小学奥数教程分数应用题及答案(三)

合集下载

(完整word版)小学六年级奥数专项:分数应用题

(完整word版)小学六年级奥数专项:分数应用题

1 是原来总数的 3 。求现在书架上放着多少本书?
1 分析: 借出总数的 75%之后,还剩下 25%,又放上 60 本,这时架上的书是原来总数的 3 ,
这就可以找出 60 本书相当于故事书总数的几分之几了,问题也就可以求出来了。还可以画
找量率对应。如下图:
解答:( 1) 60 本书相当于故事书总数的几分之几?
1 ,或可注满乙容器及甲 2
14、有三堆棋子,每堆棋子一样多, 并且都只有黑白两种棋子。第一堆里的黑子数与第二堆
里的白子数一样多,第三堆里的黑子为全部黑子的
2 。把三堆棋子集中在一起,白子为全 5
部棋子的几分之几?
7
二、练习
1、一项工程,甲单独做 10 天完成,乙单独做 8 天完成,甲每天比乙少做(
13 公顷,稻
分析: 通过读题,将题目中的条件列成文字等式:
1
1
1
1
菜地的 2 +稻田的 3 =13 公顷+菜地的 3 +稻田的 2 =12 公顷
5
5
菜地的 6 +稻田的 6 =25 公顷
这就是说,菜地和稻田的
5 6 与 25 公顷相对应,因此可以求出两种地一共有多少公顷,
再求稻田有多少公顷。 解答: 两种地共有
1
1
总数的 8 + 16 本+总数的 2 - 8 本+余下的 67 本 =“单位 1”
将等式变形,量率分别放在等号的两边:
1
1
16 本- 8 本+余下的 67 本 =“单位 1”-总数的 8 -总数的 2
1 13 从上面的式子中可以看出, (67 - 8+16) 就是这批图书的 1- 8 - 2 = 8 ,因此列式为:
6
8、庆丰文具店运来的毛笔比钢笔多 店共运来多少万支笔?

5年级奥数分数应用题三

5年级奥数分数应用题三

5-23 分数应用题(三)例1、一群猴子吃筐里的桃子,第一天吃了总数的1/2还多2个,第二天吃余下的1/3 少1个,第三天吃了这时余下的1/4还多1个,这样还剩下20个没有吃完,求筐里桃的总数。

例2、建筑工地需要一批水泥,从仓库第一次运走全部的2/5,第二次运走余下的1/3,第三次运走(前二次运后)又余下的3/4,这时还剩下15吨水泥没运走,这批水泥共有多少吨?例3、某建筑工地需要一批水泥,从仓库第一次运走全部的2/5,第二次运走余下的1/3多2吨,第三次运走又余下的3/4 少6吨,这时还剩12吨。

这批水泥共有多少吨?例4、甲、乙两班共84人,甲班人数的5/8与乙班人数的3/4共有58人,问两班各多少人?例5、有两块地共72亩,第一块地的2/5和第二块地的5/9种西红柿;两块地余下的共39亩种茄子,问第一块地是多少亩?例6、学校阅览室里有36名学生在看书,其中女生占4/9,后来又有几名女生来看书,这时女生人数占所有看书人数的9/19,问后来又有几名女生来看书?例7、李明到商店买一盒花球,一盒白球,两盒球的数量相等,花球原价是1元钱2个,白球原价是1元钱3个,节日降价,两种球的售价都是2元钱5个,结果李明少花了4元钱,问李明一共买了多少个球?例8、一只猴子摘了一堆桃子。

第一天吃了这堆桃子的七分之一;第二天它吃了余下桃子的六分之一;第三天它吃了余下桃子的五分之一;第四天它吃了余下桃子的四分之一;第五天它吃了余下桃子的三分之一;第六天它吃了余下桃子的二分之一;这时还剩下12只桃子,那么这堆桃子有多少个?例9、一筐鲜鱼连筐重122千克,卖出一半后,再卖出剩下鲜鱼的一半,这时剩下的鱼连筐重34千克。

原来这筐鲜鱼重多少千克?例10、甲、乙两个容器,甲里面装了1升水,乙是空的。

第一次把甲中的水倒入乙中1/2,第二次把乙中的水倒给甲1/3,第三次把甲中的水倒给乙1/4,第四次把乙中的水倒给甲1/5,照这样倒了101次以后,甲容器有多少升?例11、今有甲、乙、丙三堆棋子共98枚,先从甲堆中分棋子给另外两堆,使这两堆棋子数个增加一倍,再把乙堆棋子照这样分配一次,最后把丙堆棋子也这样分配一次。

分数奥数应用题及答案

分数奥数应用题及答案

分数奥数应用题及答案分数奥数应用题及答案学好数学,挑战奥数,我们要各个击破,下面是分数奥数应用题及答案,欢迎练习。

例一:王叔叔买了一辆价值16000元的摩托车。

按规定,买摩托车要缴纳10%的车辆购置税。

王叔叔买这辆摩托车一共要花多少钱?分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。

也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)方法2:16000 ×(1 + 10%)= 16000 ×1.1 = 17600(元)答:王叔叔买这辆摩托车一共要花17600元钱。

