子集、全集、补集练习题及答案

合集下载

子集、全集、补集练习题及答案

子集、全集、补集练习题及答案

例1 判定以下关系是否正确(1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆ [ ]分析 作出4图形. 答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素.∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a 的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。

高一数学集合、子集、交集、并集、补集训练

高一数学集合、子集、交集、并集、补集训练

集合、子集、交集、并集、补集一. 选择题:1. 满足{}{}-⊂⊆--1121012,,,,,M 的集合M 的个数是〔 〕A. 6B. 7C. 8D. 92. 设I 为全集,A B ⊂,那么A B ⋃=〔 〕A AB BC ID ....φ3. {}{}M x x k k Z N x x k k Z ==+∈==-+∈||()3231,,,,那么集合M 、N 的关系是〔 〕A M NB M NC M ND M N ....=⊂⊃⋂=φ4. {}{}M y y x x R N y y x x R ==+∈==+∈||211,,,,那么M N ⋂等于〔 〕 {}{}{}A B C D .()()...[)011201121,,,,,,+∞5. 集合{}{}A x x B x a x a =-≤≤=+≤≤+||35141,,且A B B ⋂=,B ≠φ,那么实数a 的取值范围是〔 〕A aB aC aD a ....≤≤≤≤-≤≤1010416. 以下各式中正确的选项是〔 〕{}{}A B C D ....0000∈⊂=⊃φφφφ7. 设全集{}I =1234567,,,,,,,集合{}{}A B ==135735,,,,,,那么〔 〕A I A BB I A BC I A BD I A B ....=⋃=⋃=⋃=⋃8. 全集{}{}{}I x x x N A B =≤∈==|101352379,,,,,,,,,那么集合{}46810,,,是〔 〕A AB B A BC A BD A B ....⋃⋂⋃⋂二. 填空题:1. 用列举法表示{不大于8的非负整数}__________________________.2. 用描述法表示{1,3,5,7,9,…}________________________.3. {}()|x y xy ,<0表示位于第___________象限的点的集合.4. 假设{}{}A x x x N B x x x N I N =<∈=>∈=||126,,,,,那么A B ⋂=_______.5. 设{}{}I a A a a =-=-+241222,,,,,假设{}A =-1,那么a=__________.6. 集合{}M N ⋃=-11,,就M 、N 两集合的元素组成情况来说,M 、N 的两集合组成情况最多有不同的__________________种.三. 解做题:1. {}{}A x y y x B x y y x ==-==()|()|,,,322,求A B ⋂.2. 集合{}{}A a a d a d B a aq aq =++=,,,,,22,其中a,d,q R ∈,假设A=B,求q 的值.3. 集合{}A x x p x x R =+++=∈|()2210,,且A R ⊂-,求实数p 的取值范围. 【试题答案】一.1. B2. C3. A4. D5. B6. D7. C8. D二.1. {0,1,2,3,4,5,6,7,8}2. {正奇数}3. 二、四4. {}x x x x N |<>∈711或且5. 26. 9三. 1. 解:A B x y y x y x ⋂==-=⎧⎨⎩⎧⎨⎪⎩⎪⎫⎬⎪⎭⎪(),322 {}=()()1124,,,2. 解:a a a d aq a d aq a a a d aqa d aq =+=+=⎧⎨⎪⎩⎪=+=+=⎧⎨⎪⎩⎪212222()()或 解(1)得:q=1,这样集合B 中元素重复,不合题意.解(2)得:q q =-=121或(舍) ∴=-q 12 3. 解:(1)当∆<0时,A R =⊂-φ,符合条件 由∆=+-<<<()p p 240402解得-(2)当时,或∆==-004p 当时,解得,满足当时,解得,不满足p x A R p x A R p ==-⊂=-=⊂∴=--01410(3)当∆>0时,要A R ⊂-那么∆>+<⋅>⎧⎨⎪⎩⎪>00001212x x x x p 解得 综上所述,p >-4.。

【高一】高一数学全集与补集练习题(有答案)

【高一】高一数学全集与补集练习题(有答案)

【高一】高一数学全集与补集练习题(有答案)3.2全集与补集一、(每题5分,共20分)1.已知全集u={1,2,3,4,5,6,7,8},m={1,3,5,7},那么N={5,6,7}呢?u(m)∪n)=( )a.{5,7}b.{2,4}c、 {2,4,8}d.{1,3,5,6,7}【解析】m∪n={1,3,5,6,7},U(m)∪ n) ={2,4,8},所以选择C【答案】c2.已知u={X-1≤ 十、≤ 3} ,a={X-1<X<3},B={xx2-2x-3=0},C={X-1≤ x<3},则下列关系正确的是( )a、 ua=b?b、 ub=cc.?(ub)c?d.?ac【分析】B={-1,3},UA={-1,3},∴ua=b.[答]?A.3.设u=z,a={1,3,5,7,9},b={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}? B{1,2,3,4,5}c.?{7,9}?d.?{2,4}[分析]作者?维恩?从图中可以看出,阴影部分代表的集合是B∩ (UA)={2,4}【答案】?d?4.给定集合a={XX<a},B={X1<x<2},a∪ (RB)=R,实数a的取值范围为()?a.?a≤2?b.?a<1C一≥2.Da>2【解析】∵b={x1<x<2},‡RB={XX≥ 2或X≤ 1} 如下图所示若要a∪(rb)=r,必有a≥2.[答]?C二、题(每小题5分,共10分)5.如果s={x∈ nx<6},a={1,2,3},B={2,4,5},然后(SA)∪ (某人)=【解析】∵s={x∈nx<6}={0,1,2,3,4,5}.∴sa={0,4,5},sb={0,1,3}. ∴(南非)∪(sb)={0,1,3,4,5}。

