想,如外界光线对车牌的不均匀反射、极强阳光形成的车牌处阴影、摄像机快门值设置过大而引起的车辆图像拖影、摄像头聚焦或后背焦没有调整到位而形成的车辆图像不清晰、由于视频传输线而引起的图像质量下降、所拍摄图像中存在的噪声干扰、所安装的车牌不规范或车辆行驶变形等等。

这些都给车牌的模糊识别增加了难度,在现有的技术条件下任何优秀、先进的车牌识别软件也是无法达到百分之百车牌正确识别率。

但我们可以对车辆图像根据不同应用特点进行识别前的预处理,尽最大可能提高车牌正确识别率,这些图像预处理包括图像平滑、倾斜校正、灰度修正等。

《数字图像处理》大作业:车牌识别

《数字图像处理》大作业:车牌识别

将图中字符分割出来 将每个字符单独分割出来进行操作方便字 符识别 用d=bwareaopen(d,150);将第二个 和第三个字符中间的点去除点。
分割第一个字符的程序
wide1 = 0 while sum(d(:,wide1+1))<3 && wide1 <= n-2 wide1 = wide1 + 1; end wide2 = wide1; while sum(d(:,wide2+1))>2 && wide2 <= n-2 wide2 = wide2 + 1; end % temp = imcrop(d, [wide1 1 wide2-wide1 m]); % figure;imshow(temp); % tp=3;bottm=m-5; while sum(d(tp,wide1:wide2))==0 tp = tp + 1; end while sum(d(bottm,wide1:wide2))==0 bottm = bottm - 1; end e1 = imcrop(d, [wide1 tp wide2-wide1 bottm-tp]);
%求出一列中满足蓝色区域点的个数
%找出车牌区域左右边界
车牌字符处理
首先要对定位好的车牌图像进行处理,再将车牌 上的字符分割出来,方便后续识别操作。ຫໍສະໝຸດ 图像灰度化图像二值化
图像滤波处理
车牌图像处理
图像处理部分程序
X = im2bw(Plate); 像 [H, L] = size(X); X = imcrop(X, [5 5 L-10 H-10]); %im2bw使用阈值变换法把灰度图 转换成二值图像。

