求几个数的最小公倍数的方法

合集下载

找最小的公倍数的方法

找最小的公倍数的方法

找最小的公倍数的方法
最小公倍数的求法
方法1:短除法
步骤:
一、找出两数的最小公约数,列短除式,用最小约倍数去除这两个数,得二商;
二、找出二商的最小公约数,用最小公约数去除二商,得新一级二商;
三、以此类推,直到二商为互质数;
四、将所有的公约数及最后的二商相乘,所得积就是原二数的最小公倍数.
例:求48和42的最小公倍数
48与42的最小公约数为2
48/2=24;42/2=21;24与21的最大公约数为3
24/3=8;21/3=7;8和7互为质数
2*3*8*7=336
方法2:质因数分解
举例:12和27的最小公倍数
12=2*2×3
27=3*3*3
必须用里面数字中的最大次方者,像本题有3和3的立方,所以必
须使用3的立方(也就是3*3*3),不能使用3
所以:
2*2×3*3*3=4×27=108
两数的最小公倍数是108
方法3:借助最大公约数求最小公倍数
步骤:
一、利用辗除法或其它方法求得最大公约数;
二、最小公倍数等于两数之积除以最大公约数.
举例:12和8的最大公约数为4
12*8/4=24
两数的最小公倍数是24
注:公约数又称公因数.。

求最小公倍数的方法

求最小公倍数的方法

求最小公倍数的方法最小公倍数(Least Common Multiple, LCM)是指两个或多个整数共有的倍数中最小的一个。

求两个数的最小公倍数,一般可以通过以下几种方法:1.分解质因数法首先将两个数分别分解成质因数的乘积形式,然后取每个质因数的最高次幂,最后将这些质因数相乘得到最小公倍数。

例如,求24和36的最小公倍数:24 = 2^3 * 3^136 = 2^2 * 3^2取2的最高次幂为23,3的最高次幂为32,所以24和36的最小公倍数为2^3 * 3^2 = 8 * 9 = 72。

列出两个数的倍数,然后找出第一个共同的倍数,即为它们的最小公倍数。

例如,求24和36的最小公倍数:24的倍数有:24, 48, 72, 96, …36的倍数有:36, 72, 108, 144, …第一个共同的倍数是72,所以24和36的最小公倍数为72。

当两个数成倍数关系时,较大的数即为它们的最小公倍数。

例如,求12和24的最小公倍数:由于24是12的倍数,所以24和12的最小公倍数为24。

当两个数互质时(即它们的最大公约数为1),它们的最小公倍数等于它们的乘积。

例如,求8和9的最小公倍数:由于8和9互质,它们的最小公倍数等于8 * 9 = 72。

将两个数的公有质因数与独有质因数的连乘积相乘,即可得到最小公倍数。

例如,求18和24的最小公倍数:18 = 2 * 3^224 = 2^3 * 3^1公有质因数为2和3,18的独有质因数为32,24的独有质因数为23,所以18和24的最小公倍数为2 * 3^2 * 2^3 = 2 * 9 * 8 = 144。