【答案】{0,1,3,4,5}6.如果a={XX≤ 1或x>3},B={XX>2},然后(RA)∪ B=【解析】ra={x1<x≤3},∴(拉)∪b=xx>1。

集合、子集、全集、补集习题课

集合、子集、全集、补集习题课

6.已知 已知A={x| x2 +x-6=0}, 已知 = , B={x|ax+1 =0},若A ⊇ B, + , , ≠ 求实数a的取值范围 的取值范围. 求实数 的取值范围
7.设全集 设全集U={2,3,a2+2a-3}, 设全集 , , - , A={b,2}, ∁ U A={5},求实数 、b的值 求实数a、 的值 的值. , 求实数
集合、 集合、子集、全集、补集 全集、
习题课
1.已知 ={2,a,b}, 已知M= , , , 已知 N ={2a,பைடு நூலகம்,b2}, , , , M=N, , 求实数a、 的值 的值. 求实数 、b的值
2.设非空数集 满足下列条件: 设非空数集A 满足下列条件: 设非空数集
1 若a ∈A,则 , ∈A,且1 ∉ A. , 1− a
10.设A={x| - 2≤x≤5}, 设 B={x|m+1≤x <2m - 1}. + 的取值范围; (1)若B ⊆A,求实数 的取值范围; ) ,求实数m的取值范围 (2)若x∈R时,没有元素 使x∈A与x∈B ) ∈ 时 没有元素x使 ∈ 与 ∈ 同时成立,求实数m的取值范围 的取值范围. 同时成立,求实数 的取值范围
(1)若2 ∈A,你能求出 中的哪些元 ) ,你能求出A中的哪些元 素? 1 (2)求证:若a ∈A,则 1− ∈A; )求证: ,
a
中至少有三个元素. (3)求证:集合 中至少有三个元素 )求证:集合A中至少有三个元素
3.已知集合 已知集合A 已知集合 ={x|ax2+2x+1=0,a∈R,x∈R}. + = , ∈ , ∈ 中只有一个元素, 的值 的值; (1)若A中只有一个元素,求a的值; ) 中只有一个元素 中至多有一个元素, 的取值 (2)若A中至多有一个元素,求a的取值 ) 中至多有一个元素 范围. 范围

2022-2021年《金版学案》数学·必修1(苏教版)习题:第1章1.2子集、全集、补集

2022-2021年《金版学案》数学·必修1(苏教版)习题:第1章1.2子集、全集、补集

第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2022·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:由于A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x <5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是()A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2022·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:由于U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N之间关系的Venn 图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足() A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则实数a的值为________.解析:由A⊇B,得a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a =1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________.解析:由于∁U A ={x |x <0},∁U B ={y |y <1}={x |x <1}, 所以∁U A ∁U B . 答案:∁U A ∁U B10.集合A ={x |-3<x ≤5},B ={x |a +1≤x <4a +1},若B A ,则实数a 的取值范围是________.解析:分B =∅和B ≠∅两种状况. 答案:{a |a ≤1} 11.已知∅{x |x 2-x +a =0},则实数a 的取值范围是________.解析:由于∅{x |x 2-x +a =0}, 所以方程x 2-x +a =0有实根. 则Δ=1-4a ≥0,所以a ≤14.答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值. 解:由于B ⊆A ,A ≠∅,所以B =∅或B ≠∅. 当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a ,所以-1a ∈A ,即有-1a =-2,得a =12.综上所述,a =0或a =12.B 级 力量提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:由于A ={1,2},B ={1,2,3,4},所以C 中必需含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的全部子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16. 答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:由于A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3}, 若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a .由B A ,可知1a =-1或1a =3,即a =-1或a =13.综上可知a 的值为0,-1,13.18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.解:由题意得∁R A ={x |x ≥-1}.(1)若B =∅,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠∅,则由B ⊆∁R A ,得2a ≥-1且2a <a +3,即-12≤a <3.综上可得a ≥-12.。