基于图像处理的车辆牌照自动识别技术研究

基于图像处理的车辆牌照自动识别技术研究

基于图像处理的车辆牌照自动识别技术研究车辆牌照自动识别技术是基于图像处理的一项重要技术。

随着现代社会交通流量的增加,通过人工方式对车辆进行识别和记录变得越来越困难和低效。

因此,开发一种能够自动识别车辆牌照的技术,具有重要的实际意义。

本文将对基于图像处理的车辆牌照自动识别技术进行详细的研究和分析。

首先,我们需要明确基于图像处理的车辆牌照自动识别技术的原理。

该技术主要包括图像预处理、车牌定位、字符分割与识别等步骤。

在图像预处理阶段,我们需要对原始图像进行灰度化、二值化和噪声去除等操作。

灰度化可以将彩色图像转化为灰度图像,简化了后续处理步骤。

二值化操作将灰度图像二值化,将车牌区域与背景进行分离,提高了后续车牌定位的准确度。

噪声去除则是为了消除图像中的噪声干扰,提高车牌信息的可靠性。

接下来是车牌定位阶段。

在这一步骤中,我们需要使用图像处理算法来定位图像中的车牌区域。

常用的方法有颜色特征法、边缘检测法和形态学操作法等。

颜色特征法是通过分析车牌的颜色特征来定位车牌区域,虽然简单但准确率较低。

边缘检测法则是通过检测图像边缘来确定车牌区域,常用的算法有Sobel算子和Canny算子。

形态学操作法则是利用图像形态学的相关方法来提取图像中的车牌区域,可以通过腐蚀和膨胀等操作来实现。

完成车牌定位后,接下来是字符分割与识别阶段。

在这一阶段,我们需要将定位到的车牌区域中的字符进行分割和识别。

字符分割是将车牌字符分离成单个字符的过程,常用的方法有基于投影的分割方法和基于边缘检测的分割方法。

字符识别则是利用图像处理和模式识别的相关技术来对字符进行识别,常用的方法有基于模板匹配的方法和基于神经网络的方法等。

在实际的车牌自动识别系统中,还需要考虑一些实际问题。

比如,车牌的变化、光照条件的变化、遮挡和模糊等。

为了提高识别的准确性和鲁棒性,可以采用多特征融合的方法,结合颜色、纹理、形状等多种特征来进行识别。

同时,还可以使用机器学习算法来训练车牌识别模型,以提高系统的准确性和泛化能力。

基于数字图像处理对汽车牌照自动识别系统的研究

基于数字图像处理对汽车牌照自动识别系统的研究

换 、 缘 检 测 、 ao 边 R d n变换 、 影 特 征 等 图像 处 理 方 法 , 车 牌 检 测 、 符 分 割 、 符 识 别 三 步 实 现 汽 车 牌 照 的 识 别 , 理 过 程 中 考 虑 投 分 字 字 处 并 解 决 了 现 实 拍 摄 图像 中 存 在 的 牌 照 倾 斜 等 不 利 条 件 , MAT 用 I AB软 件 对 这 些 算 法 进 行 仿 真 , 过 对 多 幅 图 像 的处 理 实 验 表 明 , 经 该 系 统识 别 速 度快 , 别 率 高 。 识
车牌 定位 ( 又称 车牌 检 测 ) 整个 L R 系 统 的首 是 P
要 任 务 , 是 关 键 技 术 。 车 牌 定 位 属 于 典 型 的 复 杂 背 也
景 中的 目标 检测 问题 , 虽然 目前 有许 多检 测方 法 , 在 但 检测 准确度 和速 度 方 面 , 有 许 多需 要 改 进 和 挖 掘 的 还
数 学 形 态 学 的 基 本 运 算 有 4个 : 胀 、 蚀 、 启 膨 腐 开 和 闭 合 。 图 像 集 合 A 用 结 构 元 素 B 来 膨 胀 , 作 记
A①B, 定 义为 : 其 A o B一 {7 [B n A] . 『 (h ≠ ) 2 () 1
其 中, B表示 B的映像 , 即与 B关 于 原 点对 称 的 集合 。
了 R d n变换 算 法先 进 行倾 斜 校 正 , ao 经过 校 正处 理 的 车牌 可 以为后面 的字符 分 割带来 方便 。
图 l 原 始 彩 色 图 像
在 字符 分割 阶段 , 主要 借 助 相 关 的 投 影信 息 和先
验 知识 来确定 每个 字符 的分 割位 置 , 正确分 割 字符 , 为 下 一步 字符识 别 奠定 了基础 。

数字图像处理-车牌识别系统附程序

数字图像处理-车牌识别系统附程序

数字图像处理车牌识别系统目录1 方案设计............................................................................................................... .. (4)1.1 基本原理 (4)1.2 总体设计方案 (4)2 各模块的实现 (5)2.1 图象的采集与转换 (5)2.2 灰度校正 (6)2.3 平滑处理 (7)2.4 提取的边缘 (7)3 牌照的定位和分割 (7)3.1 牌照区域的定位 (8)3.2 牌照区域的分割 (9)4 字符处理 (9)4.1 字符分割 (10)4.2 字符归一化 (10)4.3 字符的识别 (10)5 总结 (11)参考文献 (12)附录 (13)摘要随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经2不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。

汽车牌照的自动识别技术已经得到了广泛应用。

汽车牌照自动识别整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,其中字符识别过程主要由以下3个部分组成:①正确地分割文字图像区域;②正确的分离单个文字;③正确识别单个字符。

用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。

在研究的同时对其中出现的问题进行了具体分析处理。

1方案设计1.1基本原理由于车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别正确率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并且要求满足实时性要求。

图1 牌照识别系统原理图该系统是计算机图像处理与字符识别技术在智能化交通管理系统中的应用,它主要由牌照图像的采集和预处理、牌照区域的定位和提取、牌照字符的分割和识别等几个部分组成,如图1 所示。

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统基于数字图像处理的车牌识别系统1.车牌识别系统研究⽬的及意义车牌识别系统的主要任务是分析和处理摄取到的复杂背景下的车辆图像,定位分割牌照,最后⾃动识别汽车牌照上的字符,LPR是利⽤车辆牌照的唯⼀性来识别和统计车辆,它是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统在现代化交通发展中车牌识别系统是制约交通系统智能化、现代化的重要因素,LPR系统应该能够从⼀幅图像中⾃动提取车辆图像,⾃动分割牌照图像,对字符进⾏正确识别,从⽽降低交通管理⼯作的复杂度。

