运算放大器的设计与仿真
mos运算放大器——原理、设计与应用 -回复
mos运算放大器——原理、设计与应用-回复Mos运算放大器是一种基础的电子放大器,其应用广泛,并且在许多电路设计中起着关键的作用。
本文将一步一步回答关于mos运算放大器的原理、设计和应用的问题。
一、原理:1. MOS管的基本特性:MOS管是金属-氧化物-半导体场效应管的简称,它由金属控制极、氧化物绝缘层和半导体衬底组成。
当控制极施加正向电压时,形成由电子和孔移动构成的导电路径;当控制极施加负向电压时,导电路径断开。
2. 差分放大器:差分放大器是mos运算放大器的核心部分,它由两个输入端(IN+和IN-)和一个输出端组成。
当两个输入端的电压不同时,差分放大器会产生一个输出电压,其幅度与输入电压的差值成正比。
3. 差模和共模信号:差分放大器对输入信号进行处理时,可以将信号分为差模和共模信号。
差模信号是两个输入信号之间的差值,而共模信号是两个输入信号之和的一半。
4. 差分模式增益:差分放大器的差分模式增益是指输出电压与差分信号之间的比例关系。
增益越大,差分放大器对输入信号的放大效果就越明显。
二、设计:1. 偏置电流源:mos运算放大器需要一个稳定的偏置电流,以确保其正常工作。
常用的偏置电流源包括恒流源和电流镜。
2. 差分输入级:差分输入级通常由两个共源极的MOS管组成,它们通过电阻或电流镜的连接进行偏置。
3. 差动放大级:差动放大级通常由两个共栅极的MOS管组成,它们通过负反馈电阻连接在一起,以增加放大器的增益和带宽。
4. 输出级:输出级通常由共源极或共漏极的MOS管组成,它们通过一个电阻或电流镜连接在一起,以提高输出电压的驱动能力。
三、应用:1. 信号放大:mos运算放大器可以用于放大微弱的输入信号,提高信号的幅度和信噪比。
2. 滤波器:mos运算放大器可以与电容器和电感器组合,用于构建滤波器电路,对指定频率范围内的信号进行放大和滤波。
3. 变换器:mos运算放大器可以用于构建各种信号变换器,如电压到频率的转换器、电流到电压的转换器等。
运算放大器的VHDL-AMS模型和仿真研究
个很微小 的输 入信号都会 使运放的输 出达到饱 和 ,所
以绝大多数 情况下 +运放都 r 作在 闭环状态 .即接成
反馈组 态 如果运放工作在线性 放大状态 ,且 负反 豫 深 度很 大 那么它具 仃以下两个特点 :
宽度、 零输 出阻抗 和能提供 无限大放大倍数 的差 分输 入 、单端 ( 或职端 ) 出的放大器 :实际运放 的性能 输 近似理想运放 在实 际的应用当 中,运放 基本部是用
反 媸 组 态 因 为在 开 环 的 时 候 .它 的增 益 非 常 大 .一
。
传统 的基于 S IE 的设计方法 局限于晶体管级 . PC
奏华标 王 飞
华 南 理 工 大学 电 子 与 信 息 学 院 (广 州 5l 0J 1 4 摘要 : VHDLAM S语 言 为模 拟 和 混 合信 号 系统 设 计 提 供 了 统 一 的 建 模 和 仿 真 方 法 , 为 模 拟 电路 中 最 为 . 作
通 用的单 元 , 算放 大器的 V D . 运 H LAMS模型可 以划 分为蝓 入级 、 中间级和输 出级 3个部 分。 文在详细分析 本 运放 特性的基础 上, 建立了一个完整而且精 确的运放模型 ,仿真结果显示 , 运放开环与 闭环时的频 率响 应、 输
维普资讯
运 算 放 大 器 的 V L M —A S模 型 和 仿 真 研 究 H D
Mo ei ga d S mu ai n o d l n i l to fOpe ai n l n r to a Amp i e s do lf r i Ba e n VHDL -AMS
一阶运算放大器电路
一阶运算放大器电路一、引言运算放大器,作为模拟电子电路的核心元件,广泛应用于各个领域。
一阶运算放大器电路作为运算放大器的基础结构,具有重要的理论和实践价值。
本文将从一阶运算放大器电路的原理、设计、仿真与测试、优化等方面进行全面阐述,以期为读者提供实用的参考。
二、一阶运算放大器电路的原理1.运算放大器的概念运算放大器,又称为模拟乘法器,是一种具有广泛应用的模拟电路。
它能够将两个输入信号的差值放大,并输出与输入信号幅度成比例的电压信号。
2.一阶运算放大器的工作原理一阶运算放大器,即单级运算放大器,是由一个输入级和一个输出级组成的。
输入级实现电压放大,输出级则负责将放大后的信号进行缓冲和输出。
在一阶运算放大器中,输入级的放大倍数远大于1,而输出级的放大倍数接近1。
3.运算放大器的应用领域运算放大器在信号放大、滤波、模拟计算等领域具有广泛的应用。
其中,一阶运算放大器电路作为基础模块,可以方便地搭建各类放大器和滤波器等电路。
三、一阶运算放大器电路的设计1.设计步骤和方法设计一阶运算放大器电路,首先需要确定电路的性能指标,如增益、带宽、输入和输出阻抗等。
然后,选择合适的运算放大器型号,根据电路性能指标计算电阻和电容的值。
最后,进行电路布局和焊接,完成电路设计。
2.电路元件的选择在设计一阶运算放大器电路时,应选择合适的电阻、电容和运算放大器。
电阻可以选择碳膜电阻或金属膜电阻,电容可以选择陶瓷电容或电解电容。
运算放大器应根据电路性能指标选择,如增益、带宽等。
3.设计实例解析以设计一个增益为10、带宽为100kHz的一阶运算放大器电路为例,可以选择一个增益带宽积大于100kHz的运算放大器,如OP07。
然后,根据电路性能指标计算电阻和电容的值,最后进行电路布局和焊接。
四、一阶运算放大器电路的仿真与测试1.电路仿真软件介绍电路仿真软件可以模拟电路的工作状态,预测电路性能。
常见的电路仿真软件有Multisim、PSPICE等。
运算放大器的设计与仿真-安超群
9、电源稳定性的判断,可以采用“巴克豪森判据”,即一个稳定的负反馈系 统需要满足的条件是在环路增益为 1时,反馈信号的相位变化小于180deg ;或当 反馈信号相位变化达到180deg 时,环路增益小于1。其数学表达式如下:
一个系统开环传递函数如果在右半平面存在极点,则系统是不稳定的。如果 只存在左半平面极点和零点,那么需要进一步在波特图中分析系统稳定性。
四、应用于DC-DC中的误差放大器
参考资料
模拟CMOS集成电路设计。毕查德.拉扎维。 模拟集成电路设计与仿真。何乐年。 CMOS模拟集成电路设计。P.E.Allen. 下载资料: CMOS运放性能参数仿真规范。 运放稳定性。 Frequency response.
