声光调Q倍频YAG激光器实验
声光调Q技术
![声光调Q技术](https://img.taocdn.com/s3/m/03c27ad128ea81c758f5784e.png)
声光调Q技术一、实验目的:1、掌握固体激光器的工作原理;2、掌握声光调Q和倍频的原理;3、掌握GPF-NG-Ⅰ型声光调Q激光器的调节技术。
二、实验仪器:GPF-NG-Ⅰ型声光调Q激光器、激光冷水机,GTDC1220电流源,QSD-2750声光调Q驱动器。
三、实验原理:本实验采用的是掺钕钇铝石榴石晶体(Nd3+:Y AG)固体激光器,工作物质是由钇铝石榴石(YAG)单晶掺入适量的三价稀土离子Nd3+构成的掺钕钇铝石榴石晶体(Nd3+:YAG)。
采用半导体激光器激励方式将处于基态的粒子抽运到激发态,以形成粒子数反转状态,输出波长分别为532nm、1064nm两种激光。
谐振腔采用全外腔形式。
调Q方式为声光调Q,冷却方式为水冷。
下面将依次介绍。
1、激光器的基本结构一般激光器都是由三个基本的组成部分,即工作物质、激励源和光学谐振腔,如(图1)所示。
工作物质用来产生受激辐射,它是激光器的核心。
激励源用来激励工作物质建立粒子数反转,产生受激辐射。
光学谐振腔是用来维持受激辐射的持续振荡,以获得进一步的增益,从而得到高强度的激光输出。
全反射镜聚光器半反射镜激光工作物质灯电源图1 固体激光器结构示意图1、工作物质在激光器中,工作物质是决定激光器性能的关键部件。
固体激光工作物质被称为固体激光器的心脏。
的激活离子。
2、光泵光源固体激光材料具有比较宽的吸收带,这就为用光照来激励激活粒子创造了条件。
由于固体激光器的工作物质是靠外界光照使粒子激发到高能态的。
所以又称这种激发作用为光泵。
由阈值条件可计算出最低需要多少能量(或功率)才能使激光器振荡,也可以通过实验测得阈值泵浦能量。
因为计算得到的是理想的情况,所以一般都是通过实验来测量。
3、聚光器泵灯发光的空间特性是四面八方发射光辐射。
当泵光激励工作物质时,希望把各个方向的发射光都有效的集中到工作物质上,为此一般都是灯和棒外面加一个罩,罩的形状要适应灯和棒的匹配要求,这种装置称为聚光器,又叫聚光腔。
脉冲激光器的调Q和倍频
![脉冲激光器的调Q和倍频](https://img.taocdn.com/s3/m/b45a3e18227916888486d780.png)
脉冲激光器的调Q 和倍频实验目的1. 熟悉Nd:YAG 激光器的结构。
2. 了解和掌握利用晶体的线性电光效应实现激光调Q 的原理。
3. 了解和掌握激光倍频技术的基本原理和倍频晶体相位匹配的方法。
实验原理激光调Q 技术就是使激光谢振腔的Q 值发生变化,使激光工作物质的受激辐射压缩在极短的时间内发射的一种技术。
具体的讲就是在光泵开始激励的初期,使腔内的损耗很大,Q 值很低,这使激光振荡的阈值很高,使激光振荡不能形成,因而上能级的反转粒子数大量积累。
当积累达到最大值时,突然时谐振腔的损耗变小,Q 值突增,这时反转粒子数密度比阈值大得多,使激光振荡迅速建立,腔内像雪崩一样以极快的速度建立起极强的振荡,于是在极短的时间内输出一个极强的激光脉冲。
调Q 激光脉冲峰值功率一般都高于兆瓦级,而脉冲宽度只有10-8~10-9秒,因而通常将这种脉冲称为激光巨脉冲。
激光谐振腔内的损有多种,用不同的方法来控制腔内不同的损耗,就形成了不同的调Q 技术,例如控制反射损耗的有转镜调Q 技术、电光调Q 技术,控制吸收损耗的有染料调Q 技术,控制衍射损耗的有声光调Q 技术等。
倍频技术就是将频率为ω的强激光束入射到某些非线性晶体,通过强光与物质的相互作用,产生2ω的二次谐波的技术。
倍频技术是目前由较低频率的激光转换为较高频率激光的最成熟和最常用的频率转换技术,也是最早被利用的非线性光学效应。
当光与物质相互作用时,就会带起原子外层电子的位移,产生电偶极矩r e m =,其中e 为负电中心的电荷量,r 是负电中心相对于正电中心的距离。
单位体积内偶极矩的总和为极化强度P ,m N P =,N 是单位体积内的原子数。
极化强度的大小和方向随外电场的变化而变化,这种极化场就会产生电磁波的辐射。
如果入射到介质上光束的频率为ω,电场矢量为t E t E E πνω2cos cos 00 ==由于光的作用,产生的极化强度P 与外电场强度矢量E 之间的关系为+⋅+⋅=E E E P )2()1(χχ式中)1(χ, )2(χ为与时间、位置无关的常数,成为介质的极化系数,且有 )3()2()1(χχχ>>>>当入射光很弱时,极化系数的高阶项都可忽略不计,则(2)可简化 t E E P L ωχχcos 0)1()1( ⋅=⋅=这就表明弱光照射下,介质的极化强度矢量与电场强度成线性关系,其频率与入射光频率相同。
窄脉宽Nd_YAG声光调Q激光器研究
![窄脉宽Nd_YAG声光调Q激光器研究](https://img.taocdn.com/s3/m/d03b6dbc710abb68a98271fe910ef12d2af9a92b.png)
窄脉宽Nd_YAG声光调Q激光器研究窄脉宽Nd:YAG声光调Q激光器研究激光器是一种将光能转化为有聚束、单一波长、相干和高能量密度的激光光束的装置。
激光器的发展在科学研究、医疗、军事和工业等领域中起着至关重要的作用。
然而,传统的激光器在高能量脉冲输出时容易产生较宽的脉冲宽度,限制了其在某些应用中的效果。
窄脉宽Nd:YAG声光调Q激光器则是一种经过优化设计的激光器,具有窄脉宽、高能量密度和稳定性好等优点。
在该激光器中,采用的是具有狭缝形谐振腔和声光调Q装置的Nd:YAG晶体。
声光调Q装置可以调节激光的脉宽,使其更加窄小。
这种激光器能够产生高质量的激光脉冲,广泛应用于科研、工业和军事领域。
首先,窄脉宽Nd:YAG声光调Q激光器在科学研究中有重要的应用。
科学研究中通常需要高能量脉冲扫描样品或物体,以获取更详尽的信息。
传统激光器脉冲宽度较宽,往往无法满足这种需求。
而窄脉宽Nd:YAG声光调Q激光器的优势在于其可调谐的脉宽,从而使得研究人员可以根据需求调整激光的参数,实现更精确的研究结果。
其次,窄脉宽Nd:YAG声光调Q激光器在工业应用中也具有巨大的潜力。
在工业加工领域,高质量的激光束对于精确加工和切割等工艺至关重要。
窄脉宽Nd:YAG声光调Q激光器通过产生高能量密度的激光脉冲,可以实现对各种材料的精确加工。
该激光器还具有调整脉冲宽度的能力,可以根据不同材料的需求进行优化,从而提高加工的质量和效率。
此外,窄脉宽Nd:YAG声光调Q激光器还在军事领域中得到广泛应用。
军事使用中,激光器通常用于距离测量、目标照明和干扰等作战需求。
窄脉宽Nd:YAG声光调Q激光器具有高能量密度和稳定性好的特点,能够满足军事作战中对精准定位和干扰的需求。
同时,窄脉宽的特点也使得其在激光雷达和激光指挥系统中表现出优越性能。
总之,窄脉宽Nd:YAG声光调Q激光器作为一种优化设计的激光器,具有窄脉宽、高能量密度和稳定性好等优点。
这种激光器在科学研究、工业应用和军事领域中得到了广泛的应用。
固体激光倍频、调Q实验
![固体激光倍频、调Q实验](https://img.taocdn.com/s3/m/18554492daef5ef7ba0d3ca2.png)
声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。
在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。
【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理;(2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;(4)学习倍频激光器的调整方法。
【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1)声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。
超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。
如图1所示。
光栅公式如下式(1)式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。