例二:益民五金公司去年的营业总额为400万元。

如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。

缴纳营业税占营业额的3%,即400万元的3%。

求一个数的百分之几是多少,也用乘法计算。

计算时可将百分数化成分数或小数来计算。

400×3% = 12(万元)或400×3%= 400×0.03 = 12(万元)答:去年应缴纳营业税12万元。

点评:在现实社会中,各种税率是不一样的。

应纳税额的计算从根本上讲是求一个数的百分之几是多少。

例三:扬州某风景区2017年“十一”黄金周接待游客9万人次,门票收入达270万元。

按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%答:“十一”黄金周期间应缴纳营业税13.5万元。

分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

小学奥数(分数应用题)

小学奥数(分数应用题)

一、填空1、一辆汽车一共有66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,以此类推,第()站后,车上坐满乘客。

2、李老师去买桌椅,他带的钱如果只卖桌子,恰好可以买40张,如果只买椅子,恰好可以买60把,那么李老师带的钱可以买()套桌椅。

3、甲数是已数3分之2的,已数是丙数的5分之4,甲,已,丙三个数的比是()4、一辆汽车从甲地开往已地,已行全长的5分子2,离中点还有8千米,甲、乙两地的距离()千米。

5、小明看一本书的7分子3,再看20页,已看页数与未看页数的比是4比3,这本书有()页。

6、一次数学竞赛,六(1)班选手中,男生的平均分是80分,女生的平均分是70分,全班选手的平均分是73分,该班选手中男、女生人数的比是()。

、、某商品打九折出售,可盈利215元,如果降价百分之20出售,要亏损125元,这件商品的进价是()元。

二、解答题1、一根铁丝长100米,第一次用去全长的5分子2,第二次用去余下的3分子1,第三次用去第一次的2分子1,还剩多少?2、加工一批零件,王师傅先加工了这批零件的7分子2,接着李师傅加工余下的5分子3,结果王师傅比李师傅少加工50个,这批零件共有多少个?3、果园有三种果树共280课,其中桃树棵树是苹果树的9分子7,苹果树是梨树的4分子3,三种果树各有多少棵?4、六年级三个班共有156人,其中六(1)班人数是六(2)班的7分子6,是六(3)班人数的13分子12,六年级三个班各有多少人?5、有两筐梨,乙筐的质量是甲筐5分子3,从甲筐中取出5千克放入乙筐后,乙筐的梨是甲筐的9分子7,甲、乙两筐梨共重多少千克?6、修一条路,已修是未修的3分子2,再修20米,已修的是未修的4分子3,这条路全长多少米?7、课外兴趣小组上学期男生占9分子5,这学期女生增加21人,男生就只占5分子2,这个小组现在有女生多少人?8、饲养场里有102只兔子,白兔只数的4分子3等于灰兔只数的3分子2,这个饲养场有白兔、灰兔各多少只?9、仓库里有大米和面粉共2000袋,大米运走5分子2,面粉运走10分子1后,仓库里剩下的大米和面粉正好相等,原来仓库里大米和面粉各有多少袋?10、甲桶油比乙桶油多3.6千克,如果从两桶中各取出1千克后,甲桶剩下的21分子2等于乙桶剩下的7分子1,甲桶里原有多少油?11、有甲、乙两桶油,葱甲桶中倒出3分子1给乙桶后,又从已桶中倒出5分子1给甲桶,这时两桶油各有24千克,原来两桶个有多少千克油?12、兄弟俩各有人民币若干元,哥哥拿出5分子1给弟弟后,弟弟又拿出4分子1给哥哥,这时他们各有90元,哥哥、弟弟原来各有多少元?13、六(1)班有54人,其中男生是全班的9分子5,本学期又转入几名男生,这时男生是全班的7分子4,本期转入几名男生?14、饲养场养兔280只,其中白兔占7分子5卖掉一些白兔后,白兔占5分子3,卖掉多少只白兔?15、光明小学六年级105人分成三个小组参加植树活动,已知第一小组和第二小组人数的比是2:3,第二小组人数是第三小组人数的5分子4,这三个小组各有多少人?16、甲、乙、丙三个数的平均数是165,其中甲是乙的6分子5,乙与丙的比是9:11,这三个数分别是多少?17、小明读一本故事书,已读页数和未读页数的比是1:5,如果再读30页,则已读页数和未读页数的比是3:5,这本书是多少页?18、甲乙两校原有图书本书的比是7:5,如果甲校给乙校650本,甲、乙两校图书本书的比是3:4,甲校原有图书多少本?19、箱子里有红、白两种玻璃球,红球与白球个数的比是3:2,每次从箱子里取出5个红球,6个白球,若干次后白球正好取完,红球还剩32个,箱子里原有两种球共多少个?20、书架上层与下层图书本书的比是4:5,若从上下两层各取走15本书,则上层书的本书与下层的比是7:10,原来两个书架各有多少本书?21一项工程,甲单独完成需要10天,乙单独完成需要12天,丙单独完成需要15天,现在三人共同完成这项工程,但甲中途提前撤出,结果用6天完成,甲只参与几天?22、一项工程,甲、乙合作5小时可完成,两队同时开工,中途甲停工2小时,因此经过6.5小时完工如果这项工程由甲单独做需要几小时?23、一项工程,甲单独做10天完成,乙单独做12天完成,这项工作先由甲做了几天,然后乙接着做,从开始到完工共用11小时,这项工作甲做了几天?24、一条公路,甲独修24天可以完成,乙独修30天可以完成,先由甲、乙两队合修4天,再由丙队参加一起修7天全部完成,如果甲、乙、丙三队同时开工一起修这条公路,几天可以完成?24、修一条公路,甲队独修要40天完成,乙队独修要24天完成,两队合修,同时从两端开工,结果在距中点750米处相遇,这段公路全长多少米?25、商店把货物按标价九折出售,还可以获利百分子20,若该商品的进价是210元,那么每件的标价应为多少元?26、王老板把一件衣服按八ude五折出售,还获利百分子27.5,已知这件衣服的进价是200元,这件衣服的标价是多少?27、某商品的进价是1509元,按商品的标价九折出售,利润率是百分子20,上坪的标价是多少?28、某商店同时出售两件服装,售价都是180元,其中一件盈利百字分子20,另一件亏损百分子20,就这两件服装而言,该商店时亏了还是赚了,亏或是赚多少?29、某商品按百分子20利润定价,然后按8.8折出售,共获利70元,这件商品的出售价是多少元?30、小明家养的鸡和鸭共有200只,如果将鸡卖掉20分子1,还比鸭多34只,小明家养的鸡和鸭各有多少只?31、商场里彩电和冰箱共350只,如果彩电卖出9分子1后,就比冰箱少10台,商场里彩电和冰箱各有多少台?32、学校有篮球和足球共21个,如果篮球再买来4分子3后,比足球多1个原来学校有篮球和足球各多少个?33、甲、乙、丙三人参加考试,共得260分,已知甲的分的3分子1,乙得分的4分子1与并得分的一半减去22分相等,那么丙的得分是多少?34、某校六年级原有两个班,将原一班的3分之1与原二班的4分子1组成新一班,将原一班的4分子1与原二班的3分子1组成新二班,余下的30人组成新三班,已知新一班人数比新二班的人数多百分之10,原一班有多少人。