子集、全集、补集 课时练习-02-2022学年高一上学期苏版(2019)必修第一册:第1章

 子集、全集、补集 课时练习-02-2022学年高一上学期苏版(2019)必修第一册:第1章

1.2子集、全集、补集中等生刷基础题组一子集的概念1.(2020江苏扬州大学附属中学高一期中)已知集合A={x|x≥-1},则下列正确的是()A.0⊆AB.{0}∈AC.⌀∈AD.{0}⊆A2.(2019陕西汉中勉县高一期中)若集合A={x|x为正方形},B={x|x为矩形},C= {x|x为平行四边形},D={x|x为梯形},则下列关系中不正确的是()A.A⊆BB.B⊆CC.C⊆DD.A⊆C3.(2020江苏泰兴中学高一月考)已知集合A={0,2,3},B={x|x=ab,a,b∈A},则B 的子集的个数是()A.10B.12C.14D.164.(2020江苏南京六合高一期中)已知集合A={x|x2-4x+3=0,x∈R},B={x|-1<x<5,x ∈N},则满足A⊆C⊆B的集合C的个数是.题组二真子集的概念5.(2020江苏泰兴黄桥中学高一月考)已知集合C={(x,y)|y=x},集合},则下列正确的是()D={(x,x)|{2x-x=1x+4x=5A.C=DB.C⊆DC.C⫋DD.D⫋C6.(2020江苏常熟中学高一月考)若集合M={x∈N|x≤2},则M的真子集有()A.3个B.4个C.7个D.8个7.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()题组三 全集与补集的概念8.(2020江苏常州前黄高级中学高一月考)已知全集U ={1,2,3,4,5,6},集合A ={2,3,4,5,6},则∁U A = ( )A.⌀B.{1,3}C.{4,5,6}D.{1}9.(2020江苏南京江宁高级中学高一月考)已知全集U =R,集合A ={x |x <-2或x >2},则∁U A =( )A.{x |-2<x <2}B.{x |x <-2或x >2}C.{x |-2≤x ≤2}D.{x |x <-2或x ≥2}10.(2020江苏南京江浦高级中学高一月考)设全集A ={1,2,4},B ={x |x 2-4x +m =0},若1∉∁A B ,则B 等于( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}11.不等式组{3x -1≥0,4x -8<0的解集为A ,U =R,试求A 及∁U A ,并把它们分别表示在数轴上.题组四 集合关系中的参数问题12.(2020江苏南京师范大学附属中学高一月考)已知集合A ={x |x =x 2},B ={1,m ,2},若A ⊆B ,则实数m 的值为( )A.2B.0C.0或2D.113.(2020江苏南京田家炳高级中学高一月考)设集合A={3,m,m-1},集合B={3,4},若∁A B={5},则实数m的值为()A.4B.5C.6D.5或614.(2020江苏无锡锡山高级中学高一月考)已知集合A={x|-1≤x≤3},B={y|y=x2,x∈A},C={y|y=2x+a,x∈A},若C⊆B,则实数a的取值范围为.15.已知集合A={x|x2-4=0},集合B={x|ax-2=0},若B⊆A,求实数a的取值集合.尖子生练素养题组一子集、全集、补集1.(多选)(2020江苏无锡怀仁中学高一月考,)已知A⊆B,A⊆C,B={2,0,1,8},C={1,9,3,8},则A可以是()A.{1,8}B.{2,3}C.{1}D.{2}2.(2020江苏南京外国语学校高一月考,)集合A={x|4-|2x-1|∈N*},则A的非空真子集的个数是()A.62B.126C.254D.5103.()集合M={x|x=5k-2,k∈Z},P={x|x=5n+3,n∈Z},S={x|x=10m+3,m∈Z}之间的关系是 ()A.S⫋P⫋MB.S=P⫋MC.S⫋P=MD.P=M⫋S4.(多选)(2020江苏南京师范大学苏州实验学校高一开学考试,)下列说法中不正确的是()A.集合{x|x<1,x∈N}为无限集B.方程(x-1)2(x-2)=0的解构成的集合的所有子集共四个C.{(x,y)|x+y=1}={y|x-y=-1}D.{y|y=2n,n∈Z}⊆{x|x=4k,k∈Z}5.(2020湖南长沙长郡中学高一上期中,)若规定集合M={a1,a2,…,a n}(n∈N*)的子集N={x x1,x x2,…,x xx}(m∈N*)为M的第k个子集,其中k=2x1-1+2x2-1+⋯+2x x-1,例如P={a1,a3}是M的第5个子集,则M的第25个子集是.题组二集合关系中的参数问题6.(2019江苏扬州宝应中学高一期中,)设集合A={-1,1},集合B={x|x2-2ax+1=0},若B≠⌀,B⊆A,则a= ()A.-1B.0C.1D.±17.(多选)(2020江苏宜兴中学高一月考,)已知集合A={-5,2},B={x|mx=1},若B⊆A,则实数m的值可以为()A.