以上是求两个数最小公倍数的主要方法,实际应用中可以根据具体情况选择合适的方法。

习题及方法:1.习题:求12和18的最小公倍数。

答案:12和18的最小公倍数为36。

解题思路:首先将12和18分别分解成质因数的乘积形式,12 = 2^2 * 3^1,18 = 2^1 * 32。

求几个数的最小公倍数的方法 - 答案

求几个数的最小公倍数的方法 - 答案

求几个数的最小公倍数的方法答案典题探究例1.某中学学生排队,如果每10人一排,多1人,每9人一排,仍多1人,每7人一排,少4人,问这学生至少有451人.考点:求几个数的最小公倍数的方法.专题:压轴题.分析:先根据公倍数的求法得到比10和9的公倍数多1的数,再找到其中比7的倍数少4的数中最小的一个.解答:解:因为比10和9的公倍数多1的数有:91,181,271,361,451,…,比7的倍数少4的数有:3,10,17,24,31,…,451,…,所以学生至少有451人.故答案为:451.点评:考查了求几个数的最小公倍数的方法,本题关键是求出比10和9的公倍数多1的数,比7的倍数少4的数.例2.张集小学学前班买来一筐橙子,分给5个人最后余2个,分给7人最后余2个,分给9人也余2个,学前班最少买来多少个橙子?考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:根据分给5个人余2个,分给7人余2个,分给9人也余2个,可知这筐橙子的总个数减去2就是5、7和9的公倍数,要求至少也就是用5、7和9的最小公倍数加上2即可.解答:解:因为5、7和9三个数两两互质,所以它们的最小公倍数是它们的乘积,即5×7×9=315,所以这筐橙子至少有:315+2=317(个);答:学前班最少买来317个橙子.点评:解答本题关键是理解:这筐橙子的总个数减去2就是5、7和9的公倍数,求至少有的个数,就用它们的最小公倍数加上2即可.例3.一次数学竞赛,结果学生中获得一等奖,获得二等奖,获得三等奖,其余获纪念奖.已知参加这次竞赛的学生不满50人,问获纪念奖的有多少人?考点:求几个数的最小公倍数的方法.分析:即求在50以内的7、3和2的公倍数,先求出这三个数的最小公倍数,因为这三个数两两互质,这三个数的最小公倍数即这三个数的乘积,然后根据题意,进行选择,判断出参加这次竞赛的学生的人数;然后把参加这次竞赛的学生的人数看作单位“1”,获纪念奖的人数占参加竞赛人数的(1﹣﹣﹣),继而根据一个数乘分数的意义,用乘法解答即可.解答:解:2、3和7的最小公倍数是2×3×7=42,因为在50以内的7、3和2的公倍数只有1个42,所以参加这次竞赛的学生有42个,纪念奖有:42×(1﹣﹣﹣),=42×,=1(人);答:获纪念奖的有1人.点评:此题考查了求几个数的最小公倍数的方法,当三个数两两互质时,其最小公倍数就是这三个数的乘积.例4.写出每组数的最小公倍数.15和10 6和7 7和1.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:求两个数的最小公倍数,如果两个数是互质数,它们的最小公倍数是这两个数的乘积;如果两个是倍数关系,较答的数是它们的最小公倍数;两个数是一般关系,可以利用分解质因数的方法,把这两个分解质因数,公有质因数和各自质因数的连乘积就是它们的最小公倍数;由此解答.解答:解:15和10,首先把6和10分解质因数:15=3×5;10=2×5;15和10的最小公倍数是:2×5×3=30;6和7,因为6和7是互质数,所以它们的最小公倍数是:6×7=42;7和1,因为7和1是倍数关系,所以它们的最小公倍数是7.点评:此题主要考查求两个数的最小公倍数的方法.演练方阵A档(巩固专练)一.选择题(共10小题)1.(•中山市)18和60的最大公因数和最小公倍数分别是()A.6,180 B.180,6 C.6,90 D.90,6考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.专题:数的整除.分析:根据求两个数最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积求解.解答:解:18=2×3×3,60=2×2×3×5,所以18和60的最大公因数是2×3=6,最小公倍数是2×3×3×2×5=180;故选:A.点评:考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.2.(•东山县)a+1=b(a和b是不为0的自然数),a和b的最小公倍数是()A.a B.b C.a b考点:求几个数的最小公倍数的方法.专题:压轴题.分析:a+1=b(a和b是不为0的自然数),说明a和b是互质数,互质的两个数的最小公倍数是它们的乘积.解答:解:a和b是互质的两个自然数,最小公倍数是ab,故选:C.点评:此题主要考查互质的两个自然数的最小公倍数的求法.3.(•东城区)非零自然数n与n+1的最小公倍数是()A.n B.n+1 C.n2+n考点:求几个数的最小公倍数的方法.专题:数的整除.分析:由n与n+1是相邻的两个非零自然数,可知n和n+1是互质数,根据互质数的最小公倍数是它们的乘积,据此解答.解答:解:n与n+1是相邻的两个非零自然数,它们的最小公倍数是:n(n+1)=n2+n;故选:C.点评:解答本题关键是理解:相邻的两个非零自然数是互质数,它们的最小公倍数是它们的乘积.4.(•富源县)既有因数3,又是5的倍数的最小三位数是()A.102 B.105 C.120考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:根据3的倍数的特征,各个数位上的数字之和是3的倍数,这个数就是3的倍数.5的倍数特征是:个位上是0或5的数是5的倍数.所以既有因数3又是5的倍数最小三位数是105.解答:解:既有因数3,又是5的倍数的最小三位数是105,故选:B.点评:此题主要根据3、5的倍数的特征和因数与倍数的意义解答.5.(•兴化市模拟)自然数a除以自然数b,商是5,这两个自然数的最小公倍数是()A.a B.b C.5考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:由a÷b=5可知,数a是数b的5倍,属于倍数关系,a>b,所以a和b最小公倍数是a;故选A.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.6.(•广州模拟)a÷b=1…1,则它们的最小公倍数是()A.a B.b C.a b D.a+1考点:求几个数的最小公倍数的方法.专题:数的整除.分析:因为a÷b=1…1,说明a与b是互质数,所以它们的最小公倍数是ab.解答:解:a÷b=1…1,则它们的最小公倍数是ab;故选:C.点评:判定出a和b是互质数是解答此题的关键,注意互质数的两个数的最小公倍数是它们的乘积.7.(•舒城县)能同时被2、3、5除余数为1的最小数是()A.29 B.31 C.61考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:可先求出能同时被2、3、5整除的最小的数也就是它们的最小公倍数为30,由此解决问题.解答:解:能被2、3、5整除的最小的数是30,30+1=31.故选:B.点评:此题是根据求最小公倍数的方法结合整除的意义解决问题.8.(•河池)下面三句话中,正确的一句是()A.两个数是互质数,它们的积就是它们的最小公倍数B.任何两个等底等高的梯形都能拼成一个平行四边形C.如果a和b的比是5:3,那么a就是b的D.无选项考点:求几个数的最小公倍数的方法;比与分数、除法的关系;图形的拼组.专题:综合题.分析:逐个分析即可得解,A、两个数互质,它们的最小公倍数是它们的积;B、如下图所示,虽然两个梯形等底等高,但是如果没有在同一条腰上的两个底角对应互补,无法拼成一个平行四边形;C、=,两个同时乘b,则得a=b,a是b的倍;因此得解.解答:解:由以上分析,得A两个数是互质数,它们的积就是它们的最小公倍数是正确的;其它都是错误的;故选:A.点评:熟悉掌握概念的意义,全面分析,是解决此题的关键.9.(•綦江县)如果自然数a和b的最大公因数是1,那么a和b的最小公倍数是()A.a b B.a C.b D.无法确定考点:求几个数的最小公倍数的方法.专题:计算题.分析:因为自然数a和b的最大公因数是1,所以a和b两个数是互质数,它们的最小公倍数是它们的乘积.解答:解:如果自然数a和b的最大公因数是1,那么a和b的最小公倍数是它们的乘积ab.故选:A.点评:此题考查了两个数是互质数时最小公倍数是它们的乘积.10.(•资中县模拟)某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级至少有()名学生.A.90 B.107 C.105 D.210考点:求几个数的最小公倍数的方法.专题:压轴题.分析:由每排3人、5人或7人,最后一排都只有2人可知:这个学校五年级减去2人就是3、5、7的公倍数,求至少就是、5、7的最小公倍数加2,据此解答.解答:解;:3、5、7两两互质,它们最小公倍数等于它们的乘积;3、5、7的最小公倍数:3×5×7=105;105+2=107(名);答:所以这个学校五年级至少有107名学生.故选:B.点评:解答本题关键是由每排3人、5人或7人,最后一排都只有2人可知:这个学校五年级减去2人就是3、5、7的公倍数.二.填空题(共10小题)11.已知b=6a(a,b均是不为0的自然数),则a和b的最小公倍数是ab.×(判断对错)考点:求几个数的最小公倍数的方法.专题:数的整除.分析:根据条件知道,b是a的6倍,说明b是a的倍数.根据:如果两个数是倍数关系,较大的就是它们的最小公倍数,进而得出结论.解答:解:因为b=6a,(a,b是不为0的自然数),所以b是a的6倍,b和a是倍数关系,如果两个数是倍数关系,较大的是它们的最小公倍数,所以:b是a和b的最小公倍数.故答案为:×.点评:本题考查最小公倍数问题,如果它们是倍数关系,较大的数就是它们的最小公倍数,所以,首先搞清楚a和b的关系.12.如果a÷b=c(a、b、c都是自然数),那么数a与数b的最小公倍数是a,最大公约数是b.考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.分析:这道题属于求两个数为倍数关系时的最小公倍数与最大公约数:两个数为倍数关系,则最小公倍数为较大的数,最大公约数为较小的数;由此解答问题即可.解答:解:由如果a÷b=c(a、b、c都是自然数),可知数a是数b的c倍,所以数a与数b的最小公倍数是a,最大公约数是b;故答案为a,b.点评:此题主要考查求两个数为倍数关系时的最小公倍数与最大公约数:两个数为倍数关系,则最小公倍数为较大的数,最大公约数为较小的数.13.有两包数量相同的糖果,分别分给幼儿园两个班的小朋友,甲班的小朋友每人分的糖一样多,分完后剩下一块,乙班的小朋友每人分的糖也一样多,分完后也剩下一块,已知甲班有8人,乙班有6人,那么这两包糖每包最少有25块.考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:根据题意,这包糖应该是6和8的最小公倍数再加1,由此得到此题解.解答:解:6和8的最小公倍数是24,24+1=25答:这两包糖每包最少有25块.故答案为:25.点评:理解题意,掌握6和8的最小公倍数再多1即是解决此题关键.14.互质的两个数,它们的最小公倍数是702,这两个数是2和351或者26和27.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:将702进行质因素分解,有相同的放一起,单个的随便放,然后剔除不符合题意的组合.解答:解:因为702=2×3×3×3×13,所以:702的因数有:2和351,6和117,9和78,18和39,26和27,因为互质的两个数是只有公因数1,6和117,9和78不是互质数,故答案为:2和351或者26和27.点评:本题考查互质数的有关知识,互质数时指只有公因数1的一组数.15.一个数被3除余数为1,被4除余数为1,被6除余数为1,这个数是13.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:如果该数能被3,4,6正好整除,则该数是3,4,6的最小公倍数,而现在该数被3除余数为1,被4除余数为1,被6除余数为1,所以该数是3,4,6的最小公倍数加上1即可.解答:解:因为:3和6的最小公倍数是6,而6和4的最小公倍数是12,所以满足条件的是:12+1=13;故答案为:13.点评:本题考查求几个数的最小公倍数的方法:几个数的公有质因数与每个数独有质因数的连乘积是最小公倍数.16.在自然数中,既有约数2,又有约数3的最小数是6;既有约数2,又有约数5的最小数是10;既有约数3,又有约数5的最小的数是15.考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:2×3=6,2×5=10,3×5=15.故答案为:6,10,15.点评:此题主要考查求两个数互质时两个数的最小公倍数:两个数互质,则最小公倍数是这两个数的乘积.17.若一个整数a被2,3,…,9这8个自然数除,所得的余数都为1,则a的最小值是2521.考点:求几个数的最小公倍数的方法.分析:先求出2,3,…,9这8个自然数的最小公倍数,再加上1,即可求解.解答:解:6=2×3,8=2×2×2,9=3×3,所以2,3,…,9的最小公倍数是2×2×2×3×3×5×7=2520;a的最小值是2520+1=2521.故答案为:2521.点评:考查了求几个数的最小公倍数的方法,本题2,3,…,9这8个自然数的最小公倍数只需要求出5、6、7、8、9这5个数的最小公倍数即可.18.当a和b只有公因数1时,a和b的最小公倍数是ab.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:因为a和b的公因数只有1,所以a和b两个数是互质数,它们的最小公倍数是它们的乘积.解答:解:如果a和b的公因数只有1,a和b两个数是互质数,那么a和b的最小公倍数是它们的乘积ab.故答案为:ab.点评:此题考查了两个数是互质数时最小公倍数是它们的乘积.19.36是6和9的最小公倍数.×(判断对错)考点:求几个数的最小公倍数的方法.专题:数的整除.分析:先求出6和9的最小公倍数,把6和9进行分解质因数,进而根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解答:解:6=2×3,9=3×3,6和9的最小公倍数是:2×3×3=18,所以本题说法错误;故答案为:×.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.20.5和6的最小公倍数是30;4和8的最小公倍数是8;6和14的最小公倍数是42;16和17的最大公因数是1;6和18的最大公因数是6;12和20的最大公因数是4.考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.专题:数的整除.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;两个数的公有质因数连乘积是最大公约数;由此选择情况解决问题.解答:解:①5和6互质,所以最小公倍数是5×6=30②4和8是倍数关系,最小公倍数是8③6=2×314=2×7最小公倍数是:2×3×7=42④16和17互质,所以最大公因数是1⑤6和18成倍数关系,所以最大公因数是6⑥12=2×2×320=2×2×5最大公因数是:2×2=4故答案为:30,8,42,1,6,4.点评:考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.三.解答题(共2小题)21.三个连续的自然数,它们的最小公倍数是660,问这三个数是多少?考点:求几个数的最小公倍数的方法.专题:数的整除.分析:每相邻的两个自然数数互质,三个相邻的自然数若是2奇数1偶数,最小公倍数就是这三个数的乘积;若是1奇数2偶数,最小公倍数是这三个数的乘积的一半.因此首先把660分解质因数,然后把它的质因数适当调整计算即可.由此解答.解答:解:把660分解质因数:660=2×2×3×5×11;因为2×5=10,2×2×3=12,所以这三个连续的自然数是:10、11、12;答:这三个数是10,11,12.点评:此题解答关键是明确相邻的两个自然数是互质数,三个相邻的自然数有2奇数1偶数或1奇数2偶数两种情况,根据分解质因数的方法解决此问题.22.一个两位数被3和5除都余1,这个数最大是多少?考点:求几个数的最小公倍数的方法.专题:数的整除.分析:能同时被3和5整除的数,个位上必须是0和5且各位上的数字之和是3的倍数,那么能同时被3和5整除最大的两位数是90,然后用90再加1即可.解答:解:被3和5整除的数,即这个数应该是3和5的公倍数因为3和5互质,所以应该是3×5=15的倍数,最大的两位数是9090+1=91答:一个两位数被3和5除都余1,这个数最大是91.点评:本题考查了能被3和5整除的数的特征.B档(提升精练)一.选择题(共10小题)1.(•彭州市模拟)a、b是两个不是0的自然数,a÷b=6,a和b最小公倍数是()A.a B.b C.6考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:由a÷b=6可知,数a是数b的6倍,属于倍数关系,a>b,所以a和b最小公倍数是a;故选A.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.2.(•勐海县)α与b是互质数,那么它们的最小公倍数是()A.αB.b C.αb D.1考点:求几个数的最小公倍数的方法.专题:数的整除.分析:如果两个数是互质数,它们的最小公倍数是这两个数的乘积.据此解答.解答:解:a与b是互质数,它们的最小公倍数是ab.故选:C.点评:本题考查了求几个数的最小公倍数的方法.此题解答关键是明确:如果两个数是互质数,它们的最小公倍数是这两个数的乘积.3.(•龙海市模拟)学校举行春季运动会,六1班人数的参加田赛,参加径赛,六1班人数是()人.A.64 B.49 C.56 D.60考点:求几个数的最小公倍数的方法.专题:数的整除.分析:由“六1班人数的参加田赛,参加径赛”,求出要求六1班人数,也就是求7和8的最小公倍数.解答:解:7和8的最小公倍数是7×8=56,所以六1班人数是56人;故选:C.点评:关键是根据题意,人数必须是整数,所以求7和8的最小公倍数,而互质数的两个数的最小公倍数是它们的乘积.4.(•舒城县)能同时被2、3、5除余数为1的最小数是()A.29 B.31 C.61考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:可先求出能同时被2、3、5整除的最小的数也就是它们的最小公倍数为30,由此解决问题.解答:解:能被2、3、5整除的最小的数是30,30+1=31.故选:B.点评:此题是根据求最小公倍数的方法结合整除的意义解决问题.5.(•麻章区)a,b是不等于0的自然数,a÷b=6.a,b的最小公倍数是()A.a B.b C.6D.6a考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:由a÷b=6可知,数a是数b的6倍,属于倍数关系,a>b,所以a和b最小公倍数是a;故选:A.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.6.(•溧水县模拟)两个最简分数的分母分别是48和72,它们通分后的公分母最小是()A.8B.24 C.144 D.288考点:求几个数的最小公倍数的方法.专题:数的整除.分析:两个最简分数的分母分别是48和72,要求它们通分后的公分母最小是多少,只要求出48和72的最小公倍数,即可得解.解答:解:48=2×2×2×2×3,72=2×2×2×3×3,所以48和72的最小公倍数是2×2×2×3×2×3=144;答:两个最简分数的分母分别是48和72,它们通分后的公分母最小是144;故选:C.点评:求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.7.(•永昌县模拟)甲数=2×2×3×5,乙数=2×3×3,这两个数的最小公倍数是()A.180 B.360 C.1080考点:求几个数的最小公倍数的方法.分析:根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解答:解:甲数=2×2×3×5,乙数=2×3×3,这两个数的最小公倍数为:2×2×3×3×5=180;故选:A.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.8.(•武鸣县模拟)甲数=2×2×3×5,乙数=3×3×5×2,这两个数的最小公倍数是()A.60 B.180 C.90考点:求几个数的最小公倍数的方法.专题:数的整除.分析:根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解答:解:因为甲数=2×2×3×5,乙数=3×3×5×2,所以这两个数的最小公倍数是2×3×5×2×3=180.故选:B.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.9.(•北京模拟)甲数=2×3×5×A,乙数=2×3×7×A,当A=()时,甲、乙两数的最小公倍数是630.A.2B.3C.5D.7考点:求几个数的最小公倍数的方法.分析:求最小公倍数是公有质因数与独有质因数的连乘积,对于两个数来说,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解答:解:甲数=2×3×5×A,乙数=2×3×7×A,甲、乙两数的最小公倍数是:2×3×5×7×A=210A,210A=630,A=3;故选:B.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.10.(•东兰县模拟)a、b是非零自然数,且a=5b.那么a和b的最小公倍数是()A.a B.b C.a b考点:求几个数的最小公倍数的方法.专题:数的整除.分析:因为a=5b,所以a÷b=5,即a和b成倍数关系,根据“当两个数成倍数关系时,较大的那个数,是这两个数的最小公倍数;进行解答即可.解答:解:因为a=5b,所以a÷b=5,即a和b成倍数关系,所以a和b两数的最小公倍数是a.故选:A.点评:此题主要考查求两个数为倍数关系时的最小公倍数:两个数为倍数关系,较大的那个数,是这两个数的最小公倍数.二.填空题(共10小题)11.(•泗县模拟)4、6和8的最小公倍数是24,把这个最小公倍数分解质因数是24=2×2×2×3.考点:求几个数的最小公倍数的方法;合数分解质因数.分析:求两个数的最小公倍数的方法:这两个数所有共有的因数和它们独有的质因数的连乘积,由此可以解决问题.解答:解:6=2×3,8=2×2×2,所以6和8的最小公倍数是2×2×2×3=24,24=2×2×2×3故答案为:24,24=2×2×2×3.点评:此题考查了求两个数的最小公倍数的方法.12.(•江苏模拟)早上5时40分1路公交车和2路公交车同时发车,1路车每隔8分钟发一辆车,2路车每隔12分钟发一辆车,这两路车6时04分第二次同时发车?考点:求几个数的最小公倍数的方法;时、分、秒及其关系、单位换算与计算.专题:压轴题.分析:先求出8、12的最小公倍数,然后用第一次同时发车的时间加这个时间就是第二次同时发车时间.解答:解:8=2×2×2,12=2×2×3,8、12的最小公倍数是:2×2×2×3=24,所以24分钟后第二次同时发车,5时40分+24分=6时04分;答:这两路车在6时04分第二次同时发车.故答案为:6时04.点评:此题主要考查几个数最小公倍数的求法及用此知识解决实际问题,理解第一次同时发车后到再次同时发车的时间是8、12的公倍数是本题的解答关键.13.(•阿克陶县)15和20的最小公倍数是60,最大公因数是5.考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.专题:数的整除.分析:最大公因数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有。