谢 谢!
一、运放基础知识
? 几种常见的运放结构 ? 负反馈的基本原理 ? 运放性能指标参数
1.运放的基本结构
套筒式
折叠式
两级运放
2.负反馈基本原理
H(S)称为开环传输函数 Y(S)/X(S)称为闭环传输函数
T定义为环路增 益
增益误差是实际闭环增益与理想值偏差的百分数
例:图中的电路被设计成额定增益为 10,即1+R1/R2=10。要 求增益误差为1%,确定开环增益的最小值。
判断如下系统是否稳定?
两级运放的补偿 问题:为什么两级运放需要补偿?
密勒补偿原理:
控制零点的密勒补偿
测试原理图如下所示:
环路稳定性测试
环路增益,开环增益,闭环增益的关系? 零极点的联系?
闭合速度稳定性检查法
如何估计零极点?
实例环路稳定性分析
开环 环路
闭环
由图可知,开环 GBW 必须小于闭环 的零点,才能保证环路的稳定性。
【免费下载】二阶运算放大器设计与仿真
目录第一章绪论 (1)1.1、模拟集成电路概述 (1)1.1.1、模拟集成电路的设计特点 (1)1.2、模拟集成电路设计流程 (1)第二章二阶运算放大器 (3)2.1、运算放大器概述 (3)2.1.1、运算放大器的工作原理 (3)2.2、运算放大器的分类 (5)2.2.1、运算放大器的主要参数 (5)第三章二阶运算放大器仿真分析 (6)3.1、画电路图 (6)3.2、二阶运算放大器仿真分析 (7)第四章实训总结 (12)参考文献 (13)第一章绪论1.1、模拟集成电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
1.1.1、模拟集成电路的设计特点几何尺寸是设计的重要部分;通常涉及模数混合电路;模拟占20%、数字占80%的芯片面积;模拟需要80%的设计时间;模拟设计主要在电路级;成功的设计:2/3取决于模拟,1/3取决于数字。
1.2、模拟集成电路设计流程设计输入:以电路图或HDL语言的形式形成电路文件;输入的文件经过编译后,可以形成对电路逻辑模型的标准描述。
逻辑仿真(功能仿真):对如上形成的逻辑描述加入输入测试信号,检查输出信号师傅哦满足设计要求;再此没有考虑任何时间关系,只是检测逻辑是否有错。
系统分割(设计综合):采用特定的设计方法分解实现电路模型,得到电路实际采用的逻辑单元及其相互连接形式;在GA设计时,电路会分割为2-3输入的逻辑单元,在FPGA设计中,分割为4输入逻辑单元,而采用CPLD设计时,则分割为更大的逻辑单元。
基于运算放大器和模拟集成电路设计教学设计
基于运算放大器和模拟集成电路设计教学设计引言运算放大器是一个很重要的模拟集成电路,具有放大、求和、微分等功能,被广泛应用于各种电子系统中。
在电子工程师的日常工作中,掌握运算放大器的设计和使用技巧是必不可少的。
因此,在电子类专业中,教学设计中要注重运算放大器及模拟集成电路的学习和教学。
本文主要介绍基于运算放大器和模拟集成电路设计教学设计的内容,包括教学目标、课时安排、实验内容和实验步骤等。
教学目标本教学设计的主要目标如下:1.理解运算放大器的基本原理和特点,以及在电路设计中的应用;2.掌握运算放大器的电路模型和常用电路;3.了解模拟集成电路的设计和应用;4.进一步提高学生对电路设计的理解和实践能力。
课时安排本教学设计分为3个课时,具体安排如下:第一课时1.介绍运算放大器的基本概念和电路模型;2.分析运算放大器的典型应用电路,并进行电路分析;3.示例设计一个基本的运算放大器电路,并进行仿真分析。
第二课时1.介绍模拟集成电路的基本概念和分类;2.分析模拟集成电路中的运算放大器电路,并进行电路特性分析;3.示例设计一个基本的模拟集成电路,并进行仿真分析。
第三课时1.介绍运算放大器的稳定性和失调特性;2.分析运算放大器电路中应注意的问题,并进行电路参数设计;3.示例设计一个复杂的运算放大器电路,并进行电路仿真与实测。
实验内容与步骤第一课时实验步骤1.阅读并理解运算放大器的电路模型与基本原理;2.分析并仿真一个基本的运算放大器电路;3.在仿真实验中,掌握运算放大器的工作原理和性能特点。
第二课时实验步骤1.阅读并理解模拟集成电路的类型与基本原理;2.分析并仿真一个基本的模拟集成电路;3.在仿真实验中,掌握模拟集成电路的工作原理和性能特点。
第三课时实验步骤1.阅读并理解运算放大器的稳定性和失调特性;2.进行一个复杂的运算放大器电路设计;3.在仿真和实测实验中,进一步掌握运算放大器的各项指标和电路设计方法。
结语通过本教学设计,学生可以更好地掌握运算放大器和模拟集成电路的电路分析与设计技巧,提高自己的实践能力,并为今后的电子工作打下坚实的基础。
运算放大电路试验报告
运算放大电路试验报告.docx实验报告课程名称:电子电路设计与仿真实验名称:集成运算放大器的运用班级:计算机18亨VrR输入电阻:Ri00输出电阻:Ro0同相比例放大电路仿真电路图电压输入输出波形图差动放大电路电路图差动放大电路仿真电路图五:实验步骤:1.反相比例运算电路(1)设计一个反相放大器,Au12V。
(2)输入f1kHz、ui100mV的正弦交流信号,测量相应的uo,并用示波器观察uo和ui的波形和相位关系,记录输入输出波形。
测量放大器实际放大倍数。
(3)保持ui30mV不变,测量放大的上截止频率,并在上截止频率,并在上截止频率点时在同一坐标系中记录输入输出信号的波形。
七:实验数据分析:1.在反相比例运算电路中当输入f1kHz、ui100mV的正弦交流信号时测得输入与输出反相,且放大倍数Au5,产生了误差应该主要是因为电路板上的电阻的标称值并不准确。
2.当ui等于30mV时测出上截止频率为219kHz,然而此时输入和输出的相位差已经不是180,原因应该是芯片中的电容元件在高频的情况下使得输出电压的相位产生了异于原来的改变。