2.车牌图像预处理为了便于车牌的分割识别,摄像机摄下的原始图像应具有适当的亮度和对⽐度。

但通常经输⼊系统获取的车牌图像信息由于光照条件、牌照的整洁度、摄像机的状态(焦距、⾓度和镜头的光学畸变)以及车速的不稳定等因素都会使图像含有各种各样的噪声与畸变。

例如由于光照度不均匀造成图像灰度过于集中;由摄像头获得的图像经过AD转换、线路传送都会产⽣噪声污染;车牌的字符部分受到磨损或是被污迹覆盖等等。

这些主客观因素不可避免地影响车牌图像的清晰程度,降低图像质量,轻者表现为图像不⼲净,难以看清细节,重者表现为图像模糊不清、歪斜或缺损,车牌字符边界模糊、细节不清、⽐划断开、粗细不均等现象。

这势必会影响车牌区域分割,降低车牌字符识别的准确度。

因此,在对车牌图像进⾏分析之前,必须要对车牌图像进⾏预处理。

对车牌图像的预处理主要包括以下三个⽅⾯:(l)图像对⽐度增强。

由于车牌识别系统需要全天候⼯作,⾃然光照度的昼夜变化会引起车辆图像对⽐度的严重不⾜,所以增强图像是很有必要的。

(2)图像去噪。

通常得到的汽车图像会有⼀些污点,为了保证识别的效果,需要对图像进⾏去噪处理。

(3)倾斜矫正。

摄像机的位置、车辆的运动等因素经常使拍摄出来的汽车图像有⼀定的倾斜,这就需要对图像进⾏倾斜矫正,或在分割出车牌区域之后对字符倾斜矫正2.1图像的灰度化通常情况下,实际的车牌识别系统中由摄像机采集到的原始图像是彩⾊图像,所有的彩⾊图像都是由红(R)、绿(G)、蓝(B)三基⾊组合⽽成,在数字图像中每⼀个基⾊都被分为256个等级,即0~255。

数字图像处理实习报告--OCR-车牌号码识别

数字图像处理实习报告--OCR-车牌号码识别

数字图像处理实习报告--OCR-车牌号码识别数字图像处理实习报告实习项⽬名称:OCR-车牌号码识别所属课程名称:数字图像处理班级:学号:姓名:指导教师:⽬录⼀、实习⽬的 (3)⼆、实习原理 (3)三、实习步骤 (3)3.1完成车牌定位的整个过程 (4)3.2⽔平差分提取图象边缘 (4)3.3 完成图象车牌区域的初步定位。

(4)3.4利⽤先验知识标识车牌区域,进⾏车牌区域的选择 (4)3.5⽔平查找后,纵向查找。

完成图象车牌区域的初步定位。

(5)3.6利⽤先验知识标识车牌区域,进⾏车牌区域的选择,(横纵向) (5)3.7计算伪车牌区的跳变平均数 (5)3.8找出所有伪车牌区域中具有最⼤跳变平均数的区域号,精确定位车牌 (5)3.91找出车牌的左右边缘 (5)3.92⼆值化图象 (6)3.93车牌字符分割 (6)3.94⽔平⽅向投影,分割出字符 (6)四、实验程序 (6)五、实习结果 (24)六、实习⼼得 (28)⼀、实习⽬的(1)掌握数字图像处理的相关知识及算法。

(2)学习在VC 6.0环境下编写车牌定位与识别程序。

(3)了解车牌定位⽅法,如边缘检测法,基于⽮量量化的车牌定位法等。

(4)了解车牌字符分割⽅法,如,投影法,基于车牌字符先验知识的字符分割⽅法等。

(5)了解车牌字符识别⽅法,如字符归⼀化,投影法,基于数字和字母特征的模板匹配法。

(6)运⽤编写的车牌定位与识别程序实现在各种环境下车牌的识基于VC++图像处理的汽车牌照识别系统主要包括车牌定位,字符车牌分割和车牌字符识别三个关键环节其识别流程图如图1所⽰。