求最小公倍数最简单的方法

求最小公倍数最简单的方法

求最小公倍数最简单的方法
最简单的求最小公倍数的方法:
一、借助辗转相除法:
(1)找出两个数中较大的数(A),另一个数(B)为较小的数;
(2)用A除以B,得到的商为C,余数为D;
(3)将B和D比较,若D=0,则C就是两数的最小公倍数;否则,用B除以D,将商作为新的B,余数作为新的D,重复第(2)步骤,直至余数为0为止,最后一个商就是最小公倍数;
二、借助最小公倍数公式:
最小公倍数(LCM)= 两数之乘积÷最大公约数(GCD)
实际运用时,可以根据辗转相除法,求出两个数的最大公约数,然后利用上述公式求出最小公倍数。

- 1 -。

找三个数的最小公倍数的方法

找三个数的最小公倍数的方法

找三个数的最小公倍数的方法
找三个数的最小公倍数的方法最小公倍数是指一个数能够同时整除给定的几个数,且是所有能够整除这几个数的数中最小的一个。

下面介绍一种找三个数的最小公倍数的方法。

我们需要找到这三个数的质因数分解式。

假设这三个数分别为a、b、c,它们的质因数分解式分别为a=2^x * 3^y * 5^z,b=2^m * 3^n * 5^p,c=2^r * 3^s * 5^t。

我们需要找到每个质因数的最大指数。

即,对于质数2,我们需要比较x、m、r三个数的大小,取最大值;对于质数3和5,同样需要比较y、n、s和z、p、t三个数的大小,取最大值。

我们将每个质数的最大指数相乘,即可得到这三个数的最小公倍数。

例如,对于三个数a=24,b=30,c=36,它们的质因数分解式分别为a=2^3 * 3^1,b=2^1 * 3^1 * 5^1,c=2^2 * 3^2。

因此,最大的2的指数为3,最大的3的指数为2,最大的5的指数为1。

将它们相乘,即可得到这三个数的最小公倍数为2^3 * 3^2 * 5^1 = 360。

这种方法简单易行,适用于任意多个数的最小公倍数的计算。

希望这篇文章能够帮助大家更好地理解最小公倍数的概念和计算方法。

四种方法巧求最小公倍数

四种方法巧求最小公倍数

四种方法巧求最小公倍数在学习求两个数的最小公倍数时,我们学习小组通过认真思考,总结出了求最小公倍数的巧方法,我们愿介绍给大家:一、特殊情况特殊处理首先观察题目中两个数的关系,特殊情况有两种。

1、大数是小数的倍数,那么大数就是它们的最小公倍数。

如:求12和48的最小公倍数,因为48是12的倍数,所以12和48的最小公倍数是48。

2、两数是互质数,那么它们的乘积就是它们的最小公倍数。

如:求5和9的最小公倍数,因为5和9互质,5×9=45就是它们的最小公倍数。

二、一般情况下,有四种方法1、排列倍数法:将两个数的倍数从小到大依次排列,直到出现相同的倍数。

如:求12和18的最小公倍数。

12的倍数有:12243648……18的倍数有:183654……那么12和18的最小公倍数就是36.2、分解质因数法:将两个数分别写成质因数相乘的形式,找出公有因数和独有因数,求出它们的积,就是这两个数的最小公倍数。