3.在反相加法器电路的实验中,产生的输出波形基本上符合理论的预测,但是uo的直流分量稍小于ui1的两倍,这应该也是因为电阻的标称值不准,而且主要还是因为分压电路分出的电压并没有1V因为在分压电路上与1kQ并联的实验电路实际上让ui1小于1V4.在积分电路试验中,一开始输出波形有着很大的直流分量,到后来将Rf改为由1M改到20kQ解决了这个问题。
分析后发现应该是由于Rf 的支路上存在一个很小的电压,但是一旦Rf很大其两端就会产生一个很大的电位差,这就是uc(0),也就是波形中的直流分量,因此减/J、Rf即可解决问题心得体会在做实验的时候发现一个小现象,就是发现直流电源不通时会得到完全不同的输出波形,只有接通是得到正确波形。
后来我仔细想了一下,应该是电路已经变了,这个时候就要换思路想了。
运算放大器的设计与仿真
运算放大器的设计与仿真设计要求:1.增益稳定性:运算放大器的增益应该能够在所需的频率范围内保持稳定。
2.输入阻抗:运算放大器应具备较高的输入阻抗,以减少对输入信号的干扰。
3.输出阻抗:运算放大器应具备较低的输出阻抗,以减小对外界负载的影响。
4.带宽:运算放大器应具备较宽的带宽,以满足对高频信号的放大需求。
5.稳定性:运算放大器应具备较高的稳定性,以避免产生自激振荡或输入偏移。
电路结构:差分输入级:差分输入级是运算放大器的核心部分,用于接受差分输入信号。
它由两个差分对组成,每个差分对由两个晶体管连接而成。
差分输入级的输入阻抗较高,能够减小对输入信号的干扰,提高共模抑制比。
共模放大级:共模放大级用于放大输入信号的共模部分。
它由一对电流镜电路和一个差分放大电路组成。
共模放大级的放大倍数影响运算放大器的共模抑制比和输入选择性。
输出级:输出级用于提供对外的放大信号。
它由输入级的晶体管、电源和输出级负载组成。
输出级应具备较低的输出阻抗,以便与外界负载匹配。
参数选择:参数选择是运算放大器设计的重要环节。
下面是几个常见参数的选择方法:增益:增益可以根据具体应用需求来设定。
一般来说,增益越高,对输入信号的放大效果越好,但也容易引入噪声和干扰。
带宽:带宽取决于应用的特定频率范围。
选择较高的带宽可以满足对高频信号的放大需求,但也可能引入频率抖动和畸变。
输入阻抗:输入阻抗应根据信号源的特性来选择。
如果信号源的输出阻抗较高,则需要选择较低的输入阻抗以保证信号传输。
输出阻抗:输出阻抗应根据负载的特性来选择。
如果负载的输入阻抗较高,则需要选择较低的输出阻抗以提供足够的电流输出。
稳定性:稳定性可以通过选择合适的电容和电阻来提高。
一般来说,通过增加补偿电容和添加反馈电阻可以提高运算放大器的稳定性。
仿真:对于运算放大器的设计,可以使用电子设计自动化软件进行仿真验证。
主要包括以下步骤:1.输入基本电路参数,如晶体管的参数、电源电压等。
运算放大器应用电路的设计与制作(1)
运算放大器应用电路的设计与制作(一) 运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。
图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。
如图2所示。
U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。
U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。
输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。
在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。
2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。
(a) 反向比例电路反向比例电路如图3所示,输入信号加入反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。
实验三 两级运放原理图设计及仿真
输出摆幅≥ ±1V;
失调≤ ±10mV; 噪声≤ 200(1kHz时);
参考电路1:
VDD M3 x iref vin1 M1 Vn Id5 M8 3 M5 M2 vin2 CL M7 y M4 M6
?唐长文菅洪彦通信系统混合信号vlsi设计全差分运算放大器设计课程设计报告设计全差分运算放大器设计课程设计报告
实验三 两级CMOS运放的原理图设计及仿真
实验目的:
掌握采用cadence实现模拟IC原理图设计的方法; 掌握集成运算放大器设计的参数估算方法; 掌握集成运算放大器主要参数的仿真方法;
实验报告: 描述设计仿真过程;
描述参数估算过程; 描述性能参数仿真过程及结果,并进行分析;
• 设计指标要求:
开环增益≥60dB; 单位增益带宽≥50MHz; 摆率(Slew Rate)≥ 5V/us; 相位裕度≥50 ICMR ≥ ±0.8V; CMRR ≥50dB; PSRR ≥50dB;
实验内容 采用传统的集成运放设计参数估算方法设 计运放; 完成原理图设计并仿真验证;
实验步骤:
根据设计指标,选择电路结构; 根据设计指标及电路结构,估算电路参数; 采用cadence进行电路参数仿真; DC仿真,检查电路工作状态; AC仿真考察幅频特性、相频特性等; 瞬态仿真,观察输入输出波形; 调整电路参数。 引入相位补偿网络,提高电路的稳定性; 设计优化。
• 参考过程:
(1)选取电路结构; (2)确定工作点:由功耗、增益等要求选取各支路的工作电流; 如参考电路2:
g m 2 Cox (W / L ) I DS / 2 1 1 ro go I DS
基于运算放大器和模拟集成电路的电路设计课程设计