图1 识别流程图其中,(1)原始图像:原始的汽车图像;(2)图像预处理:对采集到的图像进⾏滤波等处理以克服图像⼲扰;(3)车牌定位:计算边缘图像的投影⾯积,寻找峰⾕点,⼤致确定车牌位置,再计算此连通域内的宽⾼⽐,剔除不在域值范围内的连通域,最后得到的便为车牌区域;(4)字符分割:利⽤投影检测的字符定位分割⽅法得到车牌的字符;(5)字符数据库:为第6步的字符识别建⽴字符模板数据库;(6)字符识别:通过基于模板匹配的⼈⼯神经⽹络算法,通过特征对⽐或训练识别出相关的字符,得到最后的汽车牌照,包括英⽂字母和数字。

基于图像处理的车辆牌照识别算法研究与应用

基于图像处理的车辆牌照识别算法研究与应用

基于图像处理的车辆牌照识别算法研究与应用概述:车辆牌照识别算法是一种基于图像处理的技术,用于从车辆图片中自动识别和提取车辆牌照信息。

随着交通管理的数字化和智能化,车辆牌照识别算法在交通管理、智能交通系统、安全监控等领域具有广泛的应用前景。

本文将介绍车辆牌照识别算法的研究现状和发展趋势,探讨其在实际应用中的一些典型方法和技术。

一、车辆牌照识别算法的研究现状1.1 图像预处理图像预处理是车辆牌照识别的第一步,其目的是提高图像质量并减少识别误差。

常见的图像预处理方法包括图像增强、灰度化、滤波和边缘检测等。

这些技术可以提高图像的对比度、去除干扰噪声,并增加牌照的边缘信息,有助于后续的识别过程。

1.2 牌照定位牌照定位是车辆牌照识别的关键步骤之一,其主要目的是在车辆图像中准确地定位出牌照的位置,使得后续的牌照识别可以在牌照区域内进行。

常用的牌照定位方法有基于边缘检测、颜色特征和形态学操作等。

这些方法通过对图像进行分析和处理,可以准确地定位出牌照的位置。

1.3 字符分割字符分割是车辆牌照识别的关键环节之一。

由于车辆牌照上的字符存在大小、间距等变化,因此需要对牌照中的字符进行分割,使得后续的字符识别可以进行。

常见的字符分割方法包括基于投影、基于连通性、基于灰度切分和基于深度学习等。

这些方法可以将牌照中的字符分割出来,并减少字符间的干扰。

1.4 字符识别字符识别是车辆牌照识别的最后一步,其主要目的是将字符图像转化为字符编码,实现对车辆牌照信息的提取和识别。

在字符识别过程中,常用的方法有基于模板匹配、基于特征提取和基于深度学习等。

这些方法可以将字符图像与已知的字符模板进行匹配或者提取特征,从而实现对字符的识别。

二、车辆牌照识别算法的应用2.1 交通管理随着城市交通的日益发展和拥堵问题的加剧,车辆牌照识别算法在交通管理中发挥着重要作用。

通过利用车辆牌照识别技术,交通管理部门可以实时获取交通流量信息、违法行为的牌照记录等,从而提高交通安全和管理效率,并为交通规划和控制提供决策参考。

数字图像处理在车牌识别中的应用

数字图像处理在车牌识别中的应用

图像处理在智能交通中的应用——基于MATLAB的车牌识别摘要:针对交通管理系统的信息化、智能化发展趋势,通过对车牌特征和定位技术的探索,提出了汽车牌照字符识别系统。

本文采用多种滤波技术对车牌进行滤波处理,robert边缘检测算子进行边缘检测,运用区域分割法实现了车牌字符的分割,最后简述了字符识别原理和模板匹配在字符识别中的应用方法。

由实验结果可知,系统能准确实现车牌的定位、分割和识别,具有良好的性能。

关键词:车牌识别,MATLAB,数字图像处理,模式识别,智能第一部分引言随着汽车数量的增加,城市交通状况日益受到人们的重视,如何进行有效的交通管理更是成为了人们关注的焦点。

针对此问题,人们运用新的科学技术,相继研制开发出了各种交通道路监视、管理系统。

这些系统通过车辆检测装置对过往的车辆实施检测,提取有关交通数据,达到监控、管理和指挥交通的目的。

因此,智能交通系统ITS(intelligent traffic system)已成为世界交通领域研究的重要课题。

车牌识别系统LPR(1icense plate recognition)作为智能交通系统的一个重要组成部分,已在高速公路、城市交通和停车场等项目的管理中占有无可取代的重要地位。