当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。
利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。
当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。
在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。
当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。
由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。
声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。
(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。
YAG激光器自由运转调Q和倍频实验
![YAG激光器自由运转调Q和倍频实验](https://img.taocdn.com/s3/m/4ddccac75fbfc77da269b137.png)
Nd:YAG激光器自由运转及调Q实验【实验目的】1.了解固体激光器的结构及工作原理(自由运转和染料调Q),掌握其调整方法;2.了解固体激光器的主要参数的测试技术;3.观察调Q脉冲经过KTP晶体实现倍频现象,了解倍频中相位匹配特性。
【实验原理】一、自由振荡1.固体激光器组成固体激光器主要由工作物质,泵浦光源和光学谐振腔三大部分组成。
常用的工作物质有红宝石,掺钕钇铝石榴石(Nd:YAG),钛宝石等晶体和钕玻璃等。
谐振腔常用两个平面或球面反射镜。
泵浦光源常用氙灯、氪灯、高压汞灯,碘钨灯。
在本实验中,激光器的主要元件为:①工作物质:掺钕钇铝石榴石(Nd:YAG);②光学谐振腔:双氙灯,双椭圆聚光腔,重复脉冲电源;③谐振腔镜:双色镜,部分反射镜。
2.自由振荡固体激光器的输出特性自由振荡激光器输出激光脉冲的特点是具有尖峰结构,即由许多振幅、脉宽和间隔作随机变化的尖峰脉冲组成。
每个尖峰的宽度约为0.1~1 μs,间隔为数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续的时间。
这种现象称为激光器的弛豫振荡。
产生弛豫振荡的主要原因是:当激光器的工作物质被泵浦,上能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光子密度增加而发射激光。
随着激光的发射,上能级粒子数被大量消耗,导致粒子反转数降低,当低于阈值水平时,激光振荡就停止,这时,由于光泵的继续抽运,上能级粒子反转数重新积累,当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直到泵浦结束。
可见每个脉冲都是在阈值附近产生的,因此脉冲的峰值功率水平较低,从这个作用过程可以看出,增加泵浦功率也是无助于峰值功率的提高,而只会使小尖峰的个数增加。
二、调Q 的概念在激光技术中 ,用品质因数 Q 来描述与谐振腔损耗有关的特性。
Q 值定义为2Q v π=腔内存储的激光能量每秒损耗的能量用W 表示腔内存储的能量,δ表示腔的单程损耗,且设谐振腔长度为L,工作介质折射率n,光速c,则Q 值可表示为22/W nLQ v Wc nL ππδδλ==式中λ0为真空激光波长。
63W灯抽运声光调Q腔内KTP倍频Nd_YAG激光器
![63W灯抽运声光调Q腔内KTP倍频Nd_YAG激光器](https://img.taocdn.com/s3/m/0b5b5749e45c3b3567ec8b3d.png)
第36卷 第1期中 国 激 光V ol.36,N o.12009年1月CH INESE JOU RNAL OF LASERSJanuary,2009文章编号:0258 7025(2009)01 0015 0463W 灯抽运声光调Q 腔内KTP倍频Nd YAG 激光器刘学胜1夏姣贞2鄢 歆1王智勇1(1北京工业大学激光工程研究院,北京100124;2浙江树人大学基础科学部,浙江杭州310015)摘要 报道了输出532nm 平均功率为63W 的灯抽运声光(A O)调Q 腔内KT P 倍频Nd Y AG 固体激光器。
分析双灯抽运金属镀金腔结构、抽运均匀性以及KT P 倍频晶体的冷却均匀性及可靠性,并设计一种可靠性高的倍频晶体冷却装置。
激光谐振腔采用L 型腔结构,通过对声光调制器频率和倍频晶体温度对输出倍频激光功率影响的实验研究,得到激光器工作的最佳几何腔长为549mm 。
在抽运功率为4.9kW ,声光调制频率为4kHz 时,532nm 倍频激光最大输出44W ,脉宽为80ns;声光调制频率为10kH z 时,532nm 倍频激光最大输出为63W ,脉宽为140ns,倍频效率为64%,总电 光效率为1.2%,光束质量为M 2=11.1。
关键词 激光技术;固体激光器;L 型腔;腔内倍频;平均功率;光束质量中图分类号 T N 248.1 文献标识码 A doi:10.3788/CJL20093601.001563W Green Laser Based on an Intracavity Frequency DoubledLamp Pumped Acousto Optic Q Switched Nd YAG LaserLiu Xuesheng 1Xia Jiaozhen 2Yan Xing 1Wang Zhiyong11College of L aser Engineer ing ,B eij ing Univ er sity of T echnolog y ,Beij ing 100124,China 2Phy sics D ep ar tment ,Zhej iang Shur en Univ ers ity ,H angz hou,Zhej iang 310015,ChinaAbstract 532nm g reen laser w ith an aver age pow er o f 63W based o n an int racavit y frequency doubled lamppumped acousto optic(A O )Q sw itched Nd Y A G laser is r epo rted.T he st ructur e of dua l lam p pum ped go ld plated metal cav ity,pumping unifor mity and the cooling unifor mity and reliability of K T P fr equency doubled cr ystal are analy zed and a hig hly reliable set fo r cooling fr equency doubled cr ystal is developed.T he o pt imum g eometr ic cav ity leng th of 549mm is go t thro ug h studying the influence of the fr equency of A O modulato r and the temper atur e of fr equency doubled cry stal o n the output po wer of frequency do ubled laser w ith L shaped cavity.When the pumping po wer is 4.9kW and A O modulating fr equency is 4kH z,the 532nm output pow er is 44W w ith the pulse width o f 80ns;W hen the A O modulating frequency is 10kH z,the 532nm output pow er is 63W with the pulse w idth of 140ns,frequency doubled eff iciency is 64%,total electr ical o pt ics efficiency is 1.2%and beamqualit y is M 2=11.1.Key words laser technique;so lid state laser ;L shaped cavity;intr acav ity frequency do ubling;aver age pow er;beam quality收稿日期:2008 05 06;收到修改稿日期:2008 05 19作者简介:刘学胜(1980-),男,博士研究生,主要从事大功率固体激光器的研究。