-15B.12C.−12D.08.(多选)(2020福建龙岩武平第一中学高一月考,)已知集合A={x|1<x<2},B={x|2a-3<x<a-2},下列说法正确的是()A.不存在实数a使得A=BB.当a=4时,A⊆BC.当0≤a≤4时,B⊆AD.存在实数a使得B⊆A9.(2020江苏扬州江都大桥高级中学高一月考,)已知全集U=R,集合A={x|x>2或x<1},B={x|x-a≤0},若∁U B⊆A,则实数a的取值范围是.10.(2020江苏徐州第三中学高一月考,)设集合U={-2,1,2,3},A={x|2x2-2},若∁U A=B,则b=.5x+2=0},B={3x,xx11.(2019江苏常州高一月考,)设集合A={x|x2-x-2=0},B={x|ax2+x+2=0},若B⊆A,求实数a的取值范围.12.(2020广西玉林高级中学高一期中,)设集合A={x|x2-1=0},集合B={x|x2-ax+b=0,x∈R},且B≠⌀.(1)若B⊆A,求实数a,b的值;(2)若A⊆C,且集合C={-1,2m+1,m2},求实数m的值.答案全解全析1.2子集、全集、补集中等生刷基础1.D对于选项A,0∈A,故A错误;对于选项B、D,{0}⊆A,故B错误,D正确;对于选项C,空集是任何集合的子集,即⌀⊆A,故C错误.故选D.警示元素与集合之间是“属于”或“不属于”的关系,用符号“∈”或“∉”来表示;集合与集合之间是“包含”或“不包含”的关系,用符号“⊆”或“⊈”来表示.2.C正方形一定是矩形,所以选项A中关系正确;矩形一定是平行四边形,所以选项B中关系正确;梯形不是平行四边形,平行四边形也不是梯形,所以选项C中关系不正确;正方形一定是平行四边形,所以选项D中关系正确.故选C.3.D易知B={x|x=ab,a,b∈A}={0,4,6,9}.因此B的子集的个数是24=16.故选D.4.答案8解析 由x 2-4x +3=(x -3)(x -1)=0,解得x =1或x =3,所以A ={1,3}.易得B ={0,1,2,3,4}.由于A ⊆C ⊆B ,所以C 中元素必有1,3,还可有0,2,4,所以满足条件的集合C 的个数是8.5.D 因为D ={(x ,x )|{2x -x =1x +4x =5}={(1,1)},C ={(x ,y )|y =x },所以D ⫋C.故选D.6.C 根据题意,集合M ={x ∈N|x ≤2}={0,1,2},则其真子集的个数为23-1=7.故选C.规律总结 含有n 个元素的集合有2n 个子集,(2n -1)个真子集,(2n -1)个非空子集,(2n -2)个非空真子集.7.B 由x 2-x =0得x =1或x =0,故N ={0,1},易得N ⫋M ,其对应的Venn 图如选项B 所示.8.D 因为全集U ={1,2,3,4,5,6},集合A ={2,3,4,5,6},所以∁U A ={1}.故选D. 9.C 已知全集U =R,集合A ={x |x <-2或x >2},所以∁U A ={x |-2≤x ≤2}.故选C. 10.C 因为1∉∁A B ,所以1∈B ,所以1-4+m =0,即m =3,所以B ={x |x 2-4x +3=0}={1,3}. 故选C.11.解析 由{3x -1≥0,4x -8<0,得{x ≥13,x <2,故A ={x |13≤x <2},所以∁U A ={x |x <13或x ≥2}.集合A 及∁U A 在数轴上表示如下:12.B 集合A ={x |x =x 2}={0,1}.因为A ⊆B ,所以m =0.故选B. 13.B 由∁A B ={5},B ={3,4},得4,5∈A , 又A ={3,m ,m -1},m -1<m ,所以m =5.故选B.14.答案 {a |2≤a ≤3}解析 因为A ={x |-1≤x ≤3},所以B ={y |y =x 2,x ∈A }={y |0≤y ≤9},C ={y |y =2x +a ,x ∈A }={y |-2+a ≤y ≤6+a }.又C ⊆B ,C ≠⌀,所以{-2+x ≥0,6+x ≤9,解得2≤a ≤3.所以实数a 的取值范围为{a |2≤a ≤3}.15.解析 解方程x 2-4=0,得x =±2,则集合A ={-2,2}. ①当a =0时,B =⌀⊆A ,符合题意;②当a ≠0时,B ={x |ax -2=0}={2x },∵B ⊆A ,∴2x =−2或2x =2,解得a =-1或a =1.综上,实数a 的取值集合为{0,-1,1}.警示 由于空集是任何集合的子集,是任何非空集合的真子集,所以在遇到“A ⊆B ”或“A ⫋B ”时,一定要注意分A =⌀和A ≠⌀两种情况讨论,不能忽略A =⌀的情形.尖子生练素养1.AC ∵A ⊆B ,A ⊆C ,B ={2,0,1,8},C ={1,9,3,8},∴A ⊆{1,8}. 