如:求12和18的最小公倍数。

12=2×2×318=2×3×3其中2、3为公有因数,另一个2、3为独有因数,它们的最小公倍数为2×3×2×3=36。

3、短除法:就是用短除法将两个数分解质因数,然后再求它们的最小公倍数,如:求30和45的最小公倍数:30= 2×3×5 45=3×3×5 30和45有共同的质因素3、5 ,所以30和45的最小公倍数为:2×3×3×5=904、大数扩大法:如果两数不是互质,也没有倍数关系时,就是将较大的数依次扩大2倍,3倍,4倍……等,直到出现第一个为较小数的倍数的数,就是它们的最小公倍数。

如:求12和20的最小公倍数。

先用20×2=4040不是12的倍数。

再用20×3=6060是12的倍数,那么60就是12和20的最小公倍数。

求最小公倍数的十种方法

求最小公倍数的十种方法

求最小公倍数的十种方法
1. 最大公约数法:通过求两个数之间的最大公约数,然后将其乘以另外一个数,就可以得到他们的最小公倍数。

2. 列出所有的倍数法:将两个数按照顺序列出所有的倍数,然后从中找出第一个其中有两个数相同的即可。

3. 公式法:LCM(a,b)=a×b/GCD(a,b),用最大公约数法所求出的GCD乷加a和乷即可得到最小公倍数。

4. 二进制法:通过将两个数都转换成二进制的形式在比较,当它们的二进制形式最高位一致时,它们的最小公倍数就相等了。

5. 相乘法:将两个数相乘得到一个新的数,这个新的数就是他们的最小公倍数。

6. 辗转相除法:将两个数由大到小进行按照辗转相除的方式来进行,将最后的结果乘以被除数,就可以得到它们的最小公倍数。

7. 最小正数法:找出两个数之间的最小正数,它们之中肯定存在一个正数的情况,它就是他们的最小公倍数。

8. 差值法:先求出两个数的差值,然后将差值一口气加倍,直到它们大于等于之前那两个数,然后这个差值就是它们的最小公倍数。

9. 化简法:将两个数进行化简,化简成最简分数形式以后,得出分母是它们的最小公倍数。

10. 约分法:将两个数进行约分,然后将约分以后的结果相乘,这个结果就是它们的最小公倍数。

3个数求最小公倍数的方法

3个数求最小公倍数的方法

3个数求最小公倍数的方法在数学的世界里,求最小公倍数是一个常见且重要的任务。

当我们面对三个数时,如何准确而高效地求出它们的最小公倍数呢?这就需要我们掌握一些有效的方法和技巧。

首先,让我们来了解一下什么是最小公倍数。

简单来说,几个数公有的倍数叫做这几个数的公倍数,其中最小的一个公倍数,叫做这几个数的最小公倍数。

接下来,我们介绍几种求 3 个数最小公倍数的常用方法。

方法一:分解质因数法这是一种非常基础且实用的方法。

我们分别把这三个数分解质因数,然后把它们公有的质因数和各自独有的质因数相乘,所得的积就是它们的最小公倍数。

例如,求 12、18 和 24 的最小公倍数。

先把 12 分解质因数:12 = 2×2×3再把 18 分解质因数:18 = 2×3×3然后把 24 分解质因数:24 = 2×2×2×3公有的质因数是 2 和 3,12 独有的质因数是 2,18 独有的质因数是3,24 独有的质因数是 2×2。

所以,它们的最小公倍数为:2×3×2×3×2×2 = 72方法二:短除法短除法是一种较为直观和简便的方法。

还是以求 12、18 和 24 的最小公倍数为例。

先用这三个数的公因数 2 去除,得到 6、9、12;再用 3 去除,得到2、3、4;此时 2、3、4 已经没有除 1 以外的公因数了。

最后,把除数和最后的商相乘,即 2×3×2×3×4 = 72,72 就是 12、18 和 24 的最小公倍数。

方法三:列举法这种方法相对来说比较繁琐,但对于较小的数或者理解能力较弱的人来说,比较容易接受。

我们分别列出这三个数的倍数,然后找出它们公有的倍数中最小的那一个。

比如,12 的倍数有 12、24、36、48、60、72、84……18 的倍数有 18、36、54、72、90……24 的倍数有 24、48、72、96……可以看出,它们公有的倍数中最小的是 72,所以 72 就是这三个数的最小公倍数。

五年级数学,求最小公倍数的方法和技巧

五年级数学,求最小公倍数的方法和技巧

五年级数学,求最小公倍数的方法和技巧最小公倍数(LCM)是指两个或多个整数的公共倍数中最小的一个整数,是求解分数、最简分数等数学问题的基础。

在数学中,求最小公倍数的方法和技巧非常重要,下面我们来详细介绍一下。

方法一:分解质因数法我们可以通过分解质因数的方法来求得最小公倍数。

首先将需要求最小公倍数的数分别分解质因数,然后取每个质因数的最高次幂,将它们依次相乘即可得到最小公倍数。

举个例子:求12和18的最小公倍数。

12 = 2 × 2 × 3再取每个质因数的最高次幂:2的最高次幂为2,3的最高次幂为2所以,12和18的最小公倍数为2 × 2 × 3 × 3 = 36。

方法二:穷举法穷举法就是将每个数的倍数罗列出来,找到它们的最小公共倍数。

3的倍数:3,6,9,12,15,18,21,24,27……从上面的列表中,我们可以找到它们的公共倍数12,即3 × 4 = 12。

所以,3和4的最小公倍数为12。

方法三:辗转相除法辗转相除法又叫欧几里得算法,是一种求最大公约数和最小公倍数的通用方法。

它的原理基于以下定理:对于任意两个整数a和b,在a和b的余数上继续进行同样的操作,其最大公约数与原来的a和b的最大公约数相等,最小公倍数等于a和b的积除以它们的最大公约数。

首先,用辗转相除法求出它们的最大公约数。

所以,它们的最大公约数为6。

然后,用a × b ÷ gcd(a, b)来求它们的最小公倍数。

技巧一:合并质因数当求两个数的最小公倍数时,如果这两个数之间的差距很小,那么可以将它们的质因数合并起来,再去掉重复的质因数即可。

25 = 5 × 5因为24和25之间差距比较小,所以可以将它们的质因数合并起来:技巧二:使用倍数关系当求多个数的最小公倍数时,可以利用倍数的关系来简化计算。

方法是:先求出其中两个数的最小公倍数,然后再将其与第三个数求最小公倍数,以此类推,直到求出所有数的最小公倍数。

求两个数最小公倍数的七种方法

求两个数最小公倍数的七种方法

求两个数最小公倍数的七种方法我们已经学习了求两个数的最小公倍数的知识,现在我想和同学们共同交流一下求两个数最小公倍数的七种不同方法。

一、列举法用找倍数的方法,先分别将所要求的两个数各自的倍数一一列举出来,再找出这两个数的最小公倍数。

例如:求6和9的最小公倍数6的倍数有6、12、18、24、30……9的倍数有9、18、27、36、45……由此可见,6的9的最小公倍数是18。

二、相乘法如果两个数是互质数。

那么它们的最小公倍数就是这两个数的乘积。

例如:求4和7的最小公倍数。

因为4和7是互质数,所以它们的最小公倍数就是4×7=28。

三、直接法如果两个数是倍数关系,那么较大的数就是这两个数的最小公倍数。

例如:求3和15的最小公倍数。

因为15是3的倍数,所以它们的最小公倍数就是较大数15。

四、扩倍法如果两数不是互质,也没有倍数关系时,可以把较大数依次扩大2倍、3倍、4倍、……直到所得的结果是较小数的倍数时,这个数就是这两个数的最小公倍数。

例如:求18和30的最小公倍数。

先把30扩大2倍得60,60不是18的倍数,再把30扩大3倍得90,90是18的倍数,那么18和30的最小公倍数就是90。

五、约分法这个方法虽然比较复杂,但是使用范围很广,因为两个数的乘积等于这两个数的最大公因数和最小公倍数的乘积。

例如:求18和30的最小公倍数。

先求18和30的最大公因数是6,再用18除以6得3,3和30相乘得90;或者用30除以6得5,5和18相乘得90。

所以18和30的最小公倍数就是90。

六、分解法先把要求的两个数分别分解质因数,然后,再把它们公有的质因数和各自独有的质因数连乘起来,所得的积就是它们的最小公倍数。

例如:求12和18的最小公倍数。

12=2×2×318=2×3×3它们公有的质因数是2和3;独有的质因数是2和3,所以12和18的最小公倍数2×3×2×3=36。

最小公倍数的求法

最小公倍数的求法

如何求最小公倍数1、列举法例如:求6和8的最小公倍数。

6的倍数有:6,12,18,24,30,36,42,48,……8的倍数有:8,16,24,32,40,48,……6和8的公倍数:24,48,……其中24是6和8的最小公倍数。