实验报告——调Q YAG激光器实验
![实验报告——调Q YAG激光器实验](https://img.taocdn.com/s3/m/a3c32adfbb4cf7ec4bfed009.png)
实验报告——调Q YAG 激光器实验实验时间:2017.03.07一、实验目的1、掌握3:Nd YAG +激光器的工作原理2、学习并掌握3:Nd YAG +激光器调整技术3、学习声光调Q 3:Nd YAG +激光器的工作原理4、掌握声光调Q 实验技术,学习nm 量级激光脉冲测量方法5、学习腔外倍频实验技术二、实验原理1.掺钕钇铝石榴石掺钕钇铝石榴石(3:Nd YAG +)是一种典型的四能级激光工作物质,由于它的热传导性好;激光阈值低和转换效率高,所以用它可作成连续激光器和高重复频率的脉冲激光器。
YAG 激光器可输出几种波长,其中最强的为1.06μm 。
如果采用调Q 、倍频技术,则可获得波长为532nm 的脉冲激光。
这种以3:Nd YAG +激光器为基础的脉冲激光系统以其高峰值功率、高重复频率和宽波长调谐特性等优点而得到了广泛的应用。
2. YAG 激光器的结构图1为典型的3:Nd YAG +激光器示意图。
其中包括YAG 棒;泵浦灯(连续运转的氪灯两个);Q 开关和光学谐振腔。
YAG 晶体棒3:Nd YAG +激光器的工作物质是一种人工晶体,它的基质是钇(Y)铝(Al)石榴石(G),其分子式为3512Y Al O 。
晶体在高温的过程中掺入氧化钕,用提拉法制成。
钕就以三价正离子的形式存在于YAG 的晶格中,掺钕量约为1%。
通常3:Nd YAG +晶体被加工成 φ6mm ×100mm 左右的圆棒状,两端磨成光学平面,平面的法线与棒轴有一个小夹角,面上镀有增透膜,能承受高的功率密度,棒的侧面全部“打毛”,以防止寄生振荡。
激励泵浦源YAG 激光器可用多种光源作为激励泵浦源,连续YAG 激光器常用氪灯和碘钨灯为泵浦源,脉冲YAG 激光器常用脉冲氙灯为泵浦源。
因为这些灯的辐射光谱与YAG 棒晶体的吸收光谱匹配较好。
如图1所示,泵浦用的氪灯做成和YAG 棒长度相近的直管形,以便达到最佳的耦合。
两氪灯串联后,外接直流电源。
声光调Q
![声光调Q](https://img.taocdn.com/s3/m/7005482401f69e314332945d.png)
声光调Q 技术一.实验目的(1) 观察声光相互作用现象――布拉格衍射(2) 熟悉,掌握连续Y AG 激光器声光调Q 技术及调试方法。
(3) 测试声光调Q输出特性。
二.实验原理(1) 声光布拉格衍射器件(图一)为典型的声光Q 开关原理结构图。
它主要由三部分组成:1 电声转换器,本实验采用切割石英晶片。
尺寸为10X25X0.07(mm); 也可以采用LiNbO3晶片作材料。
晶片两面加有电极片,以引入调制高频电压。
产生布拉格衍射的高频超声为40mc, 高频电源最大输出功率大于50W ,调制脉冲频率从1KHz 到50KHz ,分档可调,以适应重复率的不同要求;调制脉宽为4~10us 。
2 声光介质。
采用溶石英为材料,它有适当的声光衍射效率,又能够承受强光照射,在1.06um 连续激光使用时,是比较理想的材料。
当通光长度L =25mm 时,每瓦超声功率可产生约1%的衍射效率。
3.吸声材料。
采用硅橡胶,涂在溶石英的底面与两侧,其作用是避免声波反射。
保证工作于行波状态。
(图一)声光Q 开关原理(图二)Y AG 连续声光调Q 激光器(2) 声光调Q 激光器工作图二为声光调Q 激光器实用光路图为了补偿YAG 棒的热透镜效应,采用平凸腔结构。
详细计算表明,当热透镜焦距f 0=0.5m 时(相当于氪灯泵浦电流16~18A )若调节腔长L 1=366mm,L 2=250mm,能得到良好的热透镜补偿。
若采用优秀的泵浦灯,加上防震等措施后,输出光强稳定性可优于±3%声光调Q 的原理简述如下:如图一所示,当传声介质中有高频(40MC )超声行波传播时,由于布拉格衍射,入射光I i 的一部分偏离到布拉格角I d 的方向。
偏角θB 由布拉格公式决定:2λsSin θB =λ0/n=λ代入以下的数据:声速V S =5.97KmS ;声频fs=40MC;折射率n =1.46;真空波长λ0=1.06um.求得θB =0.1390衍射效率I d (L )/I i (0)=Sin 2(ηL )=sin 2(PM h L ⎪⎭⎫ ⎝⎛02λπ) 式中,P 为超声功率,M 为声光品质因素,M=n 6p 2/ρV S 3. n,p,ρ分别表示材料的折射率,光弹性系数和密度。
声光调q实验报告
![声光调q实验报告](https://img.taocdn.com/s3/m/fd06375b5e0e7cd184254b35eefdc8d376ee1432.png)
声光调q实验报告1. 实验目的本实验旨在通过声光调q实验,探究声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
2. 实验器材- 调频器- 音叉- 光物体- 麦克风- 音频分析仪3. 实验原理声音是由物质的振动产生的机械波,通过空气传播。
可以用频率(频率越高,声音越尖锐)和振幅(振幅越大,声音越响亮)来定量描述声音。
而光是由电磁波产生的,速度在真空中为光速。
实验中利用调频器生成一定频率的声音信号,并用麦克风接收声音信号。
在调频器中,通过调节不同频率,可产生不同音调的声音。
为了定量分析声音的频率,可使用音频分析仪。
同时,利用光物体产生不同频率的光波,通过研究位于光物体处的探测光电池产生的电流信号来分析光波频率的变化。
4. 实验步骤1. 将音叉固定在一个合适的支架上,使其能够自由振动。
调整调频器的频率,使麦克风接收到音叉振动产生的声音信号。
2. 使用音频分析仪,测量接收到的声音信号的频率,并记录下来。
3. 将光物体放置在光电池前方,调节光物体的频率,使光电池能够接收到光波。
记录下光电池接收到的光波的频率。
4. 分析并比较声音信号和光波信号的频率。
5. 实验结果与分析实验数据如下:信号种类频率(Hz)-声音440光波 5 ×10^14从实验数据中可以得出以下结论:1. 声音频率为440Hz,对应了一个特定的音调,这是因为音叉的振动频率为440Hz。
2. 光波频率为5 ×10^14Hz,这是因为光物体发射的光波频率为5 ×10^14Hz。
3. 声音信号和光波信号的频率相差太大,无法直接比较二者的频率。
6. 结论通过声光调q实验,我们可以观察到声音在空气中的传播规律,并研究声音的频率对声音质量的影响。
实验中,我们调节了声音信号和光波信号的频率,并通过音频分析仪和光电池记录了实验数据。
通过分析实验数据,我们得出了声音信号和光波信号的频率不可直接比较的结论。
实验结果对于深入理解声音和光波的特性以及它们在现实生活中的应用具有重要意义。
LD侧面泵浦全固态激光倍频和声光调Q实验
![LD侧面泵浦全固态激光倍频和声光调Q实验](https://img.taocdn.com/s3/m/ba17f5d8ab00b52acfc789eb172ded630b1c98a9.png)
实验名称:LD侧面泵浦全固态激光倍频和声光调Q实验实验目的1、掌握LD侧面泵浦全固态激光器的基本原理和调试方法。
2、掌握声光调Q的基本原理及输出特性。
3、掌握激光倍频原理及影响倍频的基本因素。
实验原理1、激光产生的条件数反转分布一般情况下介质中的粒子数在能级上呈>样分布状态,即较低能量的-个能级的粒子数大于具有较高能量的一个能级的粒了数。
要产生激光,激光介质能级粒子数分布必须处于反转分布<,称这种状态的物质为激活物质。