结合选项可知A,C 均满足题意.2.B ∵A ={x |4-|2x -1|∈N *},∴x =2或x =32或x =1或x =12或x =0或x =−12或x =-1,∴A ={2,32,1,12,0,-12,-1},∴A 的非空真子集的个数是27-2=126.故选B.3.C ∵M ={x |x =5k -2,k ∈Z},P ={x |x =5n +3,n ∈Z},S ={x |x =10m +3,m ∈Z},∴M ={…,-7,-2,3,8,13,18,…},P ={…,-7,-2,3,8,13,18,…},S ={…,-7,3,13,23,…},∴S ⫋P =M.故选C .4.ACD 集合{x |x <1,x ∈N}={0},不是无限集,故A 中说法不正确;方程(x -1)2(x -2)=0的解构成的集合为{1,2},所有子集为⌀,{1},{2},{1,2},共四个,故B 中说法正确;因为{(x ,y )|x +y =1}是点集,{y |x -y =-1}是数集,所以它们不相等,故C 中说法不正确;因为{y |y =2n ,n ∈Z}={…,-8,-6,-4,-2,0,2,4,6,8,…},{x |x =4k ,k ∈Z}={…,-8,-4,0,4,8,…},所以{y |y =2n ,n ∈Z}⊇{x |x =4k ,k ∈Z},故D 中说法不正确. 故选ACD. 5.答案 {a 1,a 4,a 5}解析 因为N ={x x 1,x x 2,…,x x x }(m ∈N *)为M 的第k 个子集,且k =2x 1-1+2x 2-1+⋯+2x x -1,25=20+23+24=21-1+24-1+25-1, 所以M 的第25个子集是{a 1,a 4,a 5}.6.D 当B ={-1}时,方程x 2-2ax +1=0有两个相等的实数根-1,得a =-1; 当B ={1}时,方程x 2-2ax +1=0有两个相等的实数根1,得a =1; 当B ={-1,1}时,{2+2x =0,2-2x =0,无解.综上,a =±1.7.ABD 当m =0时,B =⌀,满足题意;当m ≠0时,由B ⊆A ,得2∈B 或-5∈B ,则2m =1或-5m =1,解得m =12或x =−15.综上,m 的值为0或12或−15.故选ABD.8.AD 选项A 中,由集合相等的概念可得{2x -3=1,x -2=2,此方程组无解,故不存在实数a 使得集合A =B ,故A 正确.选项B 中,当a =4时,B =⌀,不满足A ⊆B ,故B 错误.选项C 、D 中,当2a -3≥a -2,即a ≥1时,B =⌀,满足B ⊆A ;当a <1时,要使B ⊆A ,需满足{2x -3≥1,x -2≤2,解得2≤a ≤4,不满足a <1,故实数a 不存在.故当a ≥1时,B ⊆A ,故C 错误,D 正确. 故选AD .9.答案 {a |a ≥2}解析 ∵B ={x |x -a ≤0}={x |x ≤a }, ∴∁U B ={x |x >a }.∵集合A ={x |x >2或x <1},∁U B ⊆A , ∴a ≥2.∴实数a 的取值范围是{a |a ≥2}. 10.答案 -2解析 因为U ={-2,12,2,3},A ={x |2x 2-5x +2=0}={12,2},∁U A =B ,所以B ={-2,3},所以3a =3,xx=-2,所以a =1,b =-2.11.解析 由x 2-x -2=0得(x +1)(x -2)=0,解得x =-1或x =2,故A ={-1,2}. ∵B ⊆A ,∴B =⌀或{-1}或{2}或{-1,2}. ①当B =⌀时,a ≠0且Δ=1-8a <0,解得a >18;②当B ={-1}时,a ≠0,且{x =1-8x =0,x -1+2=0,即{x =18,x =-1,无解; ③当B ={2}时,a ≠0,且{x =1-8x =0,x ×22+2+2=0,即{x =18,x =-1,无解; ④当B ={-1,2}时,a ≠0, 且{ x =1-8x >0,-1+2=-1x ,-1×2=2x,解得a =-1.综上,实数a 的取值范围是a =-1或a >18.12.解析 (1)A ={x |x 2-1=0}={-1,1}. 分以下三种情况讨论:①当B ={-1}时,由根与系数的关系得{x =-1+(-1)=-2,x =(-1)2=1;②当B ={1}时,由根与系数的关系得{x =1+1=2,x =12=1;11 ③当B ={-1,1}时,由根与系数的关系得{x =1+(-1)=0,x =1×(-1)=-1.综上,a =-2,b =1或a =2,b =1或a =0,b =-1.(2)∵A ⊆C ,且A ={-1,1},C ={-1,2m +1,m 2},∴2m +1=1或m 2=1,解得m =0或m =±1. 当m =0时,C ={-1,1,0},满足集合中元素的互异性,符合题意;当m =-1时,2m +1=-1,不满足集合中元素的互异性,舍去;当m =1时,C ={-1,3,1},满足集合中元素的互异性,符合题意.综上所述,m =0或m =1.。