小学数学分数奥数含答案演示文稿

小学数学分数奥数含答案演示文稿

• 有一根1米长的木条,第一次去掉它的1/5; 第二次去掉余下木条的1/6;第三次又去掉 第二次余下木条的1/7;这样一直下去,最 后一次去掉上次余下木条的1/100。问:这 根木条最后还剩下多长?
• • • •
1 ×(1-1/5) ×(1-1/6) ×(1-1/7)……(1-1/100) =4/5×5/6×6/7……99/100 =4/100 =1/25
• 某工厂的27位师傅共带徒弟40名,每位师 傅可以带一名徒弟、两名徒弟或三名徒弟。 如果带一名徒弟的师傅人数是其他师傅人 数的两倍,那么带两名徒弟的师傅有几位?
• 设带一名徒弟的师傅有2x人,那么 2x+(2x)/2=27 解得 x=9,2x=18 • 再设带两名徒弟的师傅有y人,那么,带 三名徒弟的师傅就是 27-18-y=9-y人,可得 方程 • 18*1+y*2+(9-y)*3=40 解得 y=5
• 汽车的速度是火车速度的4/7,两车同时从两 地相向而行,在离中点15千米处相遇,这时火 车行驶了多少千米?
• • • •
汽车速度:火车速度=4:7 汽车路程:火车路程=4:7 15×2÷(7-4)×7=70(千米) 【15是那个距中点15千米的那个,(7-4) 是火车比汽车多走的路程,(7+4)是全 程。】 • 或者 15÷(7/11-1/2)=110 • 110÷11×7=70(千米)
• 第一次1/3 搅匀之后又是1/3,那么这次是2/3*1/3=2/9, 剩下1-1/3-2/9=4/9 再均匀之后1/3,那么这次是4/9*1/3=4/24,剩 下4/9-4/27=8/27 再均匀之后1/3,那么这次是8/27*1/3=8/81, 剩下8/27-8/81=16/81 那么一共喝了1-16/81=65/81