这种方法是先分别写出各自的倍数,再找出它们的公倍数,然后在公倍数里找出它们的最小公倍数。

2、分解质因数法。

我们也可以利用分解质因数的方法,比较简便地求出两个数的最小公倍数。

例如:求60和42的最小公倍数。

60=2×2×3×5 42=2×3×760和42的最小公倍数=2×3×2×5×7=420 。

这种方法是把60和42分别质因数后,观察相同的质因数只取一个(如2,3),把各自独有的质因数全部乘进去,所得的积就是这两个数的最小公倍数。

3、短除法。

用短除法求18和24的最小公倍数。

2 18 24 …………先同时除以公因数23 9 12 …………再同时除以公因数33 4 ……除到两个商只有公因数1为止。

把所有的除数和最后的两个商连乘,得到:18和24的最小公倍数是2×3×3×4=72,可表示为[18,24]=2×3×3×4=72。

用短除法求两个数的最小公倍数,一般都用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止。

把所有的除数和最后的两个商连乘起来,就得到这两个数的最小公倍数。

4、肉眼判断法。

(1)如果a.b是互质数,那么a.b的最小公倍数是a×b。

如:求4和5的最小公倍数。

4和5是互质数,那么4和5的最小公倍数是4×5=20 。

(2)如果两个数中,较大的数是较小数的倍数,那么较大的数是这两个数的最小公倍数。

如:求16和8的最小公倍数。

16是8的倍数,那么16就是16和8的最小公倍数。

|: 1求最大公因数:列举法、单列举法、分解质因数法、短除法、除法算式法。

求最小公倍数的方法

求最小公倍数的方法

求最小公倍数的方法首先,最直接的方法是列出这几个数的所有倍数,然后找出它们共有的最小的一个数。

比如,我们要求 4 和 6 的最小公倍数,我们可以列出它们的倍数,4 的倍数为 4、8、12、16、20、24、28、32……,6 的倍数为 6、12、18、24、30、36……。

我们可以看到,它们共有的最小倍数是 12,所以 4 和 6 的最小公倍数是12。

其次,我们可以利用最大公约数来求最小公倍数。

最小公倍数等于这几个数的乘积除以它们的最大公约数。

比如,我们要求 8 和 12 的最小公倍数,首先求它们的最大公约数,8 的约数有 1、2、4、8,12 的约数有 1、2、3、4、6、12,它们的公约数是 1、2、4,所以它们的最大公约数是 4。

然后,最小公倍数等于 8 乘以 12 除以 4,得到 24。

所以 8 和 12 的最小公倍数是 24。

另外,我们还可以利用质因数分解来求最小公倍数。

首先,我们将这几个数分别进行质因数分解,然后取它们的公共质因数的最高次幂相乘。

比如,我们要求15 和20 的最小公倍数,首先将它们分别进行质因数分解,15=35,20=225。

然后,取它们的公共质因数的最高次幂相乘,得到 2235=60,所以 15 和 20 的最小公倍数是 60。

最后,我们还可以利用辗转相除法来求最小公倍数。

首先,求这几个数的最大公约数,然后用它们的乘积除以最大公约数即可得到最小公倍数。

比如,我们要求18 和 24 的最小公倍数,首先求它们的最大公约数,24 ÷ 18 = 1(余数为 6),18÷ 6 = 3,所以它们的最大公约数是 6。

然后,最小公倍数等于 18 乘以 24 除以 6,得到 72。

所以 18 和 24 的最小公倍数是 72。

综上所述,求最小公倍数的方法有很多种,我们可以根据具体的情况选择合适的方法来求解。

希望以上内容能帮助到您。

找最大公因数和最小公倍数的几种方法

找最大公因数和最小公倍数的几种方法

找最大公因数和最小公倍数的几种方法一、找最小公倍数的方法1、列举法方法1、先分别写各自的(倍数),再找它们的(公倍数),然后在公倍数里找它们的(最小公数)。

例题1:找出6和8的最小公倍数。

6的倍数有:6,12,18,24,30,36,42,48,……8的倍数有:8,16,24,32,40,48,……6和8的公倍数:24,48,……其中24是6和8的最小公倍数。

方法2:先找较大数的(倍数),再找其中哪些是(较小)的倍数,最后找它们的(最小公倍数)例题2 :找出8和6的公倍数和最小公倍数8的倍数有:8、16、24、32 、40、48 、56、64......其中:24、48......也是6的倍数。

8和6的最小公倍数是:24.2、分解质因数法。

这种方法是分解质因数后,找出二个数相同的(质因数),,及二个数各自独有的(质因数),然后把二个数相同的(质因数,只取一个。

)和二个数各自独有的(质因数),全部乘进去,所得的积就是这两个数的最小公倍数。

例题3:用分解质因数求60和42的最小公倍数。

60=2×2×3×542=2 ×3 ×760和42的最小公倍数=2×3 ×2×5×7=420 。

3、短除法。

用短除法求两个数的最小公倍数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。

把所有的(除数)和最后的两个(商)连乘起来,就得到这两个数的(最小公倍数)。

例题4:用短除法求18和24的最小公倍数。

2 18 24 …………先同时除以公因数23 9 12 …………再同时除以公因数33 4 ……..... 除到两个商只有公因数1为止。

18和24的最小公倍数是2×3×3×4=724、特殊方法(观察法)1)两个数具有倍数关系的,它们的最小公倍数就是其中(较大)的数。

例题5:用观察法写出16和4的最小公倍数因为16是4的倍数,所以16和4的最小公倍数是:16.2)两个数是互质数的(互质数就是两个数只有公因数1),它们的最小公倍数是二个数的(乘积)。

求最小公倍数的方法

求最小公倍数的方法

求最小公倍数的方法在数学中,最小公倍数(LCM,Least Common Multiple)指的是两个或多个整数的公共倍数中的最小值。

求解最小公倍数在很多数学问题和实际应用中都非常常见。

本文将介绍一些常用的方法来求解最小公倍数。

方法一:分解质因数法分解质因数法是求最小公倍数的一种常用方法。

该方法的基本思路是将待求的两个数分别分解质因数,并取两数各质因子的幂的最大值,最后再将这些质因子相乘即可得到最小公倍数。

例如,要求解最小公倍数 LCM(12, 18),我们首先将12和18分别进行质因数分解:12 = 2^2 * 3^1 18 = 2^1 * 3^2接着我们取各个质因子的最大幂,即:2^2 * 3^2最后将这些质因子相乘,即可得到最小公倍数:LCM(12, 18) = 2^2 * 3^2 = 36方法二:倍数递增法倍数递增法是求最小公倍数的另一种常用方法。

该方法的基本思路是从两个数的较大值开始递增,找到一个数,使得该数同时是两个数的倍数,然后继续递增,直到找到的数为最小公倍数。

例如,要求解最小公倍数 LCM(15, 25),我们从25开始递增:25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, …在递增过程中找到了一个既是15的倍数又是25的倍数的数,即最小公倍数:LCM(15, 25) = 75方法三:使用公式法如果要求解的两个数比较接近,我们可以使用一个公式来快速计算最小公倍数。

该公式为:LCM(a, b) = |a * b| / GCD(a, b)其中 GCD(a, b) 表示 a 和 b 的最大公约数。

可以使用辗转相除法或欧几里得算法来计算最大公约数。

例如,求解最小公倍数 LCM(16, 24),我们可以先计算最大公约数:GCD(16, 24) = 8然后使用公式计算最小公倍数:LCM(16, 24) = |16 * 24| / 8 = 48方法四:使用循环法循环法是求最小公倍数的一种直观方法。

5,8,7的最小公倍数

5,8,7的最小公倍数

5,8,7的最小公倍数
在数学中,最小公倍数是指多个数字共有的最小倍数。

对于给定
的数字5、8和7,它们的最小公倍数是一个最小的正整数,能同时被五、八和七整除。

为了找到这个数字,我们必须要知道一些数学知识
和技巧。

下面是有关5、8和7的最小公倍数的详细信息:
1、分解质因数
我们可以首先将数字5、8和7进行分解质因数。

数5、7可以很
容易地分解为5和7,因为它们是质数,而数8的分解则需要一些计算。

在进行分解质因数的时候,我们需要找到另外一个数,它们的幂
指数相加等于分解后的结果。

对于数8,我们可以写为 $2^3$。

分解后的质因数为:5 = 5,8 = $2^3$,7 = 7。

2、找出公共质因数
接下来,我们需要找到这三个数字的公共质因数。

即它们中被相
同的数字整除的数量多的质因数就是它们的公共质因数。

我们可以看到,它们之间没有公共质因数,因此它们的最小公倍数就是它们的乘积。

3、计算乘积
最后一步是计算这三个数字的乘积。

将它们相乘,我们得到 5 x 8 x 7 =280,因此,五、八、七的最小公倍数是280。

总结:
对于任何几个数字,找到他们的最小公倍数都可以通过以下几步
来实现:
- 分解质因数
- 找出它们之间的公共质因数
- 计算乘积
通过上述三个步骤,我们可以得到它们的最小公倍数。

这种方法
适用于所有数字的情况,因此你可以用这个方法来解决不同的数学问题。

数字的最小公倍数

数字的最小公倍数

数字的最小公倍数在数学中,我们经常会遇到求两个或多个数字的最小公倍数的问题。

最小公倍数是指能够同时整除给定数字的最小正整数。

求最小公倍数的方法有很多,下面将介绍其中几种常见的方法。

方法一:因数分解法通过将每个数字进行因数分解,然后取所有数字中的因数的最高次幂,再将它们相乘,即可得到最小公倍数。

例如,求 6 和 8 的最小公倍数:6 = 2 * 38 = 2 * 2 * 2取 2 的最高次幂是 3,3 的最高次幂是 1,再将它们相乘:最小公倍数 = 2^3 * 3^1 = 24方法二:列举法对于较小的数字,可以利用列举法求最小公倍数。