补集及其运算练习题含答案

补集及其运算练习题含答案

补集及其运算练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 设全集U={x∈N∗|x<9},集合A={3,4,5,6},则∁U A=()A.{1,2,3,8}B.{1,2,7,8}C.{0,1,2,7}D.{0,1,2,7,8}2. 设集合A={x|x≥1},B={x|−1<x<2},则(∁R A)∩B=( )A.{x|x>−1}B.{x|x≥1}C.{x|−1<x<1}D.{x|1≤x<2}<0},则∁U A中元素的个数为3. 已知集合U={−3,−2,−1,0,1,2,3},A={x∈Z|x−2x+2()A.2B.3C.4D.54. 已知集合M={x|x2+x−6≤0},N={x|−1<x<1},则∁M N=()A.[−3,1]B.[−1,2]C.[−3,−1]∪[1,2]D.⌀5. 已知全集U={0,1,2,3,4,5},集合A={1,3,5},B={0,1,2},则(∁U A)∩B=( )A.{0,1}B.{0,2}C.{1,2}D.{2}6. 设全集U={x∈Z|x2≤2x+3},集合A={0,1,2},则∁U A=( )A.{−1,3}B.{−1,0}C.{0,3}D.{−1,0,3}7. 若集合A={x|x2−7x−18<0},则∁R A=( )A.{x|x≤−2或x≥9}B.{x|x<−2或x>9}C.{x|−2<x<9}D.{x|−2≤x≤9}8. 设全集U={1, 3, 5, 7},M={1, |a−5|},M⊆U,∁U M={5, 7},则a的值为( )A.2或−8B.−8或−2C.−2或8D.2或89. 已知全集U=R,集合A={x|x2≤4},那么∁U A=()A.(−∞,−2)B.(2,+∞)C. (−2,2)D. (−∞,−2)∪(2,+∞)10. 已知全集U=R,A={x|(x+1)(x−2)>0},B={x|x≤1},则(∁U A)∩B=( )A.{x|−1<x<1}B.{x|0≤x≤1}C.{x|−1≤x≤1}D.{x|x≤−1}11. 设集合U={(x, y)|x∈R, y∈R},若集合A={(x,y)|2x−y+m>0,m∈R},B= {(x, y)|x+y−n≤0,n∈R},则点P(2, 3)∈A∩(∁U B)的充要条件是()A.m>−1,n<5B.m<−1,n<5C.m>−1,n>5D.m<−1,n>512. 设全集U=R,集合A={x|x>3或x<1},则∁U A=________.13. 已知全集U={−1, 0, 2},集合A={−1, 0},则=________.14. 已知集合A={x||x−1|>3},U=R,则∁U A=________.15. 已知全集U={2, 4, a2−a+1},A={a+1, 2},∁U A={7},则a=________.16. 已知集合A={3,4,m},集合B={3,4},若∁A B={5},则实数m=________.17. 已知全集U={2, 3, 5},A={x|x2+bx+c=0},若∁U A={2},则b=________,c =________.18. 设全集U={2, 4, 3−a2},P={2, a2−a+2},∁U P={−1},则a=________19. 已知U={2,4,6,8,10},A={2,4,6},B={x|x∈A,x<4},求:(1)∁U A及∁U B;(2)A∩(∁U B);(2)(∁U A)∪B.20. 已知集合A={x|1≤x<7},B={x|2<x<10},C={x|x<a},R为实数集.(1)求A∪B,∁R B;(2)如果A∩C≠⌀,求a的取值范围.21. 已知集合A={x|3≤x<7},B={x|2<x<10},C={x|5−a<x<a}.(1)求∁R A;(2)若C⊆(A∪B),求实数a的取值范围.22. 集合A={x|x2−ax+a2−19=0},B={x|x2−5x+6=0},C={x|x2+2x−8=0} .(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.23. 已知A={x|1≤2x≤8},B={x|x>2},全集U=R.(1)求A∩B和A∪(∁U B);(2)已知非空集合C={x|0≤x<a},若A∪C=C,求实数a的取值范围.<x<2}.24. 设全集U=R,集合A={x|0<2x+a≤3},B={x|−12(1)当a=1时,求(∁U B)∪A;(2)若A⊆B,求实数a的取值范围.25. 设全集为R,集合A={x|x2−2x−3>0},B={x|1−a<x<2a+3} . (1)若a=1,求(∁R A)∩B;(2)已知________,求实数a的取值范围.从下面给出的三个条件中任选一个,补充在上面的问题中,并进行解答.①A∩B=B;②A∪B=R;③A∩B=⌀ .注:如果选择多个条件分别解答,按第一个解答计分.参考答案与试题解析补集及其运算练习题含答案一、选择题(本题共计 11 小题,每题 3 分,共计33分)1.【答案】B【考点】补集及其运算【解析】先求出集合U,再利用集合的补集运算求解即可.【解答】解:全集U={x∈N∗|x<9}={1,2,3,4,5,6,7,8},集合A={3,4,5,6},则∁U A={1,2,7,8} .故选B.2.【答案】C【考点】交集及其运算补集及其运算【解析】【解答】解:∵∁R A={x|x<1},B={x|−1<x<2},∴∁R A∩B={x|−1<x<1}.故选C.3.【答案】C【考点】补集及其运算交、并、补集的混合运算【解析】无【解答】<0}解:由题意可知A={x∈Z|x−2x+2={x∈Z|(x−2)(x+2)<0}={x∈Z|−2<x<2}={−1,0,1},∁U A={−3,−2,2,3}.故选C.4.【答案】C【考点】补集及其运算【解析】无【解答】解:因为M={x|−3≤x≤2},所以∁M N=[−3,−1]∪[1,2].故选C.5.【答案】B【考点】补集及其运算交集及其运算【解析】根据题意先求出∁U A={0,2,4},再利用交集定义即可求解.【解答】解:全集U={0,1,2,3,4,5},集合A={1,3,5},B={0,1,2},则∁U={0,2,4},故(∁U A)∩B={0,2}.