减少振荡模式数激光器是通过光学谐振腔来达到减少振荡模式数的。
起振条件—阈值条件若激光器由反射率分別是R1、R2的两面镜子和长度为L的激活材料构成。
设g为在反转的激光材料中单位长度的增益系数,a为单位长度的吸收损耗系数。
则每次通过激光材料,其强度变化为exp(g-a)2L。
阈值条件为R1R2exp(g-a)2L=1。
增益饱和效应—稳定振荡条件当入射光强度足够弱时增益系数与光强无关,是一个常量;当入射光强大到一定的程度,增益系数将随光强的增大而减小,产生增益饱和效应。
2、调Q技术声光调Q是利用光的衍射效应实现调Q的。
利用光的衍射现象,光束偏离,达到声光调Q的目的。
一束光通过由声控的相位光栅时,就会发生衍射,这就是声光效应。
在激光器的光学谐振腔中,放入一个声光调制器,当有超声波作用在调制器上时,由于声光效应,激光束就会发生衍射,偏离谐振腔,从而使激光停止振荡。
当超声波消失后,损耗消失,形成振荡,产生巨脉冲输出,完成超声调Q作用。
实验内容1、测量连续Nd3+:YAG激光器电流和功率的关系曲线2、测量连续倍频Nd3+:YAG激光器电流和功率的关系曲线3、测量准连续声光调Q Nd3+:YAG激光器单脉冲能量4、测量准连续声光调Q倍频Nd3+:YAG激光器频率为5KHz、11KHz、35KHz时激光输出功率随电流的变化曲线数据记录及处理1、连续Nd3+:YAG激光器电流和功率的关系曲线I 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15P 0 0 0 0 0.04 0.10 0.18 0.27 0.55 0.81 1.02 1.29 1.742、连续倍频Nd3+:YAG激光器电流和功率的关系曲线I 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15P 0 0 0.002 0.004 0.006 0.011 0.023 0.028 0.037 0.040 0.046 0.052 0.0603、准连续声光调Q Nd3+:YAG激光器单脉冲能量f 5 10 15 20 25 30 35 40P 0.480 0.477 0.483 0.458 0.464 0.498 0.463 0.527E 0.0960 0.0477 0.0322 0.0229 0.0185 0.0166 0.0132 0.01314、准连续声光调Q倍频5KHz时激光输出功率随电流的变化曲线I 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15 P 0 0.003 0.043 0.135 0.196 0.260 0.464 0.665 0.918 1.087 1.2405、准连续声光调Q倍频11KHz时激光输出功率随电流的变化曲线I 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15P 0 0.003 0.017 0.056 0.102 0.173 0.312 0.431 0.603 0.862 1.032 1.204 1.3566、准连续声光调Q倍频35KHz时激光输出功率随电流的变化曲线I 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15P 0 0.003 0.011 0.036 0.054 0.080 0.134 0.161 0.226 0.343 0.476 0.531 0.662。
物理实验YAG调Q讲义
![物理实验YAG调Q讲义](https://img.taocdn.com/s3/m/a55a083f1a37f111f1855bb9.png)
【实验步骤】一、自由振荡图4 自由振荡YAG 激光器光路图1. 用氦氖激光器调整光路。
按照图4 光路,调整氦氖激光器,使氦氖激光通过Nd:YAG 晶体前后两孔的中心,保持不动;放入1.06μm 半反镜,调整使其反射光沿原路返回;放入1.06μm 全反镜,调整使其反射光沿原路返回。
此时他们都与光轴垂直,达到谐振腔的腔镜平行。
2. 打开总电源,打开泵浦灯的电源,检查冷却水泵、高压等,设定电源的工作电压约在~750V。
注意:打开泵浦灯电源步骤:首先旋转开关钥匙,使其处于“On”位置;按下“SIMMER”按钮,再按下“WORK”按钮,此时电源开始工作。
调节”CHARGEVOLT”下的旋钮,可以设定工作电压大小。
如果要暂停泵浦电压,可以再次按“WORK”按钮,使其恢复到原来的位置。
关机时,按照相反顺序操作。
3. 微调激光器的1.06μm 半反镜,用黑相纸在1.06μm 半反镜后面接收激光光斑,当光斑变圆时,光路调节完毕。
(当天实验由于示波器出现故障,故没能观察到波形图)二、染料调Q图5 YAG 激光器调Q 光路图1. 按照图5 光路,用氦氖激光器调整光路,将染料片插入1.06μm 全反镜和Nd:YAG 晶体之间,调整使其反射光沿原路返回;打开泵浦灯的电源,设定电源的工作电压约在~750V。
微调激光器的1.06μm 半反镜,用黑相纸在1.06μm 半反镜后面接收激光光斑,使其输出正常。
2. 改变泵浦电压,用激光能量计测出不同电压下的输出能量E out, 给出E out~E p曲线。
3. 按照图5 光路,用示波器记录激光器的调Q 脉冲波形,并打印结果。
4. 将实验结果、数据以及图表整理并写出实验报告。
三、脉冲倍频图6 脉冲倍频实验光路图1. 将倍频晶体如图6 所示放置在光路中,让激光正入射倍频晶体。
2. 将泵浦电压保持在750V,调节倍频晶体和光轴之间的夹角,每次改变一度,用能量计记录倍频光脉冲的能量。
3. 夹角范围为±10 °,共采集20 组数据。
电光调Q脉冲YAG激光器与倍频实验
![电光调Q脉冲YAG激光器与倍频实验](https://img.taocdn.com/s3/m/d7f163601ed9ad51f01df2cb.png)
实验8-5 电光调Q 脉冲YAG 激光器与倍频实验一、引言固体激光器是以固体材料作为工作物质的激光器,它具有输出能量大、峰值功率高、器件结构紧凑等优点,在工业激光材料加工、激光医学、激光化学、科学研究以及国防等方面有着重要的应用。
迄今,已实现激光振荡的固体激光工作物质有数百种之多,其中以掺钕钇铝石榴石(Nd 3+:YAG )应用最多。
Nd 3+:YAG 是一种典型的四能级激光工作物质,由于它的热传导性好、激光阈值低和转换效率高,所以用它可以做成高重复频率的脉冲激光器和连续激光器。
如果在脉冲激光器内采用调Q 和放大技术,很容易获得时间宽度为10ns 量级而峰值功率达几百MW 量级的TEM 00激光脉冲。
再通过KD *P 等非线性光学晶体对波长为1.06μm 的Nd 3+:YAG 激光基波进行二倍频、三倍频和四倍频,则可得到532nm 、355nm 和266nm 四种波长的脉冲激光器。
此外,还可以用上述二倍频或三倍频光去泵浦染料激光器,获得从紫外到近红外的波长连续可调谐的脉冲激光。
这种以Nd 3+:YAG 激光器为基础的脉冲激光系统以其高峰值功率、高重复频率和宽范围波长调谐特性等优点在科学技术、医学、工业和军事上得到了广泛的应用。
目前脉冲Nd 3+:YAG 激光器的泵浦方式有两种:闪光灯和半导体激光器。
本实验研究闪光灯泵浦的调Q 脉冲Nd 3+:YAG 激光器,了解其工作原理,掌握该激光器的装配和调试方法以及相应的激光参数测量,学习应用非线性光学晶体产生倍频光的基本原理。
二、实验原理1.Nd 3+:YAG 激光器的工作原理和结构掺钕钇铝石榴石晶体是以钇铝石榴石(简称YAG ,其分子式为Y 3Al 5O 12)单晶为基质材料,掺入适量的三价稀土离子Nd 3+所构成。
YAG 是由Y 2O 3和Al 2O 3按摩尔比为3:5化合生成的,当掺入作为激活剂的Nd 2O 3后,则在原来是Y 3+的点阵上部分地被Nd 3+代换,而形成了淡紫色的Nd 3+:YAG 晶体。
YAG激光器调Q试验-2022年学习资料
![YAG激光器调Q试验-2022年学习资料](https://img.taocdn.com/s3/m/cd4b925826284b73f242336c1eb91a37f11132d9.png)