它在不影响汽车状态的情况下,由计算机自动完成车牌的识别,从而降低交通管理工作的复杂度。

本文应用图像处理技术、车牌定位技术、车牌校正技术、车牌分割技术、字符特征提取方法和模版匹配识别技术等解决了车辆牌照识别问题,并提出了车牌识别系统的设计方案。

第二部分车牌识别的原理和方法通常,车牌识别过程分为图像预处理、车牌定位、车牌校正、车牌分割和车牌识别五个部分。

①图像预处理:在整个车牌识别系统中,由于采集进来的图像为真彩图,再加上实际采集环境的影响以及采集硬件等原因,图像质量并不高,其背景和噪声会影响字符的正确分割和识别,所以在进行车牌分割和识别处理之前,需要先对车牌图像进行图像预处理操作。

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统基于数字图像处理的车牌识别系统言经官电气学院电子112摘要:车牌识别系统(License Plate Recognition 简称LPR)技术基于数字图像处理,是智能交通系统中的关键技术,同时他的发展也十分迅速,已经逐渐融入到我们的现实生活中。

文章介绍了车牌识别系统的意义、图像去噪处理以及图像二值化方法,并通过仿真试验模拟了图像处理的过程。

本文所做的工作在于前期的图像预处理工作。

本次设计着重在于图像识别方面, 中心工作都为此而展开,文中没有进行车牌的定位处理,而是采用数码相机直接对牌照进行正面拍照,获取原始车牌图像。

之后利用Matlab编程对图片进行了大小的调整、彩色图片转化成灰度图片、图片去噪、以及图片二值化等工作。

其中,去噪与二值化是关系图像识别率的关键。

关键字:车牌识别系统;图像预处理;字符识别;Matlab;去噪;二值化引言智能交通系统(ITS)是当今世界交通管理体系发展的必然趋势,而作为智能交通系统中的重要组成部分之一的车牌自动识别技术,目前已被广泛应用于城市道路监控、高速公路收费与监控、小区与停车场出入口管理、公安治安卡口等场合,成为研究的热点。

伴随我国国民经济的高速发展,国内高速公路、城市道路、停车场建设越来越多,对交通控制,安全管理的要求也日益提高。

因此迫切需要采用高科技手段,对违法违章车辆牌照进行登记, 在这种情况下,作为信息来源的自动检索,图像识别技术越来越受到人们的重视。

车牌识别系统的出现成为了交通管制必不可少的有力武器。

1 车牌识别系统的目标利用计算机等辅助设备进行的自动汽车牌照自动识别就是在装备了数字摄像设备和计算机信息管理系统等软硬件平台的基础之上,通过对车辆图像的采集,采用先进的图像处理、模式识别和人工智能技术,在图像中找到车牌的位置,提取出组成车牌号码的全部字符图像,再识别出车牌中的文字、字母和数字,最后给出车牌的真实号码。

国外的车牌识别研究始于80 年代,90 年代始已有不少成套的产品出现。

数字图像处理车牌号识别实验

数字图像处理车牌号识别实验

数字图像处理车牌号识别实验1、编程语言与开发环境:C#,操作系统式windows7,开发平台是visual studio 2010。

2、实验数据:在安徽大学校磬苑校区内拍摄到车牌照片3、实验简介车牌自动识别系统的整个处理过程分为图片预处理、车牌定位、字符分割、字符识别四大模块,本课题通过对含车牌的汽车图片进行分析,设计并实现了一个车牌识别原型系统。