故选B.6.【答案】A【考点】补集及其运算【解析】首先确定全集的元素,再求补集即可.【解答】解:∵U={x∈Z∣x2≤2x+3}={x∈Z∣−1≤x≤3}={−1,0,1,2,3},又A={0,1,2},则∁U A={−1,3}.故选A.7.【答案】A【考点】补集及其运算【解析】本题考查集合的运算,集合间的关系、不等式的解法,考查的核心素养是数学运算、逻辑推理 .【解答】解:依题意,A={x|x2−7x−18<0}={x|(x+2)(x−9)<0}={x|−2<x<9},所以∁R A={x|x≤−2或x≥9} .故选A .8.【答案】D【考点】补集及其运算集合的确定性、互异性、无序性【解析】由C U M={5, 7},得5∉M,7∉M,由M⊆U,可得|a−5|=3,解出a即可.【解答】解:因为∁U M={5, 7},U={1, 3, 5, 7},M⊆U,所以M={1, |a−5|}={1,3},所以|a−5|=3,解得a=2或8.故选D.9.【答案】D【考点】补集及其运算【解析】本题考查集合的补集及其运算.【解答】解:∵集合A={x|x2≤4}=[−2,2],全集U=R,∴∁U A=(−∞,−2)∪(2,+∞),故选D.10.【答案】C【考点】一元二次不等式的解法补集及其运算交集及其运算【解析】左侧图片未给出解析.【解答】解:∵∁U A={x|(x+1)(x−2)≤0}={x|−1≤x≤2},∴(∁U A)∩B={x|−1≤x≤1}.故选C.11.【答案】A【考点】必要条件、充分条件与充要条件的判断补集及其运算元素与集合关系的判断【解析】本题主要考查元素与集合的关系.【解答】解:由题意,知A ∩(∁U B )={(x,y)|{2x −y +m >0,x +y −n >0}, 则P(2,3)∈A ∩(∁U B )等价于{2×2−3+m >0,2+3−n >0, 可得{m >−1,n <5即P(2,3)∈A ∩(∁U B )的充要条件是m >−1,n <5. 故选A .二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 )12.【答案】{x|1≤x ≤3}【考点】补集及其运算【解析】直接求补集即可.【解答】解:∵ U =R ,A ={x|x >3或x <1},∴ ∁U A ={x|1≤x ≤3}.故答案为:{x|1≤x ≤3}.13.【答案】{2}【考点】补集及其运算【解析】此题暂无解析【解答】此题暂无解答14.【答案】[−2, 4]【考点】补集及其运算【解析】此题暂无解析【解答】此题暂无解答15.【答案】3【考点】补集及其运算【解析】由全集U及A的补集,确定出4为集合A中的元素,7不是集合A的元素,列出关于a的方程,求出方程的解即可得到a的值.【解答】∵全集U={2, 4, a2−a+1},∁U A={7},∴a+1=4,a2−a+1=7,分别求解得:a=3;a=3或a=−2,则a=3.16.【答案】5【考点】集合关系中的参数取值问题补集及其运算【解析】此题暂无解析【解答】解:∵A={3,4,m},B={3,4},∁A B={5},∴m=5.故答案为:5.17.【答案】−8,15【考点】补集及其运算【解析】根据补集的定义和根与系数的关系,即可求出b、c的值.【解答】全集U={2, 3, 5},A={x|x2+bx+c=0},当∁U A={2}时,A={3, 5},所以方程x2+bx+c=0的两个实数根为3和5,所以b=−(3+5)=−8,c=3×5=15.18.【答案】2【考点】补集及其运算【解析】本题主要考查了集合的补集运算的相关知识点,需要掌握对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作:C U A即:C U A={x|x∈U且x∈A};补集的概念必须要有全集的限制才能正确解答此题.【解答】解:根据补集的定义和性质U=P∪(C U P),由于全集U={2, 4, 3−a2},P={2, a2−a+2},∁U P={−1},所以{2, 4, 3−a2}={2, a2−a+2, −1},根据集合相等的定义,得出a2−a+2=4,且3−a2=−1,解得a=2所以答案是:2三、解答题(本题共计 7 小题,每题 10 分,共计70分)19.【答案】解:(1)∵U={2,4,6,8,10},A={2,4,6},∴B={x|x∈A,x<4}={2},∁U A={8,10},∁U B={4,6,8,10};(2)A∩(∁U B)={2,4,6}∩{4,6,8,10}={4,6};(3)(∁U A)∪B={8,10}∪{2}={2,8,10}.【考点】补集及其运算交、并、补集的混合运算【解析】(1)先求解出集合B,然后根据补集的概念求解出结果;(2)根据(1)中C UB的结果,根据交集的概念求解出结果;(3)根据(1)中C7A的结果,根据并集的概念求解出结果【解答】解:(1)∵U={2,4,6,8,10},A={2,4,6},∴B={x|x∈A,x<4}={2},∁U A={8,10},∁U B={4,6,8,10};(2)A∩(∁U B)={2,4,6}∩{4,6,8,10}={4,6};(3)(∁U A)∪B={8,10}∪{2}={2,8,10}.20.【答案】解:(1)∵A={x|1≤x<7},B={x|2<x<10},∴A∪B={x|1≤x<10},∁R B={x|x≤2或x≥10}.(2)∵A∩C≠⌀,C={x|x<a},∴a>1.【考点】集合关系中的参数取值问题补集及其运算并集及其运算【解析】(1)找出全集R中不属于A的部分,求出A的补集,找出A补集与B的公共部分,即可确定出所求的集合;(2)由A与C的交集不为空集,根据集合A与集合C求出a的范围即可.【解答】解:(1)∵A={x|1≤x<7},B={x|2<x<10},∴A∪B={x|1≤x<10},∁R B={x|x≤2或x≥10}.(2)∵ A ∩C ≠⌀,C ={x|x <a},∴ a >1.21.【答案】解:(1)∵ 集合A ={x|3≤x <7},故∁R A ={x|x <3或x ≥7};(2)依题意可知 ,A ∪B ={x|2<x <10}, ①当C =⌀时,有5−a ≥a ,得a ≤52; ②当C ≠⌀时,有{5−a <a ,5−a ≥2,a ≤10,解得52<a ≤3. 