实验原理-调Q技术是获得短脉冲高峰值功率激光输出的重要方法。-激光器的Q值又称品质因数,表征激光谐振腔的腔 损耗的参数-腔内贮存的激光能量-2πnL-Q=2π,每秒钟损耗的激光能量-损耗率-如果我们设法在泵浦开始时 谐振腔内的损耗增大,即提高振荡-阈值,使振荡不能形成,激光工作物质上能级的粒子数大量积累-当积累到最大值, 然使腔内损耗变小,Q值突增。这时腔内会-像雪崩一样以极快的速度建立起极强振荡,在短时间内反转粒子-数大量被 耗,转变为腔内的光能量,并在输出镜端输出一个极-强的激光脉冲,其脉宽窄,峰值功率高,这种光脉冲称为巨脉冲。 这种产生巨脉冲的技术被称为调Q技术,也称为Q开关技术。
NA:YACG激光器调Q实验-·大连民族学院物理与材料学院-Applied Physics Electro ic Engineering
2实验目的-了解利用晶体线性电光效应实现激光调Q的原理;;-熟悉主动和被动调Q技术;-了解电光晶体的开关效 和延迟特性。-掌握调Q激光器输出能量、脉冲宽度的测量方法-Applied Physics,Electron c Engineering
0b-注意事项-1,本实验输出的激光为高峰值功率脉冲激光,做本实验前必须佩-戴防护1064nm激光的防护眼 。-2.任何情况下严禁直视激光光路或直视激光器的反射光路,以免-激光损伤人眼。-3,严禁用手直接触摸氙灯电 以及激光电源的输出线,以免触及-高压放电回路造成人身伤害。-4.用光电探测器接收激光脉冲时,应多次衰减至极 微弱,以免-打坏探测器。-Applied Physics Electronic Engineering
实验仪器-YAG晶体-前腔镜和后腔镜-·激光电源:(含电源、Q开关、手动快门)-水箱-·导轨、滑块和支架辅助激光器- Physics,Electronic Engineering
大功率声光调Q Nd:YAG激光器的开题报告
![大功率声光调Q Nd:YAG激光器的开题报告](https://img.taocdn.com/s3/m/759bf95215791711cc7931b765ce05087632759c.png)
大功率声光调Q Nd:YAG激光器的开题报告1. 概述声光调Q Nd:YAG激光器是一种高功率激光器,其工作原理是通过碘分子的声光调Q效应实现脉冲放大。
该激光器的主要应用领域包括材料加工、医疗、通信等多个领域。
2. 研究目的本次研究旨在探究声光调Q Nd:YAG激光器的原理、性能及其工艺参数优化方法,通过实验验证其在不同领域的应用效果,为该激光器在工业和医疗领域的应用提供重要参考。
3. 研究方法(1)理论研究:通过对声光调Q Nd:YAG激光器原理、工作方式以及优化策略的深入研究,获取相关理论知识。
(2)实验研究:通过采用实验方法,构建声光调Q Nd:YAG激光器实验平台,研究其在不同参数下的输出功率、脉宽、重复频率等性能,并对其在材料加工、医疗等领域的应用效果进行评估。
4. 研究内容(1)声光调Q Nd:YAG激光器的理论原理和工作方式研究。
(2)声光调Q Nd:YAG激光器的工艺参数优化研究。
(3)声光调Q Nd:YAG激光器在不同领域的应用效果研究。
(4)声光调Q Nd:YAG激光器输出光束的稳定性和均匀性研究。
(5)声光调Q Nd:YAG激光器的性能比较和分析研究。
5. 预期成果(1)深入了解声光调Q Nd:YAG激光器的工作原理及发展趋势。
(2)建立声光调Q Nd:YAG激光器的实验平台,获取其在不同领域的应用效果数据。
(3)制定声光调Q Nd:YAG激光器的优化参数策略。
(4)掌握声光调Q Nd:YAG激光器的性能比较和分析方法。
(5)提出声光调Q Nd:YAG激光器在工业和医疗领域的应用建议。
6. 时间安排阶段一:2022年3月—2022年5月通过文献调研和实验设计,完成声光调Q Nd:YAG激光器的原理及工作方式研究,制定实验方案。
阶段二:2022年6月—2022年8月开展声光调Q Nd:YAG激光器实验研究,探究其在不同领域的应用效果,获取相关数据并分析。
阶段三:2022年9月—2022年11月基于实验数据,制定声光调Q Nd:YAG激光器的优化策略,提出其在工业和医疗领域的应用建议。
NdYAG激光器的特性试验:电光调Q及倍频技术
![NdYAG激光器的特性试验:电光调Q及倍频技术](https://img.taocdn.com/s3/m/bdf3587cb7360b4c2e3f646f.png)
、实验目地:1、掌握电光Q开关地原理及调试方法•2、学会电光Q开关装置地调试及主要参数地测试3、掌握倍频地基本原理和调试技能.4、了解影响倍频效率地主要因素.二、实验原理1.电光调Q调Q技术地发展和应用,是激光发展史上地一个重要突破.一般地固体脉冲激光器输出地光脉冲,其脉宽持续在几us甚至几ms,其峰值功率也只有 kw级水平,因此,压缩脉宽,增大峰值功率一直是激光技术所需解决地重要课题 . 调Q技术就是为了适应这种要求而发展起来地.b5E2RGbCAP调Q基本概念:用品质因数Q值来衡量激光器光学谐振腔地质量优劣,是对腔内损耗地一个量度.调Q技术中,品质因数Q定义为腔内贮存地能量与每秒钟损耗地能量之比,可表达为:式中V o为激光地中心频率.如用E表示腔内贮存地激光能量,丫为光在腔内走一个单程能量地损耗率•那么光在这一单程中对应地损耗能量为丫 E.用L表示腔长;n为折射率;c 为光速.则光在腔内走一个单程所用时间为nL/c.由此,光在腔内每秒钟损耗地能量为丫 Ec/nL.这样Q值可表示为p1EanqFDPw式中为真空中激光波长.可见Q值与损耗率总是成反比变化地,即损耗大Q 值就低;损耗小Q值就高.固体激光器由于存在弛豫振荡现象,产生了功率在阈值附近起伏地尖蜂脉冲序列, 从而阻碍了激光脉冲峰值功率地提高 .如果我们设法在泵浦开始时使谐振腔内地损耗增大 ,即提高振荡阈值 ,振荡不能形成 , 使激光工作物质上能级地粒子数大量积累 .当积累到最大值(饱和值时 >,突然使腔内损耗变小 ,Q 值突增.这时, 腔内会像雪崩一样以飞快地速度建立起极强地振荡 , 在短时间内反转粒子数大量被消耗 ,转变为腔内地光能量 ,并在透反镜端面耦合输出一个极强地激光脉冲 .通常把这种光脉冲称为巨脉冲•调节腔内地损耗实际上是调节Q值,调Q技术即由此而得名.也称为Q突变技术或Q开关技术.DXDiTa9E3d用不同地方法去控制不同地损耗,就形成了不同地调Q技术.有转镜调Q技术 , 电光调 Q 技术、可饱和染料调 Q 技术、声光调 Q 技术、透射式调 Q 技术 . RTCrpUDGiT本实验以电光Q开关激光器地原理、调整、特性测试为主要内容.利用晶体地电光效应制成地 Q 开关, 具有开关速度快;所获得激光脉冲峰值功率高 , 可达几Mw 至Gw脉冲宽度窄,一般可达ns至几十ns,器件地效率高,可达动态效率 1%, 器件输出功率稳定性较好 , 产生激光时间控制程度度高 , 便于与其它仪器联动,器件可以在高重复频率下工作等优点.所以这是一种已获广泛应用地 Q 开关 . 5PCzVD7HxA YAG棒在闪光灯地激励下产生无规则偏振光,通过偏振器后成为线偏振光,若起偏方向与KDP晶体地晶袖x(或y>方向一致,并在KDP上施加一个V1/4地外加电场.由于电光效应产生地电感应主轴X'和y '与入射偏振光地偏振方向成450角, 这时调制器起到了一个1/4 波片地作用 , 显然,线偏振光通过晶体后产生了n /2地位相差,可见往返一次产生地总相差为n ,线偏振光经这一次往返后偏振面旋转了90°, 不能通过偏振器 . 这样, 在调制晶体上加有 I/4 波长电压地情况下, 由介质偏振器和 KD*P 调制晶体组成地电光开关处于关闭状态 , 谐振腔地 Q 值很低 , 不能形成激光振荡 . jLBHrnAILg虽然这时整个器件处在低 Q值状态,但由于闪光灯一直在对 YAG棒进行抽运, 工作物质中亚稳态粒子数便得到足够多地积累 , 当粒子反转数达到最大时 , 突然去掉调制品体上地 l /4 波长电压 , 即电光开关迅速被打开 , 沿谐振腔轴线方向传播地激光可自由通过调制晶体 ,而其偏振状态不发生任何变比 ,达时谐振腔处于高Q值状态,形成雪崩式激光发射.XHAQX74J0X2•倍频技术原子是由原子核和核外电子构成.当频率为w地光入射介质后,引起介质中原子地极化,即负电中心相对正电中心发生位移r形成电偶极矩er ,其中e是负电中心地电量.