第一部分为图像预处理部分,该部分采用基于灰度图像的灰度拉伸和灰度化均衡以及中值滤波算法对车牌图像进行处理。

第二部分为车牌区域定位,该部分在二值图像的基础上用基于边缘检测的车牌定位方法对车牌区域实现定位。

第三部分为字符切分部分,该部分用基于垂直投影法的车牌照字符切分方法对车牌进行字符切分,为车牌字符识别作好准备。

第四部分为字符识别部分,该部分采用基于标准特征库模板匹配的字符识别方法对切分出来的字符块进行识别,满足简单、实用、正确性高的要求。

另外为了增强用户体验和增加识别率,本系统还加入了、车牌特征训练、特征实时入库等辅助功能。

3、实验流程5、实验结果图5-1 原图像图5-2 经灰度化处理后图像图5-3 经灰度化处理后的直方图图5-4 经灰度均衡化处理后的图像图5-5 经灰度均衡化处理后的直方图图5-6 经中值滤波处理后的图像图5-7 经中值滤波处理后的直方图图5-8使用sobel边缘检测后的图像图5-9车牌定位图图5-10对车牌进行灰度化处理后图像图5-11对车牌进行二值化处理后图像图5-12对车牌进行区域化处理后图像图5-13识别结果图5-14 程序运行截图1图5-14 程序运行截图2。

数字图像处理-汽车牌照自动识别要点

数字图像处理-汽车牌照自动识别要点

数字图象处理题目:汽车牌照自动识别学院:计算机科学与信息学院专业:_______网络工程_______目录1 实验目的 (1)2 实验原理和方法 (1)3 实验内容和步骤 (1)3.1 牌照定位 (1)3.2 牌照字符分割 (2)3.3 牌照字符识别 (2)4 实验数据 (2)4.1 源程序 (2)4.2 运行结果 (7)4.2.1 牌照定位 (7)4.2.2 牌照字符分割 (9)4.2.2 牌照字符识别 (10)1 实验目的1.分析汽车牌照的特点,正确获取整个图像中车牌的区域,并识别出车牌号。

2.将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。

2 实验原理和方法牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。

其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。

某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。

3 实验内容和步骤为了进行牌照识别,需要以下几个基本的步骤:a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。

3.1 牌照定位自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。

首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。

基于数字图像处理技术的车牌识别技术研究

基于数字图像处理技术的车牌识别技术研究

基于数字图像处理技术的车牌识别技术研究随着数字图像处理技术的发展,基于数字图像处理技术的车牌识别技术已经越来越成熟。

本文将从技术原理、发展历程、应用前景等方面进行探讨。

一、技术原理基于数字图像处理技术的车牌识别技术是通过图像获取、特征提取、匹配识别等过程实现对车牌的快速准确识别和提取的技术。

其核心技术是数字图像处理,主要包括以下几个方面:1.图像获取:通过摄像机、高分辨率相机等设备获取车辆图片,然后对图片进行处理。

2.预处理:对图像进行灰度化、去噪、二值化、图像增强等操作,以提高图像的质量和清晰度。

3.特征提取:针对不同的车辆和车牌,提取不同的特征,比如车牌号码、车牌颜色、车牌字体、大小等,以便后续处理和识别。

4.识别匹配:使用模式识别、人工智能、机器学习等技术对提取的特征进行分析和识别,实现对车牌号码的准确识别。

二、发展历程数字图像处理技术的应用在车牌识别领域可以追溯到上世纪90年代。

在那个时候,人们只是简单地使用黑白相机和一些简单的图像处理算法,提取车牌的高度和长度等信息,进行简单的识别。

随着技术的发展,2000年左右,出现了一些基于嵌入式系统的车牌识别方案,可以在道路上实现对车辆的自动监测和识别。

2005年以后,随着数字图像处理技术的成熟,车牌识别技术得到了极大地发展。

这个时候已经有一些算法可以实现对车牌号码的自动识别,并且具有一定的准确度和鲁棒性。

2010年至今,随着深度学习、人工智能等技术的发展,车牌识别技术已经非常成熟,并且在现实生活中得到了广泛的应用,比如智慧城市交通管理、车辆管理、车位管理等方面。

三、应用前景基于数字图像处理技术的车牌识别技术具有广泛的应用前景。

以下是其中的一些方面:1. 智慧城市交通管理:在城市交通治理中,车牌识别技术可以帮助管理部门实现对违章车辆和黑车的自动监测和管理,提高交通管理效率和管理水平。

2. 车位管理:车牌识别技术可以应用在停车场和小区停车场等地方,实现对车位和车辆的自动识别和管理,帮助车主快速找到空车位。

数字图像处理-汽车牌照自动识别

数字图像处理-汽车牌照自动识别

数字图象处理题目:汽车牌照自动识别学院:计算机科学与信息学院专业:_______网络工程_______目录1 实验目的 (1)2 实验原理和方法 (1)3 实验内容和步骤 (1)3.1 牌照定位 (1)3.2 牌照字符分割 (2)3.3 牌照字符识别 (2)4 实验数据 (2)4.1 源程序 (2)4.2 运行结果 (7)4.2.1 牌照定位 (7)4.2.2 牌照字符分割 (9)4.2.2 牌照字符识别 (10)1 实验目的1.分析汽车牌照的特点,正确获取整个图像中车牌的区域,并识别出车牌号。