基于运算放大器和模拟集成电路的电路设计课程设计1. 课程设计概述本课程设计旨在通过运算放大器和模拟集成电路的原理、应用及设计过程等方面的学习,使学生们能够掌握基于运放和模拟集成电路的电路设计方法,并应用所学知识进行电路设计。
本课程设计以模拟电路设计为主,重点学习运放基本类型的电路组成、运放应用电路设计、信号调理电路的设计等知识点。
本课程设计要求学生具备一定的基础电子知识,熟练掌握运放电路的基本原理,通过实践操作提高设计能力和实际操作经验,对实际的电路问题进行有效的解决。
2. 设计实验方案2.1 设计实验目的本实验旨在使学生:1.理解运算放大器的基本特性、功用、特点;2.掌握运扰放大器、电压跟随器等基本电路;3.掌握电荷放大器、测量检测放大器、微分放大器等高级电路;4.了解集成运算放大器的特点和基本使用方法;5.掌握模拟电路的实际设计流程和调试方法。
2.2 设计实验设备1.实验板;2.科技STM32开发板;3.示波器;4.万用表;5.电源供应器等。
2.3 实验步骤实验1:基本运放电路1.搭建非反向运放电路,测量电压放大倍数;2.搭建反向运放电路,测量电压放大倍数;3.搭建电压跟随器电路,测量输出波形和输入波形。
实验2:高级运放电路1.搭建电荷放大器电路,测量电路增益;2.搭建测量检测放大器电路,测量输出电压;3.搭建微分放大器电路,测量电路增益。
实验3:集成运放电路1.学习集成运放的基本组成和特点;2.搭建基于集成运放的电压比较器电路,测试电路的工作情况。
实验4:模拟电路设计1.认识模拟电路设计流程;2.根据实验要求设计模拟电路;3.进行调试和验证,输出实验报告。
3. 实验总结通过本次课程设计,我们深入了解了运放的基本原理、特性和应用电路,掌握了运扰放大器、电压跟随器、电荷放大器、测量检测放大器、微分放大器等基本电路的设计方法,以及集成运放的特点和基本使用方法。
此外,我们还学习了模拟电路的实际设计流程和调试方法,掌握了实际电路问题的解决方法。
运算放大器的电路仿真设计ea
运算放大器的电路仿真设计一、电路课程设计目的○1深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能;○2掌握理想运算放大器的特点及分析方法〔主要运用节点电压法分析〕;○3熟悉掌握Multisim软件。
二、实验原理说明(1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。
它的类型包括:反向比例放大器、加法器、积分器、微分器、电压跟随器、电源变换器等。
(2)〔3〕理想运放的特点:根据理想运放的特点,可以得到两条原那么:〔a〕“虚断〞:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断〞。
〔b〕“虚短〞:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短〞。
下列图,求输出电压。
理论分析:由题意可得:〔列节点方程〕011(1)822A U U +-=0111()0422B U U +-= A B U U =解得:三、 电路设计内容与步骤如上图所示设计仿真电路。
仿真电路图:V18mVR11Ω2ΩR32ΩR44ΩU2DC 10MOhm0.016V +-U3OPAMP_3T_VIRTUALU1DC 10MOhm0.011V+-根据电压表的读数,,与理论结果相同。
但在试验中,要注意把电压调成毫伏级别,否那么结果误差会很大,致结果没有任何意义。
如下图,电压单位为伏时的仿真结果:V18 VR11ΩR22ΩR32ΩR44ΩU2DC 10MOhm6.458V +-U3OPAMP_3T_VIRTUALU1DC 10MOhm4.305V+-,与理论结果相差甚远。
四、 实验考前须知1〕注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。
2〕由于运算放大器的工作范围是有限的,因此,在仿真时要把Ua 和Ub 的范围在毫伏或者更小的单位内,使运放在其线性范围内工作,这样结果才会更准确。
五、电路课程设计总结通过本次试验,我验证了理想运算放大器在线性工作区内“虚短虚断〞的性质,学会了用模拟软件对含理想运算放大器电路的分析,加深了对含理想运算放大器电路的理解。
用运算放大器组成万用表的设计 实验仿真
用运算放大器组成万用表的设计实验仿真
本文通过使用运算放大器组成万用表的实验仿真,分析万用表的工作原理和主要功能,以供初学者参考。
一、万用表的原理
万用表是一种多功能的工具,它可以实现仿真测量,电路测量,现场测试和实验仿真
等多种用途。
其核心原理即为使用运算放大器来实现,主要原理是利用了运算放大器的功能,使用电压或电流的形式来控制现场的电路的形式,将电气信号的输入转换为对电路的
控制。
二、使用运算放大器组成万用表的实验仿真
(1)实验仿真装置
本次实验所使用的运算放大器为LM741,它是一款单片集成芯片,它具有全差分输入、超低功耗、双路增益、低失真率、高速输入和输出。
实验仿真装置包括常用模块如:示波器、电压稳定电源、变压器等。
(2)实验仿真步骤
1. 首先,将LM741运算放大器与实验仿真装置连接,检查运算放大器的特性和参数,确保系统的可靠性;
2. 将示波器与运算放大器连接,测量电压和电流,以观察输入信号的分布;
3. 串联电压稳定电源与运算放大器,调整电压稳定电源输出电压,以观察放大器输
出的特性以及输出信号的分布;
4. 调整变压器,利用调节器调整输出电流,观察系统的可靠性;
5. 将所有模块与电路连接,调整变量,完成该实验仿真。
三、总结
通过以上实验仿真,可以看出,使用运算放大器作为核心原理构成的万用表可以有效