首先列出给定数字的倍数序列,找到它们的公共倍数,然后取最小的公共倍数。

例如,求 4 和 6 的最小公倍数:4 的倍数序列:4, 8, 12, 16, ...6 的倍数序列:6, 12, 18, 24, ...它们的公共倍数是 12,因此最小公倍数为 12。

方法三:逐个试除法逐个试除法是一种较为直观的方法,通过逐个去除两个数字的公共因子,直到无法再除尽为止,最后将剩余的部分相乘即可得到最小公倍数。

例如,求 9 和 15 的最小公倍数:9 的因子为 3 * 315 的因子为 3 * 5去除公共因子 3 后,剩余的部分 3 * 5 就是最小公倍数,即 15。

无论采用哪种方法,求最小公倍数的关键在于找到两个或多个数字的公共因子,然后通过合理的方法将它们相乘得到最小公倍数。

在实际应用中,求最小公倍数的问题会涉及到更多数字,但原理和方法都是类似的。

最后,需要注意的是,求最小公倍数时应保证所给数字是正整数,如果有负数或小数,需要先将其转换为正整数才能继续计算。

此外,最小公倍数还有很多实际应用,比如在分数的运算中,求最小公倍数可以方便地进行分数的加减运算。

通过以上几种常见的方法,我们可以轻松求解数字的最小公倍数。

无论是因数分解法、列举法还是逐个试除法,只要理解其原理并掌握相应的计算方法,就能够高效地求得最小公倍数,解决实际问题。

求几个数的最小公倍数的方法

求几个数的最小公倍数的方法

求几个数的最小公倍数的方法最小公倍数,听起来是不是有点吓人?别担心,它其实没有那么复杂,说白了就是几个数“共同的”倍数里最小的一个。

你也许会想:“这些数有啥关系嘛?”其实关系可大了!最小公倍数就是找到一个能被这些数都整除的最小数字,这就好比你和朋友一起排队等着买冰淇淋,想找个大家都能同时拿到冰淇淋的时间点。

懂了吧?先从日常说起。

假设你和朋友们都喜欢玩不同的游戏,你玩一个小时,朋友A玩半小时,朋友B玩两小时,你们都会定时休息,那么什么时候大家都同时休息呢?就是你们所有的“游戏时间”共同的那个最小时间点,这个时候大家都能一起歇会儿。

所以,你需要找一个能同时被1小时、0.5小时和2小时整除的时间,那个就是最小公倍数了。

是不是觉得没那么难了?不过说到这,可能你开始有点困惑了,难道找一个最小的时间点就行了吗?这可不能光靠感觉啊!我们得有个办法来找。

最简单的方法,得先拿出所有数的倍数来凑个热闹,看看哪个是大家都能接得上的。

比如,假设你有数字6和8,那就先列出它们的倍数,6的倍数是:6、12、18、24……,8的倍数是:8、16、24、32……,哎!你看看,24竟然是它们最小的公共倍数,哇哦,原来最小公倍数就这么出来了!这不就像是大家各自找自己排队的数字,最后发现,最小的交点就在24。

不过你也得小心,这种办法是没问题的,前提是你不怕列出那些无穷无尽的倍数。

如果你有耐心,这倒是个不错的法子。

但是,要是这些数一大堆,那得花多少时间才能找到那个最小的交点呢?脑袋想一想,不太现实吧?别着急,还有其他方法能让你“立马得手”。

让我们用更聪明的办法:先搞清楚这几个数的“因子”都有哪些。

所谓因子,就是能整除这个数的数字。

如果你能快速知道每个数的因子,找到它们的最大公因数,再用最大公因数去算最小公倍数,那简直就是神操作。

比如说,6和8的最大公因数是2(嘿,差点漏了),然后你把这最大公因数除进6和8,就能算出最小公倍数啦。

记住了,最大公因数和最小公倍数是兄弟,兄弟俩总是站在一起的!如果你碰到一堆数,最小公倍数的找法也是一样的。

求最小公倍数的几种方法

求最小公倍数的几种方法

求最小公倍数的几种方法1、列举法。

把两个数的公倍数分别列举出来,然后找出它们的最小公倍数。

如:求6和9的最小公倍数,6的倍数:6、12、18、24、30……,9的倍数:9、18、27、36它们的最小公倍数是18。

列举法是最根本的方法。

2、互质法。

假设两个数只有公因数1时,它们的最小公倍数就是这两个数的乘积。

如:求3和7的最小公倍数,它们只有公因数1,它们的最小公倍数就是3×7=21。

3、倍数法。

假设较大数是较小数的倍数,那么它们的最小公倍数就是较大数。

如:求12和24的最小公倍数,24是12的倍数,因此它们的最小公倍数就是较大数24。

4、翻倍法。

从前面的列举法可以看出,两个数的最小公倍数分别是较大数和较小数的倍数,把较大数进展翻倍〔如:扩大到原来的1倍、2倍、3倍……〕,翻倍后的数假设是较小数的倍数,这个数就是它们的最小公倍数。

如:求6和9的最小公倍数,9×1=9,9不是6的倍数,9×2=18,18是6的倍数。

因此,6和9的最小公倍数是18。

同样把较小数进展翻倍也可以,6×1=6,6不是9的倍数,6×2=12,12不是9的倍数,6×3=18,18是9的倍数,因此6和9的最小公倍数是18,但较小数翻倍显得有点繁。