小学奥数6-2-3 分数应用题(三).专项练习及答案解析

小学奥数6-2-3 分数应用题(三).专项练习及答案解析

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

知识点拨教学目标分数应用题(三)解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

奥数分数应用题及答案

奥数分数应用题及答案

奥数分数应用题及答案题目1:小明有一些糖果,他给了小华1/3,然后又给了小刚1/4。

如果小明最后剩下10颗糖果,那么小明最初有多少颗糖果?答案:设小明最初有x颗糖果。

根据题意,小明给了小华1/3x颗糖果,又给了小刚1/4x颗糖果,剩下的是x - 1/3x - 1/4x = 10。

将分数合并,我们得到5/12x = 10。

解这个方程,我们得到x = 10 * 12/5 = 24。

所以,小明最初有24颗糖果。

题目2:一个班级有60名学生,其中1/3是男生,1/4是女生,剩下的是其他学生。

如果班级中女生人数是其他学生人数的2倍,那么这个班级有多少名女生?答案:设班级中有x名女生。

根据题意,男生人数为60 * 1/3 = 20,女生人数为60 * 1/4 = 15。

剩下的学生人数为60 - 20 - 15 = 25。

因为女生人数是其他学生人数的2倍,我们有x = 2 * 25。

解这个方程,我们得到x = 50。

但这个结果与题意不符,因为班级总人数只有60名。

所以,我们需要重新计算女生人数。

正确的计算应该是女生人数加上其他学生人数等于班级总人数减去男生人数,即x + 25 = 60 - 20,解得x = 15。

所以,这个班级有15名女生。

题目3:一个水池,如果用小水管注水需要4小时注满,用大水管注水需要3小时注满。

如果两个水管同时注水,需要多少时间才能注满水池?答案:设水池的容量为C。

小水管每小时注水量为C/4,大水管每小时注水量为C/3。

当两个水管同时注水时,每小时的注水量为C/4 + C/3。

将两个分数合并,我们得到7C/12。

因此,注满水池需要的时间为C /(7C/12) = 12/7小时,即1小时48分钟。

题目4:一个水果店有苹果和橙子,苹果的重量是橙子的2/3。

如果苹果的重量增加了50千克,那么苹果的重量就会是橙子的3/4。

求原来苹果和橙子各有多少千克?答案:设橙子的重量为x千克,那么苹果的重量为2/3x千克。

六年级分数奥数题及答案

六年级分数奥数题及答案

六年级分数奥数题及答案分数在数学中是一个非常重要的概念,对于六年级的学生来说,掌握分数的运算和应用是提高数学能力的关键。

以下是一些分数的奥数题目以及相应的答案,供学生练习和参考。

题目1:如果一个班级有40名学生,其中3/5是男生,那么这个班级有多少名女生?答案:班级中男生的数量是40 * 3/5 = 24名。

因此,女生的数量是40 - 24 = 16名。

题目2:一个分数的分子和分母之和是21,如果分子增加2,这个分数就变成了1。

求原来的分数。

答案:设原来的分数为x/y,根据题意,x + y = 21,且 (x + 2) / y = 1。

解这个方程组,我们得到x = 19,y = 2,所以原来的分数是19/2。

题目3:小明有3/4升的果汁,他喝了1/5升。

他喝了多少升果汁?答案:小明喝的果汁量是3/4 * 1/5 = 3/20升。

题目4:一个分数,当它的分子减少1后,这个分数等于1/3;当它的分母减少1后,这个分数等于1/2。

求这个分数。

答案:设这个分数为x/y,根据题意,(x - 1) / y = 1/3,x / (y - 1) = 1/2。

解这个方程组,我们得到x = 5,y = 12,所以这个分数是5/12。

题目5:一个分数的分子是分母的3/5,如果分子增加10,分母增加20,新的分数等于1/2。

求原来的分数。

答案:设原来的分数为x/y,根据题意,x = 3/5 * y,(x + 10) / (y+ 20) = 1/2。

解这个方程组,我们得到x = 15,y = 25,所以原来的分数是15/25,简化后为3/5。

这些题目覆盖了分数的基本运算、分数与整数的转换以及分数的比较等知识点,对于提高学生的分数理解和应用能力非常有帮助。

希望这些题目能够激发学生对数学的兴趣,并帮助他们在奥数竞赛中取得好成绩。

奥数分数应用题难点例题及解析

奥数分数应用题难点例题及解析

奥数分数应用题难点例题及解析下面是几道难点奥数题,并附有详细解析,希望对同学们有帮助。

分数应有题常见题型有:部分量不变、总量不变、相差量不变。

【题目】:甲的书本数是乙的3/4 ,甲给乙6本书后,甲的书的本数是乙的3/5 ,甲原有书多少本?【解析】:“甲给乙6 本书后”,甲、乙各自的书的本数都发生了变化,但甲、乙两人书本总数没有发生变化,可把这个不变的总量看作单位“ 1”。

则甲原有书本数是两人书本总数的:3+( 3+ 4)= 3/7 ;甲给乙6本后,甲的书本数是两人书本总数的:3+( 3+ 5)= 3/8 ; 甲先后拥有的书的本数相差6本,即甲、乙两人书本总数的3/7 比总数的3/8 多6本。

所以两人书本总数为:6+( 3/7 —3/8 )= 112 (本),甲原有书:112X 3/7 = 48 (本)。

【题目】:一包糖,奶糖占总块数的1/3,放入1 8块水果糖后,奶糖占总块数的2/9,奶糖有多少块?【解析】:“放入18块水果糖后”,总块数发生了变化,但奶糖的块数没有发生变化,可把奶糖的块数看作单位“ 1”。

则放入水果糖之前,总块数是奶糖的3倍:1 + 1/3 = 3;放入水果糖之后,总块数是奶糖的:1 + 2/9 = 9/2 ;这包糖总块数前后相差18块,即奶糖的9/2 比它的3倍多18块。

所以奶糖的块数为:18+( 9/2 —3 )= 12 (块)。

【题目】:甲、乙两人共同生产一批零件,甲生产的是乙的1 又2/3 倍;如果甲把自己生产的零件给乙55个,甲生产的零件是乙的3/4 。

甲、乙两人各生产多少个零件?【解析】:本题中甲给乙55 个零件后,甲和乙各自生产的零件个数都发生了变化,但两人生产的零件总数没有发生变化,可以把这个不变的总量看作单位“ 1”。