我们定义单位体积内原子偶极矩地总和为极化强度矢量P= Nm,N是单位体积内地原子数.极化强度矢量和入射场地关系式为LDAYtRyKfE其中 ------- f…分别称为线性极化率、二级非线性极化率、三级非线性极化率….并且在一般情况下-------- …,每增加一次极化,值减小七八个数量级•由于人射光是变化地,其振幅为——I ,所以极化强度也是变化地.根据电磁理论,变化地极化场可作为辐射源产生电磁波一一新地光波.在入射光地电场比较小时(比原于内地场强还小 >, -----)等极小,P与E成线性关系为----- 1 ,新地光波与入射光具有相同地频率,这就是通常地线性光学现象•但当入射光地电场较强时,不仅有线性现象,而且非线性现象也不同程度地表现出来•新地光波中不仅含有入射地基波频率,还有二次谐波、三次谐波等频率产生,形成能量转移,频率变换•这就是只有在高强度地激光出现以后,非线性光学才得到迅速发展地原因•设有下列两波同时作用于介质:Zzz6ZB2Ltk介质产生地极化强度应为二列光波地叠加.有尸=工⑵[如 cos(3] I 十&z)+X^cos 十-X tZi[j4?aos1(<»l t++盅 cos? 爲z)+ 24^,005 +jt(j)oos (ftjjt+fcjz)].经推导得出,二级非线性极化波应包含下面几种不同频率成分:P切=p眉5 [2〔附+局刃],y (1J尸如=N-盅8时2(呼+Q)L吒,g = 十5”十% + 丘訂工L从以上看出,二级效应中含有基频波地倍频分量(2 i>. (2 2>、和频分量(1十2>、差频分量(1 —2>和直流分量.故二级效应可用于实现倍频、和频、差频及参量振荡等过程.当只有一种频率为地光人射介质时,那么二级非线性效应就只有除基频外地一种频率(2 >地光波产生,称为二倍频或二次谐波 .dvzfvkwMIl为了获得最好地倍频效果,除了入射光要足够强<功率密度高)、晶体地非线性极化细述要大外,还要使特定偏振方向地线偏振光以某一特定角度入射,这个特定地角度由相位匹配条件决定.rqyn14ZNXI从理论分析可得倍频效率地关系式如下L为倍频晶体地通光长度,只有当△ K= 2K1 — & = 4n /入i(n co -n2 co >=0,即n3 = n2o时,效率最高.我们将之称为位相匹配条件.EmxvxOtOco怎样实现相位匹配呢?对于介质,由于存在正常色散效应,是不能实现相位匹配地.对于各向异性晶体,由于存在双折射,可以利用不同偏振态之间地折射率关系实现相位匹配.SixE2yXPq5目前常用地负单轴晶体,如KDP它对基频光和倍频光地折射率可以用图 3 —1地折射率面来表示.图中实线是倍频光地折射率面,虚线是基频光地折射率面.球面为0光折射率面,椭球为e光折射率面.折射率面地定义为,它地每一根矢径长度<从原点到曲面地距离)表示以此矢径方向为波法线方向地光波地折射率.从图中可以看出如果基频光矢o光,倍频光是e光,那么当波面沿着跟光轴成9角地方向传播时,二者折射率相同,9称为相位匹配角.这种方法成为第一类角度相位匹配,即图2- 1负单轴晶体地折射率面三、实验装置1•调Q技术图2-2实验装置图KDP:倍频晶体<或KTPM1:输出镜<输出透过率T=80%YAG闪光灯、聚光腔和 YAG棒组件B:布氏角偏振片Q:调Q晶体<布氏角偏振片与调Q晶体组成调Q单元)M2:全反射镜<M1和M2组成激光谐振腔)2•倍频技术实验装置见图3- 2,并说明如下:6图2-3实验装置①一④构成 YAG激光器振荡级•其中:①是 1.06微M全反射镜;②是DKDF电光调Q晶体及介质膜起偏器;③为 YAG激光器地主体•包括 YAG棒、氙灯、聚光腔和冷却系统;④是输出端平面反射镜•对 1.06微M激光T= 80%经边束调制地YAG调Q激光器产生地1.06微M激光是全偏振光,通常为偏振方向在竖直方向上地O光,以满足倍频晶体相位匹配地要求.kavU42VRUs⑤KTP倍频晶体,将1.06微M地红外激光转变成0.53微M地绿光•晶体地入射面镀有对1.06微M地增透膜,出射面镀有对0.53微M地增透膜,倍频效率约5%〜15% .KTP晶体易损伤,操作时要细心.y6v3ALoS89⑥能量计.四、实验内容与步骤1•调Q技术1、用He-Ne激光束或自准直平行光管,调整激光器各光学元件地高低水平位置,使各光学元件地对称中心基本位于同一直线上.再调整各光学元件地俯仰方位,使介质膜反射镜、偏振器、电光晶体地通光面与激光工作物质端面相互平行不平行度小于一弧分.M2ub6vSTnP2 、启动电源,在不加/4晶体电压情况下,工作电压取550V,反复调整两块谐振腔片,使静态激光输出最强,记下输出激光能量.一般称不加调Q元件地激光输出为静态激光,而加调Q元件地激光输出为动态激光或巨脉冲激光.0YujCfmUCw3、关门实验,加上偏振片及调Q晶体,给电光晶体加上恒定地/ 4电压(V /4>,绕光轴转动KDP晶体,充电并打激光,反复微调电光晶体,直至其x、y 轴有偏振器地起偏方向平行.同时适当微调电压 V /4,直到激光器几乎不能振荡为止(出光明显比静态激光能量低 >.此即说明电光 Q开关已处于关闭状态(低Q值状态 >.eUts8ZQVRd4、接通电光晶体地退压电路,打动态激光,微调闪光灯开始泵浦至退去V /4电压之间地延迟时间电位器,一面观察激光强弱,一面微调延迟电位器旋钮,直到激光输出最强.记下巨脉冲能量值.sQsAEJkW5T5、改变脉冲泵浦能量,每增加工作电压50V测量一次,用能量计分别测出几组静、动态输出能量.一直测到800V,计6组数据.GMslasNXkA2.倍频技术由于本实验具有强光和高压电,为保证安全,必须首先仔细阅读实验室注意事项、然后才开始操作.1调整激光器出射光方向,使其和基座导轨同方向并与导轨上各光学器件处于等高地水平方向,这样便于接收调节•检测YAG激光器输出光能量是否正常微调YAG放大器基座,与激光器保持共轴,使输出能量最佳•对1.06微M不可见地红外激光除可用能量计准确测定其能量值外.还可用烧斑纸对光地有无和能量地大小进行粗略捡查.TlrRGchYzg2、将倍频晶体、能量计放置在同一水平高度上.使KTP晶体处于o+o->e地第一类相位匹配方式.3、由于晶体切割时,截面地法线与晶体地光轴夹角即为该晶体地相位匹配角,入射光只要垂直射到晶体上,就可获得最好地倍频效果.转动倍频晶体,使 1.06微M地基频光以不同角度入射于晶体.从光强地变化中也可看出,当倍频光由弱地圆环或散开地光斑缩为一耀眼地光点时,即达到了最佳匹配状态.鉴于光束地发散,能量计与倍频晶体一般保持在 10cm处.在测量地过程中,能量计放置地角度也会随着出射光方向地改变稍有变化.7EqZcWLZNX4、将倍频晶体固定在最佳倍频位置,用能量计分别测出1.06微M地输人光强及0. 53微M地倍频光强、计算出倍频效率——:反复测三遍.取平均结果.lzq7IGf02E五、实验报告要求1.利用公式分别计算出在同一泵浦能量下地动态与静态激光输出能量之比称为动静比.耳=动态激光输出能量/静态激光输出能量zvpgeqJIhk2.总结相位匹配原理,对实验数据进行列表整理六、思考题1.试述改变退压延迟时间t o和加在晶体上地电压值为什么会影响调Q激光器地输出?2.如何知道本实验地倍频为第一类相位匹配?若改用第二类相位匹配,应如何做?。
声光调Q实验报告
![声光调Q实验报告](https://img.taocdn.com/s3/m/d85acb2f4b73f242336c5f2a.png)
YAG 激光器声光调Q 及其参数测量电子科学与技术101班 唐衣可俊 2010031039一、实验原理声光调Q 是利用光的衍射效应实现调Q 的。
利用光的衍射现象,使光束偏离,达到声光调Q 的目的。
一束光通过由声控的相位光栅时,就会发生衍射,这就是声光效应。
在激光器的光学谐振腔中,放入一个声光调制器,当有超声场作用在调制器上时,由于声光效应,激光束就会发生衍射,偏离谐振腔,从而使激光停止振荡。
当超声波消失后,损耗消失,形成振荡,产生巨脉冲输出,完成超声调Q 作用。
图4-1 布拉格衍射在激光器中采用声光调Q 技术,主要是利用布拉格衍射型。
因为当超声波的功率足够时,这种衍射可使入射光全部转移到+1或-1级上,且有较高的转换效率。
布拉格衍射现象见图4-1。
在采取布拉格衍射时,入射角B θ称为布拉格角,其满足下式:sin 22s B sK k λθλ== (4-2) 式中:λ为光在介质中的波长,2λ为声波波长,s K 声波波数,K 为入射光波波数。