实现实验仿真及测量电路等多种应用,是一种非常实用的测试仪器。
但同时,也应注意设
置实验仿真装置的参数,以及充分使用实验仿真环境的多种设备,以保证实验学习和操作
的正确性与可靠性。
两级CMOS运算放大器的设计与spectrum仿真
LAB2 两级CMOS 运算放大器的设计V SSvoutiref图 1两级CMOS 运算放大器一:基本目标:参照《CMOS 模拟集成电路设计第二版》p223.例6.3-1设计一个CMOS 两级放大器,满足以下指标:5000/(74)v A V V db = 2.5DD V V = 2.5SS V V =-5GB MHz = 10L C pF = 10/SR V s μ>out V V ±范围=2 1~2ICMR V =- 2diss P mW ≤相位裕度:60为什么要使用两级放大器,两级放大器的优点:单级放大器输出对管产生的小信号电流直接流过输出阻抗,因此单级电路增益被抑制在输出对管的跨导与输出阻抗的乘积。
在单级放大器中,增益是与输出摆幅是相矛盾的。
要想得到大的增益我们可以采用共源共栅结构来极大地提高输出阻抗的值,但是共源共栅结构中堆叠的MOS 管不可避免地减少了输出电压的范围。
因为多一层管子就要至少多增加一个管子的过驱动电压。
这样在共源共栅结构的增益与输出电压范围相矛盾。
为了缓解这种矛盾引进了两级运放,在两极运放中将这两点各在不同级实现。
如本文讨论的两级运放,大的增益靠第一级与第二级相级联而组成,而大的输出电压范围靠第二级这个共源放大器来获得。
表1 典型的无缓冲CMOS 运算放大器特性二:两级放大电路的电路分析:图1中有多个电流镜结构,M5,M8组成电流镜,流过M1的电流与流过M2电流1,23,45/2d d d I I I ==,同时M3,M4组成电流镜结构,如果M3和M4管对称,那么相同的结构使得在x ,y 两点的电压在Vin 的共模输入范围内不随着Vin 的变化而变化,为第二极放大器提供了恒定的电压和电流。
图1所示,Cc 为引入的米勒补偿电容。
表2 0.5m μ工艺库提供的模型参数表3 一些常用的物理常数利用表2、表3中的参数/OX ox ox C t ε=0oxK C μ'=计算得到2110/NK A V μ'≅ 262/PK A V μ'≅ 第一级差分放大器的电压增益为:1124m v ds ds g A g g -=+ (1)第二极共源放大器的电压增益为6267m v ds ds g A g g -=+ (2)所以二级放大器的总的电压增益为16261224675246672()()m m m m v v v ds ds ds ds g g g g A A A g g g g I I λλλλ===++++ (3)相位裕量有111121180tan ()tan ()tan ()60M GB GB GB p p z ---Φ=±---=要求60°的相位裕量,假设RHP 零点高于10GB 以上11102tan ()tan ()tan (0.1)120v GBA p ---++= 102tan ()24.3GBp -= 所以2 2.2p GB ≥ 即622.2()m m L cg gC C > 由于要求60的相位裕量,所以626210()10m m m m c cg gg g C C >⇒> 可得到 2.20.2210Lc L C C C >==2.2pF 因此由补偿电容最小值2.2pF ,为了获得足够的相位裕量我们可以选定Cc=3pF 考虑共模输入范围:在最大输入情况下,考虑M1处在饱和区,有3131(max)(max)DD SG n IC n TN IC DD SG TN V V V V V V V V V V --≥--⇒≤-+ (4)在最小输入情况下,考虑M5处在饱和区,有1515(min)(min)IC SS GS Dsat IC SS GS Dsat V V V V V V V V --≥⇒≤++ (5)而电路的一些基本指标有11m v Cg p A C =-(6) 62m Lg p C =-(7) 61m Cg z C =(8) 1m Cg GB C =(9) CMR:正的CMR in31()()DD T T V V V +(最大)=V 最大最小 (10)负的CMR in15()()SS T DS V V V ++(最小)=V 最大饱和(12)由电路的压摆率5d CI SR C =得到 5d I =(3*10-12)()10*106)=30μA(为了一定的裕度,我们取40iref A μ=。
CMOS运算放大器的设计与Cadence仿真
= rds
λ Ids
1 =
1 VA ⋅ L = 1 Ids Ids VA ⋅ L
(2)
= gm
= 2 µ Cox(W / L) IDS 2 k ' (W / L) IDS
(3)
(1) 开环电压增益 第一级增益表达为 :
(b)VDD 为 5.5V 时运算放大器的幅频、 相频特性 图 4 运算放大器的幅频、 相频特性 从图上得到,VDD 为 2.7V 时, 开环电压增益为 85.3292dB, 相位裕度为 71.4435 度, 单位增益带宽为 408.929kHz ; VDD 为 5.5V 时, 开环电压增益为 92.4468dB, 相位裕度为 72.1637 度, 单位增 益带宽为 455.629kHz。
首先, 对图中的偏置电路进行简单的分析, 如图 2。M10 管和 M11 管组成第一组镜像恒流源, 它们的 VGS 均相同,W/L 也相同 ; M8 管和 M9 管组成第二组镜像恒流源, 并与第一组恒流源构成反 馈式闭合环路。 对于第二组, 它们的栅极连在一起, 有下列的关 系:
V= GS 9 VGS 8 + VR
所以, 设计时要求 M8 管的 W/L 比 M9 管的大。
(1)
1 电路分析与设计