1 又2/3 = 5/3则甲原本零件数是两人生产的零件总数的:5+( 5 + 3)= 5/8 ;甲给乙55 个零件后,甲的零件数是两人生产的零件总数的:3+( 3+ 4)= 3/7 ;甲先后零件数相差55 个,即两人生产的零件总数的5/8 比总数的3/7 多55个。

奥数比赛分数问题题目及答案

奥数比赛分数问题题目及答案

奥数比赛分数问题题目及答案
奥数比赛分数问题题目及答案
【题目】学三年级一班的学生参加学校组织的数学竞赛,每个学生的得分都是整数。

已知参加比赛的学生总得分是2431分,其中前三名的得分分别是92分、90分和89分,最低的得分是50分。

又知道没有与前三名得分相同的,任何一个得分相同的都不超过3人,那么得分及格的(不低于60分)学生至少有多少人?
【分析与解】题中问得分及格的学生至少有多少人,要想及格的人数尽量少,那么不及格的人数应该尽量多。

题中又说,任何一个得分相同的都不超过3人。

因此不及格的学生最多的得分是(50+51+52+……+58+59)×3
=(50+59)×10÷2×3
=109×10÷2×3
=545×3
=1635(分)
从参赛学生的总得分中减去不及格的总分,再减去前三名的得分,就是得分在60分~88分之间的`学生的得分总和:
2431-1635-92-90-89=525(分)
这525分中得高分的越多,那么及格的人数就会越少。

先从525分中减去3个得88分的,还余下
525-88×3=261(分)
再从261分中减去3个得87分的,还余下
261-87×3=0(分)
这说明及格的学生中至少有
3+3+3=9(人)
请注意:这里求出的是及格的至少有9人,不是说及格的就是9人。

答:得分及格的至少有9人。

下载全文。

分数应用题(带答案)

分数应用题(带答案)

分数应用题(带答案)分数应用题(带答案)1. 问题:小明有一本书,他第一天看了这本书的1/4,第二天看了剩下的1/3,第三天看了剩下的1/2。

请问小明三天一共看了这本书的几分之几?答案:首先,小明第一天看了这本书的1/4,那么剩下的部分就是1 - 1/4 = 3/4。

第二天,小明看了剩下部分的1/3,即3/4 * 1/3 = 1/4。

第三天,小明看了剩下部分的1/2,即(3/4 - 1/4) * 1/2 = 1/4。

所以,小明三天一共看了这本书的1/4 + 1/4 + 1/4 = 3/4。

2. 问题:一个班级有60名学生,其中2/3是男生,1/4是女生,剩下的是教师子女。

请问教师子女占班级总人数的几分之几?答案:首先,计算男生人数:60 * 2/3 = 40人。

接着,计算女生人数:60 * 1/4 = 15人。

教师子女人数为总人数减去男生和女生人数:60 - 40 - 15 = 5人。

因此,教师子女占班级总人数的比例为5/60,化简后为1/12。

3. 问题:一个工厂生产一批零件,第一天生产了总数的1/5,第二天生产了总数的2/5,第三天生产了总数的1/10。

这批零件是否已经全部完成?答案:首先,计算三天生产的零件总数:1/5 + 2/5 + 1/10 = 4/10 + 2/10 + 1/10 = 7/10。

因为7/10小于1,所以这批零件还没有全部完成。

4. 问题:一个果园有苹果树和梨树两种果树,苹果树占总数的3/5,梨树占总数的2/5。

如果果园有100棵树,那么苹果树和梨树各有多少棵?答案:首先,计算苹果树的数量:100 * 3/5 = 60棵。

接着,计算梨树的数量:100 * 2/5 = 40棵。

所以,果园里有60棵苹果树和40棵梨树。

5. 问题:一个水池,甲水管注水需要3小时,乙水管注水需要5小时。

如果甲乙两水管同时注水,需要多少时间才能注满水池?答案:首先,计算甲水管注水的效率:1/3。

学而思资料_奥数_08分数应用题(三)

学而思资料_奥数_08分数应用题(三)

分数应用题(三)一、知识点概述通过前面的学习,相信大家分析分数应用题的数量关系以及解答分数应用题的能力一定有所提高。

我们在解答分数应用题时,经常碰到有的分数应用题中含有不同的单位“1”,解答时需要统一单位“1”,今天我们就来探讨这类分数应用题的解答方法。

二、重点知识归纳及讲解(一)这类分数应用题的特点:是含有两个或两个以上的分率和单位“1”,解答时需要先转化部分单位“1”,达到统一题中单位“1”的目的。

(二)这类分数应用题仍然用到三量基本关系为:对应量÷单位“1”的量=分率单位“1”的量×分率=对应量对应量÷分率=单位“1”的量(三)解答这类分数应用题常用的方法:假设法、转化单位“1”、列方程解答等。

三、难点知识剖析例1、数学兴趣小组四年级学生比三年级学生多,五年级学生比四年级学生少,六年级学生比五年级学生多,如果六年级学生比三年级学生多38人,那么四年级学生有多少人?分析:要求四年级数学兴趣小组人数,应求出三年级参加数学兴趣小组人数,而题中有三个单位“1”的量,如下图,需要转化单位“1”,把三年级学生人数当作单位“1”,则六年级学生人数为三年级的(1+)×(1-)×(1+)=,(-1)与38人对应,可求出三年级人数,从而解决问题。