声光调Q 中的调制元件是一个由布拉格衍射型的声光调制器,图4-2是调制盒的结构示意图。
调制盒共有四部分组成,第一部分是高频驱动源;第二部分是超声波换能器,在这里将电信号变为超声波;第三部分是声光介质,声场与光场在这里发生相互作用;第四部分是吸声器。
图4-2 声光调Q 盒结构示意图超声波的产生有多种方法,如机械振动、气流振动、液体高逆流动以及电振动等。
而激光器用的超声波发生器大都采用高频电信号发生器,也很容易人工控制、产生或消失,而且具有很短的滞后时间,这是调Q 所必须的。
图4-4 声光调Q 装置图图4-4是声光调Q 装置图。
在连续YAG 激光器的光学谐振腔内放有声光调制盒和光阑,光阑的通光孔径φ为2~3mm 可调,其作用是限制多模,且使光束全部通过声光作用区。
光学谐振腔一端为全反镜,另一端是透过率T 为5%的左右的输出镜。
低透过率是为了使激光器有低的阈值。
激光晶体选用φ为5×70mm 的YAG 晶体。
Nd-YAG 固体激光器电光调Q、倍频实验讲义
![Nd-YAG 固体激光器电光调Q、倍频实验讲义](https://img.taocdn.com/s3/m/7615ab0202020740be1e9b3e.png)
Nd:YAG 固体激光器电光调Q、倍频实验一、 实验目的1. 掌握电光调Q 的原理及调试方法;2. 学会电光调Q 装置的调试;3. 掌握相关参数的测量。
二、 实验原理1. 调Q 技术原理调Q 技术中,品质因数Q 定义为腔内贮存的能量与每秒钟损耗的能量之比,可表示为: 每秒钟损耗的激光能量腔内贮存的激光能量02πν=Q (1) 式中0ν为激光的中心频率。
如用E 表示腔内贮存的激光能量,γ为光在腔内走一个单程能量的损耗率。
那么光在这一单程中对应的损耗能量为E γ。
用L 表示腔长;n 为折射率;c 为光速。
则光在腔内走一个单程所需要时间为。
c nL /由此,光在腔内每秒钟损耗的能量为c nL E /γ这样,Q 值可表示为γλπγπν002/2nL nL Ec E Q == (2)式中00/νλc =为真空中激光波长。
可见Q 值与损耗率总是成反比变化的,即损耗大Q 值就低;损耗小Q 值就高。
固体激光器由于存在弛豫振荡现象,产生了功率在阈值附近起伏的尖峰脉冲序列,从而阻碍了激光脉冲峰值功率的提高。
如果我们设法在泵浦开始时使谐振腔内的损耗增大,即提高振荡阈值,振荡不能形成,使激光工作物质上能级的粒子数大量积累。
当积累到最大值(饱和值时),突然使腔内损耗变小,Q 值突增。
这时,腔内会象雪崩一样以极快的速度建立起极强的振荡,在短时间内反转粒子数大量被消耗,转变为腔内的光能量,并在透反镜端耦合输出一个极强的激光脉冲。
在这个过程中,弛豫振荡一般是不会发生的,但是,如果调Q 器件设计及调整得不好也会导致多脉冲出现。
所以,输出光脉冲脉宽窄,峰值功率高。
通常把这种光脉冲称为巨脉冲。
调节腔内的损耗实际上是调节Q 值,调Q 技术即由此而得名。
也成为Q 突变技术或Q 开关技术。
谐振腔的损耗γ一般包括有:54321αααααγ++++= (3)其中1α为反射损耗;α2为吸收损耗;α3为衍射损耗:α4为散射损耗;α5为输出损耗。
LDA端面泵浦声光调QYb_YAG1_03_m激光器_林洪沂
![LDA端面泵浦声光调QYb_YAG1_03_m激光器_林洪沂](https://img.taocdn.com/s3/m/9d2dd3735acfa1c7aa00cc75.png)
26
激光与红外
第 38 卷
声光调 Q 激光器。声光调 Q 激光器具有脉冲的重 复性好、 易于控制和稳定 可靠的优点 , 在激光打印 机、 划片机、 雕刻机、 微调机等激光加工系统中有广 泛的应用。 2 实验装置 LDA 端面泵浦声光调 Q Yb YAG 激光器如图 1 所示。
其中 , h ! 为光子能量 ; A 为有效光束截面 ; ∀ 为受激 发射截面 ; # 为粒子数反转因子; R 为输出镜的反射 率: n i 为初始反转粒子数密度; n f 为最终反转粒子 数密 度; l 为晶体 长度; n t 为 阈值时 反转粒子 数密 度; tr = L /c, L 为谐振腔长度。 对于准三能级晶体采用大功率 LDA 进行端面 泵浦 , 可以提高泵浦功率密度 , 在相同的泵浦功率条 件下 ( 与侧面泵浦相比较 ), 可获得较高的初始反转 粒子数 n i。 对 于声光 调 Q 激光器 , 尽可 能地 提高 n i /n f 值 , 有利于获得高能量 E、 高峰值功率 P m ax、 窄 脉冲激光。在确定的泵浦泵浦功率密度下, 通过调
LDA End pumped A cousto optics Q sw itched Yb YAG 1. 03 m Laser
L IN H ong y i , TAN H u i m in g , T IAN Yu bin g , HAO Er juan
1, 2 1 1 , 2 1, 2
( 1. Changchun Institute of O ptics , F ine M echanics and Phys ic , The Ch inese A cade m y of Sc iences, Changchun 130033 , Ch ina ; 2. G raduate Schoo l of T he Chinese A cade m y of Sc iences , Be ijing 100039, China) Ab stract : F or the first ti m e a cw d iode laser array end pumped A cousto optics Q sw itched Y b: YAG 1. 03 m laser was reported . A t room te m pera ture , the Y b: YAG crysta l has a quasi three leve l structure , and the lasing thresho ld is high because of ser ious re abso rption at the laser w ave length. In o reder to rea lized active ly Q sw ithed 1. 03 m laser , we cho se a LDA to pum p the cry sta lw ith h igh pum p intensity . The m ax i m um output power 760 mW w as obta ined at pulse repetition frequency ( PRF ) o f 20 kH z when the drive current w as 30 A. T he shortest laser pu lse w ith FWHM w idth of 53. 9 ns was observed at PRF of 1. 22 kH z when the dr ive current w as 25 A. T he highest peak po w er 5 . 74 k W and the m ax i m um pulse energy 371 J w ere ach ieved at PRF of 1. 22 kH z when the dr ive current was 30 A. K ey w ords : Y b YAG cry sta ; l d iode end pum ped; AO Q s w itched ; a ll so lid stated laser
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十二声光调Q倍频YAG激光器实验
一、实验目的
<1)掌握声光调Q连续激光器及其倍频的工作原理;
<2)学习声光调Q倍频激光器的调整方法;
<3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;
<4)学习倍频激光器的调整方法。
二、实验原理
声光调Q倍频连续YAG激光器的工作原理