2.将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。

2 实验原理和方法牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。

其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。

某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。

3 实验内容和步骤为了进行牌照识别,需要以下几个基本的步骤:a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。

3.1 牌照定位自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。

首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州大学实验报告学院:计算机学院专业:网络工程班级:101 姓名学号实验组实验时间12.11 指导教师戴丹成绩实验项目名称实验四汽车牌照自动识别实验目的1.分析汽车牌照的特点,正确获取整个图像中车牌的区域,并识别出车牌号。

2.将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。

实验原理牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。

其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。

某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。

实验步骤a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。

实验数据getword.mfunction [word,result]=getword(d)word=[];flag=0;y1=8;y2=0.5;while flag==0[m,n]=size(d);wide=0;while sum(d(:,wide+1))~=0 && wide<=n-2wide=wide+1;endtemp=qiege(imcrop(d,[1 1 wide m]));[m1,n1]=size(temp);if wide<y1 && n1/m1>y2d(:,[1:wide])=0;if sum(sum(d))~=0d=qiege(d); % 切割出最小范围else word=[];flag=1;endelseword=qiege(imcrop(d,[1 1 wide m]));d(:,[1:wide])=0;if sum(sum(d))~=0;d=qiege(d);flag=1;else d=[];endendendresult=d;qiege.mfunction e=qiege(d)[m,n]=size(d);top=1;bottom=m;left=1;right=n;while sum(d(top,:))==0 && top<=mtop=top+1;endwhile sum(d(bottom,:))==0 && bottom>=1bottom=bottom-1;endwhile sum(d(:,left))==0 && left<=nleft=left+1;endwhile sum(d(:,right))==0 && right>=1right=right-1;enddd=right-left;hh=bottom-top;e=imcrop(d,[left top dd hh]);main.mfunction [d]=main(jpg)close allclcI=imread('car2.jpg');subplot(2,3,1),imshow(I);title('原图')I1=rgb2gray(I);subplot(2,3,2),imshow(I1);title('灰度图');subplot(2,3,3),imhist(I1);title('灰度图直方图');I2=edge(I1,'robert',0.15,'both');subplot(2,3,4),imshow(I2);title('robert算子边缘检测') se=[1;1;1];I3=imerode(I2,se);subplot(2,3,5),imshow(I3);title('腐蚀后图像');se=strel('rectangle',[25,25]);I4=imclose(I3,se);subplot(2,3,6),imshow(I4);title('平滑图像的轮廓');I5=bwareaopen(I4,2000);figure(2),imshow(I5);title('从对象中移除小对象'); [y,x,z]=size(I5);myI=double(I5);ticBlue_y=zeros(y,1);for i=1:yfor j=1:xif(myI(i,j,1)==1)Blue_y(i,1)= Blue_y(i,1)+1;endendend[temp MaxY]=max(Blue_y);PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);Blue_x=zeros(1,x);for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendwhile ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(3),subplot(1,2,1),imshow(IY),title('行方向合理区域');figure(3),subplot(1,2,2),imshow(dw),title('定位剪切后的彩色车牌图像') imwrite(dw,'dw.jpg');[filename,filepath]=uigetfile('dw.jpg','输入一个定位裁剪后的车牌图像'); jpg=strcat(filepath,filename);a=imread('dw.jpg');b=rgb2gray(a);imwrite(b,'1.车牌灰度图像.jpg');figure(4);subplot(3,2,1),imshow(b),title('1.车牌灰度图像')g_max=double(max(max(b)));g_min=double(min(min(b)));T=round(g_max-(g_max-g_min)/3);[m,n]=size(b);d=(double(b)>=T);imwrite(d,'2.车牌二值图像.jpg');figure(4);subplot(3,2,2),imshow(d),title('2.