解:(1+)×(1-)×(1+)=三年级人数:38÷(-1)=160(人) 四年级人数:160×(1+)=200(人) 答:四年级学生有200人。

例2、学校科技小组中的女生占全组人数的,后来增加16名男生后,女生人数占全组人数的,那么这个活动小组的女生有多少人?分析:由于学校科技小组成员中男生人数发生了变化,所以前后全组的总人数也发生了变化,但女生人数是没有变化的,以不变量为单位“1”,男生开始占女生人数的,后来男生占女生人数的。

如下图:解:16÷(-)=9(人)答:活动小组的女生有9人。

(完整版)六年级奥数分数应用题

(完整版)六年级奥数分数应用题

六年级奥数 分数应用题【指点迷津】解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。

【经典例题】1、有两筐苹果。

乙筐是甲筐的57 ,从甲筐取出6 千克放入乙筐后,乙筐的苹果是甲筐的45 。

甲、乙两筐苹果共重多少千克?【思路导航】 由于是从甲重取出6千克放入乙筐的,所以两筐苹果的总质量没有变,把两筐苹果的总质量看作单位“1”,则原来甲筐苹果占总重量的75+7 ,后来甲筐苹果占总重量的55+4 。

所以6千克苹果相当于总重量的75+7 —55+4 =136 。

6÷(75+7 —55+4 )=216(千克) 答:甲、乙两筐苹果共重216千克。

【举一反三】1、1、乙队原来有的人数是甲队的 3 7 ,现在甲队派30人到乙队,则乙队人数是甲队的23 。

甲、乙两队共有多少人?2、有甲、乙两个粮仓,原来甲粮仓存粮的吨数是乙粮仓的 75 。

如果从甲粮仓调5吨到乙粮仓,甲粮仓的吨数就是乙粮仓的45 。

原来甲、乙粮仓各存粮多少吨?【经典例题】2、在阅览室看书的学生中,男生人数是女生的25 ,又来了3名女生后,男生人数是女生的38 。

阅览室有男生多少人?【思路导航】原来“男生人数是女生的25 ”,后来“ 男生人数是女生的38 ”,虽然都是女生的几分之几,但女生人数前后发生了变化。

在解答时,只能抓住不变的量,即男生人数。

可以这样看,原来女生人数是男生的52 ,后来增加了3名女生,女生人教是男生的83 ,3名女生对应的分率就是83 — 52 。

3÷(83 — 52 )=18(人) 答: 阅览室有男生18人。

【举一反三】2、1、 某学校舞蹈队男生人数是女生的35 ,调来了3名女生后,男生人数是女生的611 。

该学校舞蹈队有男生多少人?2、水果店运来苹果和梨两种水果,苹果的重量是梨的56 ,卖出20 千克梨后,幸果的重量是梨的54 ,运来苹果多少千克?【经典例题】3、在阅览室看书的学生中,女生占47 ,后来又来了5个女生,这时女生占阅览室看书人数的35 。

小学奥数教程-分数应用题及答案(三)

小学奥数教程-分数应用题及答案(三)

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”及“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

知识点拨教学目标分数应用题(三)(三)、原数量及现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

知识点拨教学目标分数应用题(三)(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。

例如:水结成冰后体积增加了,冰融化成水后,体积减少了。

完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来的水是单位“1” 冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了” →原来的冰是单位“1”解题关键:要结合语文知识将题目简化的文字丰富后在分析单位“1”变化【例 1】 养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的114倍.鸭比鸡少几分之几?【考点】分数应用题 【难度】1星 【题型】解答【解析】 方法一:把鸭看成单位“1”,那么鸡就是1 14,鸭比鸡少:111(11)1445-÷=(此时的单位“1”是鸡的只数).方法二:设鸭有4份,则鸡有5份,所以鸭比鸡少1155÷=.【答案】15【巩固】 某校男生比女生多37,女生比男生少几分之几?【考点】分数应用题 【难度】1星 【题型】解答【解析】 方法一:男生比女生多37,则男生有310177+=,女生比男生少31037710÷=.方法二:设女生有7份,则男生有10份,所以女生比男生少331010÷=.【答案】310【例 2】 一炉铁水凝成铁块 ,其体积缩小了134,那么这个铁块又熔化成铁水(不计损耗),其中体积增加了几分之几? 【考点】分数应用题 【难度】1星 【题型】解答【解析】 方法一:设铁水的体积为1,则铁块为13313434-=.现在变回来,那么铁块的体积就要变为单位1,则铁水的体积就为333413433÷=,故体积增加了:341(1)13333-÷=.方法二: 体积缩小是铁块比铁水缩小,所以可以设铁水为34份,则铁块为33份,铁块又熔化成铁水,体积增加是比铁块增加,所以用差的1份除以铁块的33份就是答案133.【答案】133【巩固】 水结成冰后体积增大它的110. 问:冰化成水后体积减少它的几分之几?例题精讲【考点】分数应用题 【难度】1星 【题型】解答【解析】 设水的体积是10份,则结成冰后体积为11份,冰化成水后比冰减少111111÷=. 【答案】111【例 3】 磁悬浮列车的能耗很低。