运放主要由两级放大器组成, 第一级是差分放大器, 主要是 提高输入电阻和共模抑制比 ; 第二级的放大器主要是提高驱动 能力。 本文设计的放大器如图 1, 电路中的 M1 管和 M2 管为 PMOS 管差分输入对管,M3 管和 M4 管为有源负载管,M8 管和 M9 管组 成恒流源偏置电压电路, 给差分放大器和第二级共源放大器提供 工作电流,M6 管和 M7 管组成第二级共源放大器,M7 管为有源 负载,M8 管、M9 管、M10 管、M11 管和 R 构成偏置电路, 给 M5 和 M7 提供偏置。 图 2 偏置电路 对 电 源 电 压 进 行 直 流 扫 描, 扫 描 范 围 为 2.7V ~ 5.5V, 扫 描 结 果 如 图 3。 当 电 源 电 压 从 2.7V ~ 5.5V 变 化 时,M10 管 的 电 流 从 4.30099uA ~ 4.6028uA 变 化,M11 管 的 电 流 从 4.30883uA ~ 4.67989uA 变化。 在某个特定电压下,M10、M11 管 的电流相差比较小, 电流镜的匹配性比较好 ; 电源电压变化时, M10、M11 管的电流变化也比较小, 可以给电路提供稳定的电流 偏置。 下面进行某些参数的理论计算 (以电源电压 VDD 为 5.5V 为例 计算, 这里不进行公式推导) 。 图中 M1、M2 的参数相同,M3、M4 的参数相同, 所以计算时只需计算 M1、M3 的参数, 电路中的器件 图 1 放大器电路
集成运放同相放大器的带宽测量(设计与仿真)实验报告
集成运放同相放大器的带宽测量(设计与仿真)实验报告一、实验目的1、熟悉放大器幅频特性的测量方法。
2、掌握集成运算放大器的带宽与电压放大倍数的关系。
3、了解掌握Proteus 软件的基本操作与应用。
二、实验线路及原理1、实验原理(1)同相放大器同相放大器又称同相比例运算放大器,其基本形式如图2.1所示。
输入信号U i 经R 2加至集成运放的同相端。
R f 为反馈电阻,输出电压经R f 及R 1组成的分压电路,取R 1上的分压作为反馈信号加至运放的反相输入端,形成了深度的电压串联负反馈。
R 2为平衡电阻,其值为R 2=R 1//R f 。
电压放大倍数为R R U U A f i uf 101+==。
输出电压与输入电压相位相同,大小成比例关系。
比例系数(即电压放大倍数)等于1+R f /R 1,与运放本身的参数无关。
图2.1 同相放大器 图2.2 某放大电路的幅频特性(2)基本概念 1)带宽运放的带宽是表示运放能够处理交流小信号的能力。
运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真。
图2.2所示为某放大电路的幅频响应,中间一段是平坦的,即增益保持不变,称为中频区(也称通带区)。
在f L 和f H 两点增益分别下降3dB ,而在低于f L 和高于f H 的两个区域,增益随频率远离这两点而下降。
在输入信号幅值保持不变的条件下,增益下降3dB 的频率点,其输出功率约等于中频区输出功率的一半,通常称为半功率点。
一般把幅频响应的高、低两个半功率点间的频率定义为放大电路的带宽或通频带,即BW=f H -f L 。
式中f H 是频率响应的高端半功率点,也称为上限频率,而f L 则称为下限频率。
通常有f L <<f H ,故有BW≈f H 。
2)单位增益带宽运放的闭环增益为1倍条件下,将一个频率可变恒幅正弦小信号输入到运放的输入端,随着输入信号频率不断变大,输出信号增益将不断减小,当从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)时,所对应的信号频率乘以闭环放大倍数1所得的增益带宽积。
CMOS两级运算放大器设计报告
CMOS两级运算放大器设计报告CMOS两级运算放大器设计及仿真实验报告班级:学号:姓名:日期:一、运算放大器设计简介运算放大器是许多模拟及数模混合信号系统中一个十分重要的部分。
各种不同复杂程度的运放被用来实现各种功能:从直流偏置的产生到高速放大或滤波。
运算放大器的设计可分为两个步骤。
第一步是选择或搭建运放的基本结构,绘出电路结构草图。
确定好的电路结构不能轻易修改。
运算放大器的电路结构确定之后需要选择直流电流,手工设计管子尺寸,以及设计补偿电容等关键参数。
为了满足运放的交流和直流需要,所有管子必须设计出合适尺寸。
在手工计算的基础上,运用CandenceVirtuoso电路设计软件进行图形绘制,参数赋值,仿真分析。
在分析仿真结果的基础上判断电路是否符合设计要求。
若不符合,再回到手工计算,调试电路。
二、设计目标电路参数要求:(1)直流或低频时的小信号差模电压增益Avd = 4000V/V(72dB)(2)增益带宽积GBW = 10MHz(3)输入共模电压范围Vcm,min = 0.4V,Vcm,max = 1.5V(4)输出电压摆幅0.2V < Vout < 1.5V(5)相位裕度PM = 60(6)负载电容CL = 1pF(7)电源电压VDD = 1.8V使用CMOS-90nm工艺库。
三、电路设计1.电路结构最基本的CMOS二级密勒补偿运算跨导放大器的结构如下图所示。
主要包括四大部分:第一级双端输入单端输出差分放大级、第二级共源放大级、直流偏置电路及密勒补偿电路。
2.电路描述输入级放大电路由PM0、PM2、NM1、NM3组成,其中PM0与PM2组成电流源偏置电路,NM1与NM3组成差分放大电路,输入端分别为IN1和IN2,单端输出。
如下图所示。
输出级放大电路由PM1和NM4组成,其中PM1为共源放大级电路,NM4为电流源偏置电路。
如下图所示。
电流源偏置电路由NM0、NM2与NM4组成,其中NM0接偏置电流源,电流源电流为30uA。