车牌二值图像')figure(4),subplot(3,2,3),imshow(d),title('3.均值滤波前')h=fspecial('average',3);d=im2bw(round(filter2(h,d)));imwrite(d,'4.均值滤波后.jpg');figure(4),subplot(3,2,4),imshow(d),title('4.均值滤波后')se=eye(2);[m,n]=size(d);if bwarea(d)/m/n>=0.365d=imerode(d,se);elseif bwarea(d)/m/n<=0.235d=imdilate(d,se);endimwrite(d,'5.膨胀或腐蚀处理后.jpg');figure(4),subplot(3,2,5),imshow(d),title('5.膨胀或腐蚀处理后')d=qiege(d);[m,n]=size(d);figure,subplot(2,1,1),imshow(d);%figure(6),subplot(1,1,1),imshow(d),title(n)k1=1;k2=1;s=sum(d);j=1;while j~=nwhile s(j)==0j=j+1;endk1=j;while s(j)~=0 && j<=n-1j=j+1;endk2=j-1;if k2-k1>=round(n/6.5)[val,num]=min(sum(d(:,[k1+5:k2-5])));d(:,k1+num+5)=0;endendd=qiege(d);y1=10;y2=0.25;flag=0;word1=[];while flag==0[m,n]=size(d);left=1;wide=0;while sum(d(:,wide+1))~=0wide=wide+1;endif wide<y1d(:,[1:wide])=0;d=qiege(d);elsetemp=qiege(imcrop(d,[1 1 wide m]));[m,n]=size(temp);all=sum(sum(temp));two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));if two_thirds/all>y2flag=1;word1=temp;endd(:,[1:wide])=0;d=qiege(d);endend[word2,d]=getword(d);[word3,d]=getword(d);[word4,d]=getword(d);[word5,d]=getword(d);[word6,d]=getword(d);[word7,d]=getword(d);subplot(5,7,1),imshow(word1),title('1');subplot(5,7,2),imshow(word2),title('2');subplot(5,7,3),imshow(word3),title('3');subplot(5,7,4),imshow(word4),title('4');subplot(5,7,5),imshow(word5),title('5');subplot(5,7,6),imshow(word6),title('6');subplot(5,7,7),imshow(word7),title('7');[m,n]=size(word1);word1=imresize(word1,[40 20]);word2=imresize(word2,[40 20]);word3=imresize(word3,[40 20]);word4=imresize(word4,[40 20]);word5=imresize(word5,[40 20]);word6=imresize(word6,[40 20]);word7=imresize(word7,[40 20]);subplot(5,7,15),imshow(word1),title('1');subplot(5,7,16),imshow(word2),title('2');subplot(5,7,17),imshow(word3),title('3');subplot(5,7,18),imshow(word4),title('4');subplot(5,7,19),imshow(word5),title('5');subplot(5,7,20),imshow(word6),title('6');subplot(5,7,21),imshow(word7),title('7');imwrite(word1,'1.jpg');imwrite(word2,'2.jpg');imwrite(word3,'3.jpg');imwrite(word4,'4.jpg'); imwrite(word5,'5.jpg');imwrite(word6,'6.jpg');imwrite(word7,'7.jpg');liccode=char(['0':'9' 'A':'Z' '苏豫陕鲁']);SubBw2=zeros(40,20); l=1;for I=1:7ii=int2str(I);t=imread([ii,'.jpg']);SegBw2=imresize(t,[40 20],'nearest');if l==1kmin=37;kmax=40;elseif l==2kmin=11;kmax=36;else l>=3kmin=1;kmax=36;endfor k2=kmin:kmaxfname=strcat('字符模板\',liccode(k2),'.jpg');SamBw2 = imread(fname);for i=1:40for j=1:20SubBw2(i,j)=SegBw2(i,j)-SamBw2(i,j);endendDmax=0;for k1=1:40for l1=1:20if ( SubBw2(k1,l1) > 0 | SubBw2(k1,l1) <0 )Dmax=Dmax+1;endendendError(k2)=Dmax;endError1=Error(kmin:kmax);MinError=min(Error1);findc=find(Error1==MinError);Code(l*2-1)=liccode(findc(1)+kmin-1);Code(l*2)=' ';l=l+1;endfigure(6),subplot(1,1,1),imshow(d);title(n);figure(6),subplot(1,1,1),imshow(dw);title (['车牌号码:',Code],'Color','b');实验总结学会将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。

相关文档
最新文档