它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的1021,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________倍。

【考点】分数应用题 【难度】2星 【题型】解答 【关键词】希望杯,六年级,二试【解析】 磁悬浮列车每个座位的平均耗能是飞机每个座位的平均耗能的710110213⨯=,故飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的3倍。

【答案】3倍【例 4】 在下降的电梯中称重,显示的重量比实际体重减少17;在上升的电梯中称重,显示的重量比实际体重增加16.小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,小明和小刚实际体重的比是 .【考点】分数应用题 【难度】2星 【题型】解答 【关键词】2008年,清华附中【解析】 小明在下降的电梯中称得的体重为其实际体重的67,小刚在上升的电梯中称得的体重为其实际体重的76,而小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,所以小明和小刚实际体重的比是:671:149:3676⎛⎫⎛⎫÷÷= ⎪ ⎪⎝⎭⎝⎭.【答案】49:36【例 5】 学校阅览室里有36名学生在看书,其中女生占49,后来又有几名女生来看书,这时女生人数占所有看书人数的919.问后来又有几名女生来看书? 【考点】分数应用题 【难度】2星 【题型】解答【解析】 把总人数视为“1”,紧抓住男生人数不变进行解答.男生人数是436(1)209⨯-=人,后来阅览室的总人数是920(1)3819÷-=(名),后来有38362-=(名)女生进来.【答案】2名【巩固】 工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工 人. 【考点】分数应用题 【难度】2星 【题型】解答 【关键词】2009年,五中,入学测试【解析】 在调入的前后,女职工人数保持不变.在调入前,女职工人数为1128(1)964⨯-=人,调入后女职工占总人数的23155-=,所以现在工厂共有职工3961605÷=人.【答案】160人【巩固】 学校派出60名选手参加2008年“华罗庚金杯小学数学邀请赛”,其中女选手占14.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数的211.正式参赛的女选手有多少名?【考点】分数应用题 【难度】2星 【题型】解答【解析】 因为女选手人数有变化,男选手人数未变,所以抓住男选手人数不变求解.把总人数视为“1”, 男选手人数是60×(1-14)=45(人),男选手人数占正式参赛选手总数的1-211,所以正式参赛选手总数是:45÷(1-211)=55(人),正式参赛的女选手人数是55×211=10(人)。

【答案】10人【巩固】 某公司有15的职员参加新产品的开发工作,后来又有2名职工主动参加,这样参加新产品开发的职工人数是其余人数的13,原来有多少职工参加开发工作?【考点】分数应用题 【难度】2星 【题型】解答【解析】 后来参加新产品开发的职工人数是总人数的11134=+,所以新加入的2个人占总人数的1114520-=,那么职工总人数为124020÷=人,原来参加开发的职工数是14085⨯=人.【答案】8人【例 6】 春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩的平均身高比男孩高10%,这个班男孩的平均身高是 厘米。

【考点】分数应用题 【难度】3星 【题型】解答 【关键词】希望杯,六年级,一试【解析】 设男生有6人,女生有5人,则男生的平均身高为:115(56)[(110%)561]110⨯+÷+⨯+⨯=(厘米)【答案】110厘米【例 7】 有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油 千克. 【考点】分数应用题 【难度】2星 【题型】解答【解析】 原来甲桶油的质量是两桶油总质量的55527=+,甲桶中倒出5千克后剩下的油的质量是两桶油总质量的44437=+,由于总质量不变,所以两桶油的总质量为545()3577÷-=千克,乙桶中原有油235107⨯=千克.【答案】10千克【例 8】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变? 【考点】分数应用题 【难度】2星 【题型】解答【解析】 (1)设二月份产量是1,所以元月份产量为: ()1011+10%=11÷,三月份产量为:110%=0.9-,因为1011>0.9,所以三月份比元月份减产了(2)设商品的原价是1,涨价后为1+15%=1.15,降价15%为:()1.15115%=0.9775⨯-,现价和原价比较为:0.9775<1,所以价格比较后是价降低了。