运算放大器参数解析与LTspice应用仿真
4.5 SAR型AD C驱动
1
5.1 LTsp ice概述
5.2 LTsp
2
ice界面介绍
与控制面板
3 5.3 LTsp
ice电路与符 号设计
4
5.4激励配置
5
5.5设置仿真 指令
5.6仿真分析
5.7波形观测
作者介绍
同名作者介绍
这是《运算放大器参数解析与LTspice应用仿真》的读书笔记模板,暂无该书作者的介绍。
3
2.3偏置电流 与失调电流
4
2.4共模抑制 比
5
2.5电源抑制 比
1
2.6开环增益
2
2.7电压噪声 与电流噪声
3
2.8增益带宽 积
4
2.9相位裕度 与增益裕度
5
2.10压摆率与 满功率带宽
2.11建立时间 2.12输入阻抗
2.13输出阻抗 2.14容性负载驱动
01
2.15输入 电压范围与 输出电压范 围
02
2.16总谐 波失真与总 谐波失真加 噪声
03
2.17功耗
04
2.18多路 放大器的通 道隔离度
06
2.20绝对 最大额定值
05
2.19芯片 热阻
3.1仪表放大器 3.2跨阻放大器
3.3全差分放大器 3.4电流检测放大器
1
4.1电源设计
2
4.2传感器类 型简介
3
4.3放大电路 误差分析
4
4.4滤波器设 计
精彩摘录
精彩摘录
这是《运算放大器参数解析与LTspice应用仿真》的读书笔记模板,可以替换为自己的精彩内容摘录。
谢谢观看
运算放大器参数解析与LTspice 应用仿真
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成运算放大器放大电路仿真设计1集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
2 电路原理分析2.1 电路如图1所示R110kΩV1500mVU1ATL082CD32481R29.1kΩRF100kΩV212 VV312 VXMM11此电路为反向比例运算电路,这是电压并联负反馈电路。
输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。
图2 仿真结果图输入输出关系理论输仿真输出值电路功能其中1//2R RF R =2.2电路如图3所示R110kΩUi2200mVU1ATL082CD32481R24.7kΩRF 100kΩV212 VV312 VXMM1Ui1100mV R310kΩ3此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1231(0R Ui R Ui RF U +-= 输入输出关系理论输出值 仿真输出值电路功能 )1231(0R Ui R Ui RF U +-=-3V 2.999V反相求和放大电路其中RF R R R //3//12= 2.3电路如图5所示出值110V R RFV -=-5V-5V反相比例运算电路U1ATL082CD32481R210kΩRF 10kΩV212 VV312 VXMM1Ui1100mV5此电路为电压跟随器电路,此电路输出电压的全部反馈到反相输入端,电路引入电压串联负反馈,且反馈系数为1,由于N P u u u ==0,故输出电压与输入电压的关系为I O u u =图6 仿真结果图输入输出关系理论输出值 仿真输出值 电路功能 I O u u =100mV1000.008mV电压跟随器2.4 电路如图7所示R110kΩUi1100mVU1ATL082CD32481R2100kΩRF 100kΩV212 VV312 VXMM1Ui2200mVR310kΩ7从对比例运算电路和求和运算电路的分析可知,输出电压与同相输入端信号电压极性相同,与反相输入端信号电压极性相反,因而如果多个信号同时作用于两个输入端时,就可以实现加减运算。
21O O O U U U +=,111i O U R RF U -=,223i O U R RFU = 图8 仿真结果图输入输出关系理论输出值 仿真输出值电路功能 )1132(R Ui R Ui RF U O -= 1V1V加减运算电路2.5 电路如图9所示R110kΩU1ATL082CD32481V212 VV312 VR350kΩXFG1XSC1ABExt Trig++__+_C110uF图9此电路为积分运算电路,利用积分运算电路可以实现方波—三角波的波形变换和正弦—余弦的移相功能。
其中,电路输入为100Hz/2V 的方波,输出为Vopp=100mV图10仿真结果图 输入方波,输出三角波2.6电路如图11所示R11kΩU1ATL082CD32481V212 VV312 VXFG1XSC1ABExt Trig++__+_C122nFC222nFR215kΩ图11此电路为微分运算电路,根据“虚短”和“虚断”的原则,0==N P u u ,为“虚地”,电容IC u u =1,因而dtdu Ci i IC R ==12 输出电压为dtdu C R R i u IR O 1222-=-=,输出电压与输入电压的变化率成比例。
图12 仿真结果图输入方波(RC<<T/2),输出为尖顶波 2.7 如图13所示,此电路为二阶低通滤波电路R110kΩU1ATL082CD32481V212 VV312 VC147nF C247nFR210kΩR327.4kΩR447.5kΩV1120 Vrms 60 Hz 0°XBP1IN OUT13设截止频率为fp ,频率低于fp 的信号能够通过,高于fp 的信号被衰减的滤波电路称之为低通滤波器。
使up u A A 707.0≈的频率为通带截止频率fp 。