5、短除法。

除到最后两个商只有公因数1时,再把除数和商连乘起来,就是它们的最小公倍数。

3×2×3=18,因此6和9的最小公倍数是18。

6、除以最大公因数法。

从前面的短除法中可以看出,最大公因数×最小公倍数=两个数的乘积,即最小公倍数=A×B÷最大公因数=A÷最大公因数×B=B÷最大公因数×A,如:求18和24的最小公倍数,它们的最大公因数是6,18÷6×24=72或24÷6×18=72,因此,它们的最小公倍数是72。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求几个数的最小公倍数的方法答案例1.某中学学生排队,如果每10人一排,多1人,每9人一排,仍多1人,每7人一排,少4人,问这学生至少有451人.考点:求几个数的最小公倍数的方法.专题:压轴题.分析:先根据公倍数的求法得到比10和9的公倍数多1的数,再找到其中比7的倍数少4的数中最小的一个.解答:解:因为比10和9的公倍数多1的数有:91,181,271,361,451,…,比7的倍数少4的数有:3,10,17,24,31,…,451,…,所以学生至少有451人.故答案为:451.点评:考查了求几个数的最小公倍数的方法,本题关键是求出比10和9的公倍数多1的数,比7的倍数少4的数.例2.张集小学学前班买来一筐橙子,分给5个人最后余2个,分给7人最后余2个,分给9人也余2个,学前班最少买来多少个橙子?考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:根据分给5个人余2个,分给7人余2个,分给9人也余2个,可知这筐橙子的总个数减去2就是5、7和9的公倍数,要求至少也就是用5、7和9的最小公倍数加上2即可.解答:解:因为5、7和9三个数两两互质,所以它们的最小公倍数是它们的乘积,即5×7×9=315,所以这筐橙子至少有:315+2=317(个);答:学前班最少买来317个橙子.点评:解答本题关键是理解:这筐橙子的总个数减去2就是5、7和9的公倍数,求至少有的个数,就用它们的最小公倍数加上2即可.例3.一次数学竞赛,结果学生中获得一等奖,获得二等奖,获得三等奖,其余获纪念奖.已知参加这次竞赛的学生不满50人,问获纪念奖的有多少人?考点:求几个数的最小公倍数的方法.分析:即求在50以内的7、3和2的公倍数,先求出这三个数的最小公倍数,因为这三个数两两互质,这三个数的最小公倍数即这三个数的乘积,然后根据题意,进行选择,判断出参加这次竞赛的学生的人数;然后把参加这次竞赛的学生的人数看作单位“1”,获纪念奖的人数占参加竞赛人数的(1﹣﹣﹣),继而根据一个数乘分数的意义,用乘法解答即可.解答:解:2、3和7的最小公倍数是2×3×7=42,1因为在50以内的7、3和2的公倍数只有1个42,所以参加这次竞赛的学生有42个,纪念奖有:42×(1﹣﹣﹣),=42×,=1(人);答:获纪念奖的有1人.点评:此题考查了求几个数的最小公倍数的方法,当三个数两两互质时,其最小公倍数就是这三个数的乘积.例4.写出每组数的最小公倍数.15和10 6和7 7和1.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:求两个数的最小公倍数,如果两个数是互质数,它们的最小公倍数是这两个数的乘积;如果两个是倍数关系,较答的数是它们的最小公倍数;两个数是一般关系,可以利用分解质因数的方法,把这两个分解质因数,公有质因数和各自质因数的连乘积就是它们的最小公倍数;由此解答.解答:解:15和10,首先把6和10分解质因数:15=3×5;10=2×5;15和10的最小公倍数是:2×5×3=30;6和7,因为6和7是互质数,所以它们的最小公倍数是:6×7=42;7和1,因为7和1是倍数关系,所以它们的最小公倍数是7.点评:此题主要考查求两个数的最小公倍数的方法.演练方阵A档(巩固专练)一.选择题(共10小题)1.(2011•中山市)18和60的最大公因数和最小公倍数分别是()A.6,180 B.180,6 C.6,90 D.90,6考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.专题:数的整除.分析:根据求两个数最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积求解.解答:解:18=2×3×3,60=2×2×3×5,所以18和60的最大公因数是2×3=6,最小公倍数是2×3×3×2×5=180;故选:A.点评:考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.2.(2009•东山县)a+1=b(a和b是不为0的自然数),a和b的最小公倍数是()A.a B.b C.a b考点:求几个数的最小公倍数的方法.专题:压轴题.分析:a+1=b(a和b是不为0的自然数),说明a和b是互质数,互质的两个数的最小公倍数是它们的乘积.解答:解:a和b是互质的两个自然数,最小公倍数是ab,故选:C.点评:此题主要考查互质的两个自然数的最小公倍数的求法.3.(2011•东城区)非零自然数n与n+1的最小公倍数是()A.n B.n+1 C.n2+n考点:求几个数的最小公倍数的方法.专题:数的整除.分析:由n与n+1是相邻的两个非零自然数,可知n和n+1是互质数,根据互质数的最小公倍数是它们的乘积,据此解答.解答:解:n与n+1是相邻的两个非零自然数,它们的最小公倍数是:n(n+1)=n2+n;故选:C.点评:解答本题关键是理解:相邻的两个非零自然数是互质数,它们的最小公倍数是它们的乘积.4.(2011•富源县)既有因数3,又是5的倍数的最小三位数是()A.102 B.105 C.120考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:根据3的倍数的特征,各个数位上的数字之和是3的倍数,这个数就是3的倍数.5的倍数特征是:个位上是0或5的数是5的倍数.所以既有因数3又是5的倍数最小三位数是105.解答:解:既有因数3,又是5的倍数的最小三位数是105,故选:B.点评:此题主要根据3、5的倍数的特征和因数与倍数的意义解答.5.(2011•兴化市模拟)自然数a除以自然数b,商是5,这两个自然数的最小公倍数是()A.a B.b C.5考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:由a÷b=5可知,数a是数b的5倍,属于倍数关系,a>b,所以a和b最小公倍数是a;故选A.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.6.(2013•广州模拟)a÷b=1…1,则它们的最小公倍数是()A.a B.b C.a b D.a+1考点:求几个数的最小公倍数的方法.专题:数的整除.分析:因为a÷b=1…1,说明a与b是互质数,所以它们的最小公倍数是ab.解答:解:a÷b=1…1,则它们的最小公倍数是ab;故选:C.点评:判定出a和b是互质数是解答此题的关键,注意互质数的两个数的最小公倍数是它们的乘积.7.(2014•舒城县)能同时被2、3、5除余数为1的最小数是()A.29 B.31 C.61考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:可先求出能同时被2、3、5整除的最小的数也就是它们的最小公倍数为30,由此解决问题.解答:解:能被2、3、5整除的最小的数是30,30+1=31.故选:B.点评:此题是根据求最小公倍数的方法结合整除的意义解决问题.8.(2007•河池)下面三句话中,正确的一句是()A.两个数是互质数,它们的积就是它们的最小公倍数B.任何两个等底等高的梯形都能拼成一个平行四边形C.如果a和b的比是5:3,那么a就是b的D.无选项考点:求几个数的最小公倍数的方法;比与分数、除法的关系;图形的拼组.专题:综合题.分析:逐个分析即可得解,A、两个数互质,它们的最小公倍数是它们的积;B、如下图所示,虽然两个梯形等底等高,但是如果没有在同一条腰上的两个底角对应互补,无法拼成一个平行四边形;C、=,两个同时乘b,则得a=b,a是b的倍;因此得解.解答:解:由以上分析,得A两个数是互质数,它们的积就是它们的最小公倍数是正确的;其它都是错误的;故选:A.点评:熟悉掌握概念的意义,全面分析,是解决此题的关键.9.(2012•綦江县)如果自然数a和b的最大公因数是1,那么a和b的最小公倍数是()A.a b B.a C.b D.无法确定考点:求几个数的最小公倍数的方法.专题:计算题.分析:因为自然数a和b的最大公因数是1,所以a和b两个数是互质数,它们的最小公倍数是它们的乘积.解答:解:如果自然数a和b的最大公因数是1,那么a和b的最小公倍数是它们的乘积ab.故选:A.点评:此题考查了两个数是互质数时最小公倍数是它们的乘积.10.(2012•资中县模拟)某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级至少有()名学生.A.90 B.107 C.105 D.210考点:求几个数的最小公倍数的方法.专题:压轴题.分析:由每排3人、5人或7人,最后一排都只有2人可知:这个学校五年级减去2人就是3、5、7的公倍数,求至少就是、5、7的最小公倍数加2,据此解答.解答:解;:3、5、7两两互质,它们最小公倍数等于它们的乘积;3、5、7的最小公倍数:3×5×7=105;105+2=107(名);答:所以这个学校五年级至少有107名学生.故选:B.点评:解答本题关键是由每排3人、5人或7人,最后一排都只有2人可知:这个学校五年级减去2人就是3、5、7的公倍数.二.填空题(共10小题)11.已知b=6a(a,b均是不为0的自然数),则a和b的最小公倍数是ab.×(判断对错)考点:求几个数的最小公倍数的方法.专题:数的整除.分析:根据条件知道,b是a的6倍,说明b是a的倍数.根据:如果两个数是倍数关系,较大的就是它们的最小公倍数,进而得出结论.解答:解:因为b=6a,(a,b是不为0的自然数),所以b是a的6倍,b和a是倍数关系,如果两个数是倍数关系,较大的是它们的最小公倍数,所以:b是a和b的最小公倍数.故答案为:×.点评:本题考查最小公倍数问题,如果它们是倍数关系,较大的数就是它们的最小公倍数,所以,首先搞清楚a和b的关系.12.如果a÷b=c(a、b、c都是自然数),那么数a与数b的最小公倍数是a,最大公约数是b.考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.分析:这道题属于求两个数为倍数关系时的最小公倍数与最大公约数:两个数为倍数关系,则最小公倍数为较大的数,最大公约数为较小的数;由此解答问题即可.解答:解:由如果a÷b=c(a、b、c都是自然数),可知数a是数b的c倍,所以数a与数b的最小公倍数是a,最大公约数是b;故答案为a,b.点评:此题主要考查求两个数为倍数关系时的最小公倍数与最大公约数:两个数为倍数关系,则最小公倍数为较大的数,最大公约数为较小的数.13.有两包数量相同的糖果,分别分给幼儿园两个班的小朋友,甲班的小朋友每人分的糖一样多,分完后剩下一块,乙班的小朋友每人分的糖也一样多,分完后也剩下一块,已知甲班有8人,乙班有6人,那么这两包糖每包最少有25块.考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:根据题意,这包糖应该是6和8的最小公倍数再加1,由此得到此题解.解答:解:6和8的最小公倍数是24,24+1=25答:这两包糖每包最少有25块.故答案为:25.点评:理解题意,掌握6和8的最小公倍数再多1即是解决此题关键.14.互质的两个数,它们的最小公倍数是702,这两个数是2和351或者26和27.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:将702进行质因素分解,有相同的放一起,单个的随便放,然后剔除不符合题意的组合.解答:解:因为702=2×3×3×3×13,所以:702的因数有:2和351,6和117,9和78,18和39,26和27,因为互质的两个数是只有公因数1,6和117,9和78不是互质数,故答案为:2和351或者26和27.点评:本题考查互质数的有关知识,互质数时指只有公因数1的一组数.15.一个数被3除余数为1,被4除余数为1,被6除余数为1,这个数是13.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:如果该数能被3,4,6正好整除,则该数是3,4,6的最小公倍数,而现在该数被3除余数为1,被4除余数为1,被6除余数为1,所以该数是3,4,6的最小公倍数加上1即可.