【答案】(1)减产 (2)降低【巩固】 某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了?【考点】分数应用题 【难度】2星 【题型】解答【解析】 工厂二月份比元月份增产110,将元月份产量看作1,则二月份产量为:1111(1)1010⨯+=,三月比二月减产110,则三月份产量为: 11199(1)11010100⨯-=<,所以三月份比元月份减产了.【答案】减产【巩固】 一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变?【考点】分数应用题 【难度】2星 【题型】解答【解析】 111(1)(1)0.96155⨯+⨯-=<,所以现在的价格比原价降低了.【答案】降低【例 9】 某校三年级有学生240人,比四年级多14 ,比五年级少15.四年级、五年级各多少人?【考点】分数应用题 【难度】2星 【题型】解答【解析】 比四年级,可以设四年级为4份,(一般情况下可设“比”、“是”、等词后面的实际量的份数为分数的分母),则三年级为5份恰有240人,所以一每份就是240548÷=,所以四年级就有48⨯4=192人,同理可设五年级有5份,则三年级有4份恰是240人,所以五年级就有300人.【答案】300人【巩固】 把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【考点】分数应用题 【难度】2星 【题型】解答【解析】 方法一:设一队的人数是“1”,那么二队人数是:131134÷=,三队的人数是:141145÷=,345114520++=,因此,一、二、三队之和是:一队人数5120⨯,因为人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51⨯(某一整数), 因为这是100以内的数,这个整数只能是1.所以三个队共有51人,其中一、二、三队各有20,15,16人.而四队有:1005149-=(人).方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份.为统一一队所以设一队有[4,5]20=份,则二队有15份,三队有16份,所以三个队之和为15162051++=份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有1005149-=(人).【答案】49人【例 10】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人? 【考点】分数应用题 【难度】2星 【题型】解答【解析】 条件可以化为:音乐班的人数是所有班人数的22527=+,美术班的学生人数是所有班人数的337310=+,所以体育班的人数是所有班人数的2329171070--=,所以所有班的人数为295814070÷=人,其中音乐班有2140407⨯=人,美术班有31404210⨯=人.【答案】42人【巩固】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗? 【考点】分数应用题 【难度】2星 【题型】解答【解析】 方法一:要求王先生的年龄,必须先要求出其他三人的年龄各是多少.而题目中出现了三个“另外三人”所包含的对象并不同,即三个单位“1”是不同的,这就是所说的单位“1”不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题中四个人的年龄总和是不变的,如果以四个人的年龄总和为单位“1”,则单位“1”就统一了.那么王先生的年龄就是四人年龄和的11123=+,李先生的年龄就是四人年龄和的11134=+,赵先生的年龄就是四人年龄和的11145=+(这些过程就是所谓的转化单位“1”).则杨先生的年龄就是四人年龄和的11113134560---=.由此便可求出四人的年龄和:111261*********⎛⎫÷---= ⎪+++⎝⎭(岁),王先生的年龄为:1120403⨯=(岁). 方法二:设王先生年龄是1份,则其他三人年龄和为2份,则四人年龄和为3份,同理设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的,但是现在四人年龄和分别是3份、4份、5份,它们的最小公倍数是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40岁.【答案】40岁【巩固】 四只小猴吃桃,第一只小猴吃的是另外三只的总数的13,第二只小猴吃的是另外三只吃的总数的14,第三只小猴吃的是另外三只的总数的15,第四只小猴将剩下的46个桃全吃了.问四只小猴共吃了多少个桃?【解析】 根据题意知前三只小猴分别吃了总数的14,15,16,所以四只小猴共吃了11146(1)120456÷---=(个) 【答案】120个【巩固】 兄弟四人去买电视,老大带的钱是另外三人的一半,老二带的钱是另外三人的1/3,老三带的钱是另外三人总钱数的1/4,老四带91元,兄弟四人一共带了多少钱? 【考点】分数应用题 【难度】2星 【题型】解答【解析】 老大带的钱是另外三人的一半,也就说老大带的钱是一共带钱的1/3,同理老二带的钱是一共带钱的1/4,老三带的钱是一共带钱的1/5,所以老四带的钱是一共带钱的:1-1/3-1/4-1/5=13/60 四人一共带的钱:91除以13/60=420(元)【答案】420元【例 11】 小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来? 【考点】分数应用题 【难度】3星 【题型】解答 【关键词】迎春杯,决赛【解析】 方法一:运完第一次后,还剩下58没运,再运来50块后,已运来的恰好是没运来的57,也就是说没运来的占全部的712,所以,第二次运来的50块占全部的:57181224-=,全部蜂窝煤有:150120024÷=(块),没运来的有:7120070012⨯=(块).方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的57,所以可以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12]24=份,则已运来应是5241075⨯=+份,没运来的7241475⨯=+份,第一次运来9份,所以第二次运来是1091-=份恰好是50块,因此没运来的蜂窝煤有5014700⨯=(块). 【答案】700块【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【考点】分数应用题 【难度】3星 【题型】解答【解析】 又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加人数比原计划多11113520-=+.即全班共有124020÷=(人).原计划抽14085⨯=(人)参加大扫除. 【答案】8人【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?【解析】 11204003141⎛⎫÷-= ⎪++⎝⎭(人).【答案】400人【例 12】 小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少37;如果小刚给小莉24个,则小刚的玻璃球比小莉少58,小莉和小刚原来共有玻璃球多少个?【考点】分数应用题 【难度】3星 【题型】解答【解析】 小莉给小刚24个时,小莉是小刚的47 (=1一37),即两人球数和的411;小刚给小莉24个时,小莉是两人球数和的811(=8885+-),因此24+24是两人球数和的811-411=411.从而,和是(24+24)÷411=132(个). 【答案】132个【例 13】 某班一次集会,请假人数是出席人数的19,中途又有一人请假离开,这样一来,请假人数是出席人数的322,那么,这个班共有多少人?【考点】分数应用题 【难度】3星 【题型】解答【解析】 因为总人数未变,以总人数作为”1”.原来请假人数占总人数的119+,现在请假人数占总人数的3322+,这个班共有:l÷(3322+-119+)=50(人). 【答案】50人【巩固】 小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【考点】分数应用题 【难度】3星 【题型】解答【解析】 首先,可以直接运算得出,第一天小明读了全书的11911019=+,而前二天小明一共读了全书的1131413=+,所以第二天比第一天多读的14页对应全书的111241020-⨯=。

相关文档
最新文档