图14图15 仿真结果图所以截止频率fp Hz 175.260≈2.8 如图16所示,此电路为二阶高通滤波电路R110k¦¸U1ATL082CD32481V212 VV312 VC14.7nF C24.7nFR210k¦¸R327.4k¦¸R447.5k¦¸V1120 Vrms 60 Hz 0¡ãXBP1IN OUT图16设截止频率为fp ,频率高于fp 的信号能够通过,低于fp 的信号被衰减的滤波电路称之为高通滤波器。
使up u A A 707.0≈的频率为通带截止频率fp 。
图17图18 仿真结果图所以截止频率fp kHz 514.4≈2.9 电路如图19所示,此电路为二阶带通滤波电路R110kΩU1ATL082CD32481V212 VV312 VC110nFC247nFR210kΩR327.4kΩR447.5kΩV1120 Vrms 60 Hz 0°XBP1IN OUTR520kΩ19设低频段的截止频率为fp1,高频段的截止频率为fp2,频率为fp1到fp2之间的信号能够通过,低于fp1和高于fp2的信号被衰减的滤波电路称之为带通滤波器。
图20图21所以kHz f Hz f H L 322.3,264.244== 所以带宽Hz f f f L H bW 736.3077=-= 2.10 如图22所示,此电路为二阶带阻滤波电路R110kΩU1ATL082CD32481V212 VV312 VC11nF C22nFR210kΩR3210kΩR449.9kΩV1120 Vrms 60 Hz 0°XBP1IN OUTR55.1kΩC31nF图22频率低于fp1和高于fp2的信号能够通过,而频率在两者之间的信号被衰减的滤波电路称为带阻滤波器。
图23图24kHz f kHz f H L 444.88,211.3==阻带宽度为kHz fp fp BW 233,8512=-=2.11电路如图25,信号源输入2V/100Hz 的正弦波,观察输入和输出的波形,说明电路的功能。
如果把二极管去掉,输出波形有什么变化。
R110kΩU1ATL082CD32481V212 VV312 V XFG1XSC1ABExt Trig++__+_R25.1kΩD1RD5.6D2RD5.6图25此电路为过零比较电路,电路只有一个阈值电压,输入电压逐渐增大或减小过程中,当通过UT 时,输出电压产生跃变,从高电平跃变为低电平,或者从低电平跃变为高电平。
没去掉二极管时波形如图26所示图26去掉二极管时波形如图27所示图27当去掉二极管时,输出波形幅度增大。
2.12电路如图28所示,此电路为滞回比较电路R110kΩU1ATL082CD32481V212 V V312 V XFG1ABExt Trig++__+_R25.1kΩD1RD5.6D2RD5.6R310kΩR4100kΩ28电路有两个阈值电压,输入电压Ui 从小变大过程中使输出电压Uo 产生跃变的阈值电压UT1,不等于从大变小过程中使输出电压Uo 产生跃变的阈值电压UT2,电路具有滞回特性。
图29 仿真结果图计算电路的两个阈值从集成运放输出端的限幅电路可以看出,,z O U u ±=。
集成运放反相输入端电位I N u u =,同相输入端电位z P U R R R u *343+=,令P n u u =,求出的I u 就是阈值电压,因此得出z T U R R R U *433+±=±,由仿真图29知,输入为2Vp ,输出为6.5Vp ,所以V V U R R R U z T 6.05.6111*433±≈±=+±=±,对比输入输出波形,也基本符合理论计算值。
2.13下图30为音响的音调控制电路,(1)低音反馈网络由哪些元件组成(2)高音反馈环节由哪些元件组成。
(3)输入100Hz,0.71V 的信号,将RP1、RP2分别调到50%的位置,观察输入输出波形的幅度,并记录。
(4) 输入100Hz,0.71V 的信号,RP2在50%位置不变,RP1从0%变到100%,观察输入输出波形的变化情况,并记录。
(5)输入2000Hz/0.7V 信号,RP1在50%位置不变,RP2从0%变到100%,观察输入输出波形的变化,并记录。
R143.5kΩU1ATL082CD32481V212 VV312 VC1240pFV10.71 Vrms 100 Hz 0°R251kΩC210nFC36.2nFR3510kΩR433kΩ500kΩKey=A 60%RP2500kΩKey=A50%C46.2nF XSC1ABExt Trig++__+_图30此电路为音响的音调控制电路,该电路调试方便,信噪比高,图30中C3和C4的容量大于C1,对于低音信号C3和C4可视为开路,而对于高音信号C1可视为短路。
问题(1)答:低音反馈网络由R2、RP1和R3组成,(2)高音反馈网络由R4、RP2和C1组成。
(3)波形如图31所示图31输入约为2Vpp ,输出约为1.1Vpp 。
(4)图32图32为输入100Hz,0.71V的信号,RP2在50%位置不变,RP1在0%图31为输入100Hz,0.71V的信号,RP2在50%位置不变,RP1在50%图33为输入100Hz,0.71V的信号,RP2在50%位置不变,RP1在100%图33如图所示,当RP1在0%,Vpp约为0.4Vpp,当RP1在50%,Vpp约为1.1Vpp,当RP1在100%,Vpp约为2.4Vpp,所以随着RP1的增大,低音提升越大。
(5)图34图34为输入200Hz,0.71V的信号,RP1在50%位置不变,RP2在0%图35图35为输入200Hz,0.71V的信号,RP1在50%位置不变,RP2在50%图36图36为输入200Hz,0.71V 的信号,RP1在50%位置不变,RP2在50%如图所示,当RP2在0%,Vpp 约为1.4Vpp ,当RP2在50%,Vpp 约为1.3Vpp ,当RP2在100%,Vpp 约为1.2Vpp ,所以随着RP2的增大,高音提升越大。