解答:解:因为:3和6的最小公倍数是6,而6和4的最小公倍数是12,所以满足条件的是:12+1=13;故答案为:13.点评:本题考查求几个数的最小公倍数的方法:几个数的公有质因数与每个数独有质因数的连乘积是最小公倍数.16.在自然数中,既有约数2,又有约数3的最小数是6;既有约数2,又有约数5的最小数是10;既有约数3,又有约数5的最小的数是15.考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:2×3=6,2×5=10,3×5=15.故答案为:6,10,15.点评:此题主要考查求两个数互质时两个数的最小公倍数:两个数互质,则最小公倍数是这两个数的乘积.17.若一个整数a被2,3,…,9这8个自然数除,所得的余数都为1,则a的最小值是2521.考点:求几个数的最小公倍数的方法.分析:先求出2,3,…,9这8个自然数的最小公倍数,再加上1,即可求解.解答:解:6=2×3,8=2×2×2,9=3×3,所以2,3,…,9的最小公倍数是2×2×2×3×3×5×7=2520;a的最小值是2520+1=2521.故答案为:2521.点评:考查了求几个数的最小公倍数的方法,本题2,3,…,9这8个自然数的最小公倍数只需要求出5、6、7、8、9这5个数的最小公倍数即可.18.当a和b只有公因数1时,a和b的最小公倍数是ab.考点:求几个数的最小公倍数的方法.专题:数的整除.分析:因为a和b的公因数只有1,所以a和b两个数是互质数,它们的最小公倍数是它们的乘积.解答:解:如果a和b的公因数只有1,a和b两个数是互质数,那么a和b的最小公倍数是它们的乘积ab.故答案为:ab.点评:此题考查了两个数是互质数时最小公倍数是它们的乘积.19.36是6和9的最小公倍数.×(判断对错)考点:求几个数的最小公倍数的方法.专题:数的整除.分析:先求出6和9的最小公倍数,把6和9进行分解质因数,进而根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解答:解:6=2×3,9=3×3,6和9的最小公倍数是:2×3×3=18,所以本题说法错误;故答案为:×.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.20.5和6的最小公倍数是30;4和8的最小公倍数是8;6和14的最小公倍数是42;16和17的最大公因数是1;6和18的最大公因数是6;12和20的最大公因数是4.考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.专题:数的整除.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;两个数的公有质因数连乘积是最大公约数;由此选择情况解决问题.解答:解:①5和6互质,所以最小公倍数是5×6=30②4和8是倍数关系,最小公倍数是8③6=2×314=2×7最小公倍数是:2×3×7=42④16和17互质,所以最大公因数是1⑤6和18成倍数关系,所以最大公因数是6⑥12=2×2×320=2×2×5最大公因数是:2×2=4故答案为:30,8,42,1,6,4.点评:考查了求几个数的最大公因数的方法与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数;两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.三.解答题(共2小题)21.三个连续的自然数,它们的最小公倍数是660,问这三个数是多少?考点:求几个数的最小公倍数的方法.专题:数的整除.分析:每相邻的两个自然数数互质,三个相邻的自然数若是2奇数1偶数,最小公倍数就是这三个数的乘积;若是1奇数2偶数,最小公倍数是这三个数的乘积的一半.因此首先把660分解质因数,然后把它的质因数适当调整计算即可.由此解答.解答:解:把660分解质因数:660=2×2×3×5×11;因为2×5=10,2×2×3=12,所以这三个连续的自然数是:10、11、12;答:这三个数是10,11,12.点评:此题解答关键是明确相邻的两个自然数是互质数,三个相邻的自然数有2奇数1偶数或1奇数2偶数两种情况,根据分解质因数的方法解决此问题.22.一个两位数被3和5除都余1,这个数最大是多少?考点:求几个数的最小公倍数的方法.专题:数的整除.分析:能同时被3和5整除的数,个位上必须是0和5且各位上的数字之和是3的倍数,那么能同时被3和5整除最大的两位数是90,然后用90再加1即可.解答:解:被3和5整除的数,即这个数应该是3和5的公倍数因为3和5互质,所以应该是3×5=15的倍数,最大的两位数是9090+1=91答:一个两位数被3和5除都余1,这个数最大是91.点评:本题考查了能被3和5整除的数的特征.B档(提升精练)一.选择题(共10小题)1.(2012•彭州市模拟)a、b是两个不是0的自然数,a÷b=6,a和b最小公倍数是()A.a B.b C.6考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:由a÷b=6可知,数a是数b的6倍,属于倍数关系,a>b,所以a和b最小公倍数是a;故选A.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.2.(2012•勐海县)α与b是互质数,那么它们的最小公倍数是()A.αB.b C.αb D.1考点:求几个数的最小公倍数的方法.专题:数的整除.分析:如果两个数是互质数,它们的最小公倍数是这两个数的乘积.据此解答.解答:解:a与b是互质数,它们的最小公倍数是ab.故选:C.点评:本题考查了求几个数的最小公倍数的方法.此题解答关键是明确:如果两个数是互质数,它们的最小公倍数是这两个数的乘积.3.(2013•龙海市模拟)学校举行春季运动会,六1班人数的参加田赛,参加径赛,六1班人数是()人.A.64 B.49 C.56 D.60考点:求几个数的最小公倍数的方法.专题:数的整除.分析:由“六1班人数的参加田赛,参加径赛”,求出要求六1班人数,也就是求7和8的最小公倍数.解答:解:7和8的最小公倍数是7×8=56,所以六1班人数是56人;故选:C.点评:关键是根据题意,人数必须是整数,所以求7和8的最小公倍数,而互质数的两个数的最小公倍数是它们的乘积.4.(2014•舒城县)能同时被2、3、5除余数为1的最小数是()A.29 B.31 C.61考点:求几个数的最小公倍数的方法.专题:约数倍数应用题.分析:可先求出能同时被2、3、5整除的最小的数也就是它们的最小公倍数为30,由此解决问题.解答:解:能被2、3、5整除的最小的数是30,30+1=31.故选:B.点评:此题是根据求最小公倍数的方法结合整除的意义解决问题.5.(2012•麻章区)a,b是不等于0的自然数,a÷b=6.a,b的最小公倍数是()A.a B.b C.6D.6a考点:求几个数的最小公倍数的方法.分析:求两数的最小公倍数,要看两个数之间的关系:两个数互质,则最小公倍数是这两个数的乘积;两个数为倍数关系,则最小公倍数为较大的数;两个数有公约数的,最小公倍数是两个数公有质因数与独有质因数的连乘积;由此选择情况解决问题.解答:解:由a÷b=6可知,数a是数b的6倍,属于倍数关系,a>b,所以a和b最小公倍数是a;故选:A.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.6.(2012•溧水县模拟)两个最简分数的分母分别是48和72,它们通分后的公分母最小是()A.8B.24 C.144 D.288考点:求几个数的最小公倍数的方法.专题:数的整除.分析:两个最简分数的分母分别是48和72,要求它们通分后的公分母最小是多少,只要求出48和72的最小公倍数,即可得解.解答:解:48=2×2×2×2×3,72=2×2×2×3×3,所以48和72的最小公倍数是2×2×2×3×2×3=144;答:两个最简分数的分母分别是48和72,它们通分后的公分母最小是144;故选:C.点评:求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.7.(2013•永昌县模拟)甲数=2×2×3×5,乙数=2×3×3,这两个数的最小公倍数是()A.180 B.360 C.1080考点:求几个数的最小公倍数的方法.分析:根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解答:解:甲数=2×2×3×5,乙数=2×3×3,这两个数的最小公倍数为:2×2×3×3×5=180;故选:A.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.8.(2013•武鸣县模拟)甲数=2×2×3×5,乙数=3×3×5×2,这两个数的最小公倍数是()A.60 B.180 C.90考点:求几个数的最小公倍数的方法.专题:数的整除.分析:根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解答:解:因为甲数=2×2×3×5,乙数=3×3×5×2,所以这两个数的最小公倍数是2×3×5×2×3=180.故选:B.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.9.(2014•北京模拟)甲数=2×3×5×A,乙数=2×3×7×A,当A=()时,甲、乙两数的最小公倍数是630.A.2B.3C.5D.7考点:求几个数的最小公倍数的方法.分析:求最小公倍数是公有质因数与独有质因数的连乘积,对于两个数来说,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解答:解:甲数=2×3×5×A,乙数=2×3×7×A,甲、乙两数的最小公倍数是:2×3×5×7×A=210A,210A=630,A=3;故选:B.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除法解答.10.(2014•东兰县模拟)a、b是非零自然数,且a=5b.那么a和b的最小公倍数是()A.a B.b C.a b考点:求几个数的最小公倍数的方法.专题:数的整除.分析:因为a=5b,所以a÷b=5,即a和b成倍数关系,根据“当两个数成倍数关系时,较大的那个数,是这两个数的最小公倍数;进行解答即可.解答:解:因为a=5b,所以a÷b=5,即a和b成倍数关系,所以a和b两数的最小公倍数是a.故选:A.点评:此题主要考查求两个数为倍数关系时的最小公倍数:两个数为倍数关系,较大的那个数,是这两个数的最小公倍数.二.填空题(共10小题)11.(2013•泗县模拟)4、6和8的最小公倍数是24,把这个最小公倍数分解质因数是24=2×2×2×3.考点:求几个数的最小公倍数的方法;合数分解质因数.分析:求两个数的最小公倍数的方法:这两个数所有共有的因数和它们独有的质因数的连乘积,由此可以解决问题.解答:解:6=2×3,8=2×2×2,所以6和8的最小公倍数是2×2×2×3=24,24=2×2×2×3故答案为:24,24=2×2×2×3.点评:此题考查了求两个数的最小公倍数的方法.12.(2013•江苏模拟)早上5时40分1路公交车和2路公交车同时发车,1路车每隔8分钟发一辆车,2路车每隔12分钟发一辆车,这两路车6时04分第二次同时发车?考点:求几个数的最小公倍数的方法;时、分、秒及其关系、单位换算与计算.专题:压轴题.分析:先求出8、12的最小公倍数,然后用第一次同时发车的时间加这个时间就是第二次同时发车时间.解答:解:8=2×2×2,12=2×2×3,8、12的最小公倍数是:2×2×2×3=24,所以24分钟后第二次同时发车,5时40分+24分=6时04分;答:这两路车在6时04分第二次同时发车.故答案为:6时04.点评:此题主要考查几个数最小公倍数的求法及用此知识解决实际问题,理解第一次同时发车后到再次同时发车的时间是8、12的公倍数是本题的解答关键.13.(2014•阿克陶县)15和20的最小公倍数是60,最大公因数是5.考点:求几个数的最小公倍数的方法;求几个数的最大公因数的方法.专题:数的整除.分析:最大公因数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于两个数来说:两个数的公有质因数连乘积是最大公因数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解答:解:15=3×5,。

相关文档
最新文档