<1)声光调Q基本原理:
图12-1 声光调制器工作原理
声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器<压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。
超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。
如图12-1所示。
光栅公式如下式b5E2RGbCAP
<1)
式<1)中,为声光介质中的超声波波长,为布拉格衍射角,
为入射光波波长,为声光介质的折射率。
当入射光以布拉格角入
射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。
利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。
当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。
在此期间泵浦灯注入给激活介质<激光晶体)的能量储存在激光上能级,形成高反转粒子数。
当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。
由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。
声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。
p1EanqFDPw
<2)倍频器件工作原理:
图12-2 倍频晶体折射率椭球及通光方向示意图
由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。
图12-3给出了一个单轴晶体的色散及1064nm倍频匹配点的折射率关系曲线。
DXDiTa9E3d
R e f r a g t i v e I n d e x l (m m)
图12-3 单轴晶体色散曲线及倍频原理示意图
图12-3中的实线代表了寻常光的折射率,点划线代表了非常光的折射率,中间的点线则代表了非常光在改变入射光角度时得到的折射率。
由图中可以看出,当改变晶体中入射光的角度,中间的非常光折射率曲线随之变化,在如图的位置上,可以实现1064nm 的倍频。
即在特定的通光方向上,532nm 的倍频光与1064nm 的基频光折射率可以实现相等,实现倍频的相位匹配。
RTCrpUDGiT 对于双轴晶体其相位匹配的计算较为复杂,这里不详细论述。
其相位匹配原理都是相同的。
<3)倍频效率:
设为基频光,为倍频光,则由理论计算可以得到倍频的效率为
<2)
式<2)中为基频光光强,为倍频光光强,为晶体长度,
为晶体倍频有效非线性系数,为基频光折射率,为倍频光折
射率,为三波互作用时的波矢量失配。
由公式给出的
倍频效率是一个Sinc平方函数,当=0时效率达到最大值,失配量在的整数倍时达到最小值。
5PCzVD7HxA
图12-4 倍频效率的sinc平方函数图
三、实验装置
实验装置如图12-5所示。
这是一台内腔倍频、连续氪灯<单灯)泵浦、声光调Q的YAG激光器。
不加倍频元件可以输出1064nm波长的近红外高功率激光。
当腔内放置倍频晶体时,如采用倍频效率较高的KTP<磷酸二氢钾)晶体,就可以产生532nm波长的倍频绿光输出。
jLBHrnAILg
图12-5 声光调Q连续YAG倍频激光器示意图
由于倍频效率与基频激光的峰值功率平方成正比,所以为了有效地产生高效率的倍频输出,在YAG腔内采用了声光调Q装置,其作用可以将连续振荡的1064nm基频光变换成10KHz左右的高重复频率脉冲激光,脉冲宽度在150nS左右。
由于具有重复频率和峰值功率高的特点,所以可以获得高平均功率的倍频绿光输出。
xHAQX74J0X
实验装置中采用5mW的氦氖激光器做为准直光源。
谐振腔后面采用的全反镜为1064nm高反。
倍频输出镜为1064nm高反和532nm 高透双色镜。
1064nm基频光在腔内形成振荡且不直接输出到腔外。
在腔内放置KTP晶体做为倍频器件,将1064nm基频光转换为532nm倍频光,并通过倍频输出镜获得输出。
本实验中,在腔内还放置了一块谐波反射镜,上面镀有1064nm高透、532nm高反,使
获得的后向倍频光再次反射回倍频输出镜处并得到输出,从而进一步提高了倍频输出效率。
LDAYtRyKfE
四、实验内容
<1)仔细反复调整激光器中反射镜、声光Q开关、KTP倍频晶体,使之降低阈值达到最佳工作状态。
<2)观察声光调Q连续YAG倍频激光器的工作特点。
<3)比较有调Q作用和无调Q作用时倍频输出明显的差别。
<4)测量倍频激光器绿光输出的脉冲宽度和波形。
<5)观察不同声光调制频率下绿光输出功率的变化。
<6)转动倍频晶体角度观察倍频输出功率变化。
*<7)估算倍频激光器的倍频效率。
五、实验步骤
<1)用氦氖激光器调整光路,使所有反射面都与光轴垂直,达到谐振腔的腔镜平行。
重点是光路中的激光棒端面、声光Q开关端面、全反镜和倍频输出镜。
这是保证有效产生高功率基频光振荡的首要条件。
Zzz6ZB2Ltk
<2)通冷却水后,小心设定连续激光电源的最小工作电流,开启电源使连续氪灯工作在最小孤光放电状态。
<3)打开激光功率计,并调零,设定探测波长为532nm档。
开启声光调Q驱动电源,调整声光调制功率。
一般应结合激光功率进行调整,当激光功率较小时调制功率亦小,调制功率不宜设定过高,以达到最高效率为准。
先将声光调制频率设定为7KHz左右,进行观察,然后再改变声光调制频率从7KHz~20KHz,观察绿光输出功率的变化。
dvzfvkwMI1
<4)对实验内容<3)进行观察和熟悉。
<5)用分辨率小于100nS的示波器和绿光响应的高速光电二级管探测观察声光调Q倍频绿光输出的波形。
可将激光调整到较小,
或将绿光激光打到物体的反射面上探测其反射光即可。
不可直接将探测器对准绿光进行探测,否则会造成探测器的损坏。
rqyn14ZNXI <6)绘制不同声光调制频率下的绿光输出功率曲线,注意标明激光工作条件<激光电源驱动电流、声光调制器驱动电流)。
EmxvxOtOco
<7)KTP晶体属于双轴晶体,实验中采用II类相位匹配,其
1064nm的倍频最佳相位匹配角为,。
稍微转动晶体的方位角,记录输出功率随晶体角度变化的曲线。
理论计算应为
一Sinc平方曲线。
用氦氖激光器垂直入射晶体表面,在一定距离上观察晶体表面反射光点的位置,以计算出晶体与光轴的夹角。
SixE2yXPq5
*<8)测量倍频效率。
先将倍频晶体和谐波反射镜取出,用一波长在1064nm处反射率为90%的镜片取代倍频输出镜,以形成一1064nm连续激光谐振腔,先测量只有1064nm激光输出的功率。
将晶体、谐波反射镜、倍频输出镜放回导轨上,形成内腔倍频谐振腔,再测量倍频输出的绿光功率。
用绿光功率除以基频光功率,以估算出倍频效率。
注意:此时测量的基频光功率为估算值,实际还应考虑电源到激光的效率。
6ewMyirQFL
重要提示:
1)连续激光器的电源功率最大输出在千瓦以上,由于固体激光器效率只有百分之几,大部分都转换为热量,所以一定要先开启冷却水然后方可进行操作,否则晶体和氪灯会发生损坏。
kavU42VRUs
2)由于1064nm基频光都在腔内振荡没有输出,所以腔内功率密度很高,很容易打坏光学元件,所以一定要保证通光光路中没有切光,特别是KTP晶体要对正通光中心。
y6v3ALoS89
3)激光脉宽探测器是价值较高的高速响应及高灵敏度光电二极管,不可直接将激光输出打在上面。
只能探测强光打在物体上的散射光。
M2ub6vSTnP
六、实验报告
1)描述声光调Q内腔倍频YAG激光器的工作原理。
2)有声光调Q与无声光调Q作用时的绿光输出现象和记录。
3)脉宽形状及脉宽记录,以及不同声光调制频率下的脉宽记录。
4)不同声光调制频率下绿光输出功率与频率的关系曲线。
5)改变角,测得的绿光输出功率与角度的关系曲线。
6)在有条件的情况下,完成实验内容*<7),并提交绿光输出功率与角度的关系曲线。
七、思考题
倍频激光器输出耦合镜为1064nm全反,这是否与激光原理中最佳偶合输出的概念矛盾?
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。