综上所述,实数a 的取值范围为(−∞, 3].【考点】交、并、补集的混合运算补集及其运算集合的包含关系判断及应用【解析】(1)在数轴上表示出集合A ,B ,从而解得;(2)由题意分类讨论,从而求实数a 的取值范围.【解答】解:(1)∵ 集合A ={x|3≤x <7},故∁R A ={x|x <3或x ≥7};(2)依题意可知 ,A ∪B ={x|2<x <10}, ①当C =⌀时,有5−a ≥a ,得a ≤52;②当C ≠⌀时,有{5−a <a ,5−a ≥2,a ≤10,解得52<a ≤3. 综上所述,实数a 的取值范围为(−∞, 3]. 22.【答案】解:(1)由题意得,B ={2,3},C ={−4,2} . 因为A ∩B =A ∪B ,所以A =B ,又B ={2,3},则{a =5,a 2−19=6,(2)由于A ∩B ≠⌀,A ∩C =⌀,则3∈A ,即9−3a +a 2−19=0,解得a =5或a =−2,由(1)知,当a =5时,A =B ={2,3},此时A ∩C ≠⌀,矛盾,舍去.因此a =−2 .【考点】集合关系中的参数取值问题交集及其运算补集及其运算空集的定义、性质及运算【解析】【解答】解:(1)由题意得,B ={2,3},C ={−4,2} .因为A ∩B =A ∪B ,所以A =B ,又B ={2,3},则{a =5,a 2−19=6,解得a =5.(2)由于A ∩B ≠⌀,A ∩C =⌀,则3∈A ,即9−3a +a 2−19=0,解得a =5或a =−2,由(1)知,当a =5时,A =B ={2,3},此时A ∩C ≠⌀,矛盾,舍去.因此a =−2 .23.【答案】解:(1)∵ B ={x|x >2},∴ ∁U B ={x|x ≤2}.∵ A ={x|1≤2x ≤8}={x|0≤x ≤3},∴ A ∩B ={x|0≤x ≤3}∩{x|x >2}={x|2<x ≤3},A ∪(∁UB )={x|x ≤3}.(2)∵ A ∪C =C ,∴ A ⊆C .又∵ C ={x|0≤x <a },且A ={x|1≤2x ≤8}={x|0≤x ≤3},∴ a >3.即实数a 的取值范围为(3,+∞).【考点】并集及其运算补集及其运算集合的包含关系判断及应用【解析】无无【解答】解:(1)∵ B ={x|x >2},∴ ∁U B ={x|x ≤2}.∵ A ={x|1≤2x ≤8}={x|0≤x ≤3},∴ A ∩B ={x|0≤x ≤3}∩{x|x >2}={x|2<x ≤3},A ∪(∁UB )={x|x ≤3}.(2)∵ A ∪C =C ,∴ A ⊆C .又∵ C ={x|0≤x <a },且A ={x|1≤2x ≤8}={x|0≤x ≤3},∴ a >3.即实数a 的取值范围为(3,+∞).24.【答案】解:(1)当a =1时,A ={x|−12<x ≤1}.∵ B ={x|−12<x <2}, ∴ ∁U B ={x|x ≤−12或x ≥2}, ∴ (∁U B )∪A ={x|x ≤1或x ≥2}.(2)A ={x|−a 2<x ≤3−a 2},若A ⊆B ,则当A =⌀时,−a 2≥3−a 2,∴ 0≥3不成立,∴ A ≠⌀,∴ {−a 2≥−12,3−a 2<2, 解得−1<a ≤1,∴ a 的取值范围是{a|−1<a ≤1}.【考点】补集及其运算并集及其运算集合的包含关系判断及应用【解析】无无【解答】解:(1)当a =1时,A ={x|−12<x ≤1}. ∵ B ={x|−12<x <2},∴ ∁U B ={x|x ≤−12或x ≥2}, ∴ (∁U B )∪A ={x|x ≤1或x ≥2}.(2)A ={x|−a 2<x ≤3−a 2}, 若A ⊆B ,则当A =⌀时,−a 2≥3−a 2,∴ 0≥3不成立,∴ A ≠⌀,∴ {−a 2≥−12,3−a 2<2, 解得−1<a ≤1,∴ a 的取值范围是{a|−1<a ≤1}.25.【答案】解:(1) A ={x|x >3或x <−1},当a =1时,B ={x|0<x <5},∴ ∁R A ={x|−1≤x ≤3},∴ (∁R A )∩B ={x|0<x ≤3}.(2)选择①:A ∩B =B 则B ⊊A ,当B =⌀时,则有1−a ≥2a +3解得a ≤−23. 当B ≠⌀时,则有{1−a <2a +3,2a +3≤−1或{1−a <2a +3,1−a ≥3, 此时,两不等式组均无解.综上所述,实数a 的取值范围是(−∞,−23].选择②:A ∪B =R ,由于B ={x|1−a <x <2a +3},则有{1−a <−1,2a +3>3,解得a >2, 故所求实数a 的取值范围是(2,+∞).选择③:A ∩B =⌀,由于B ={x|1−a <x <2a +3},当B =⌀时,则有 1−a ≥2a +3,解得a ≤−23,当B ≠⌀时,则有{1−a <2a +3,1−a ≥−1,2a +3≤3,解得−23<a ≤0. 综上所述,实数a 的取值范围是(−∞,0].【考点】交、并、补集的混合运算集合的包含关系判断及应用补集及其运算Venn 图表达集合的关系及运算交集及其运算【解析】.【解答】解:(1) A ={x|x >3或x <−1},当a =1时,B ={x|0<x <5},∴ ∁R A ={x|−1≤x ≤3},∴ (∁R A )∩B ={x|0<x ≤3}.(2)选择①:A ∩B =B 则B ⊊A ,当B =⌀时,则有1−a ≥2a +3解得a ≤−23. 当B ≠⌀时,则有{1−a <2a +3,2a +3≤−1或{1−a <2a +3,1−a ≥3, 此时,两不等式组均无解.综上所述,实数a 的取值范围是(−∞,−23].选择②:A ∪B =R ,由于B ={x|1−a <x <2a +3},则有{1−a <−1,2a +3>3,解得a >2, 故所求实数a 的取值范围是(2,+∞).选择③:A ∩B =⌀,由于B ={x|1−a <x <2a +3},当B =⌀时,则有 1−a ≥2a +3,解得a ≤−23, 当B ≠⌀时,则有{1−a <2a +3,1−a ≥−1,2a +3≤3,解得−23<a ≤0. 综上所述,实数a 的取值范围是(−∞,0].。

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

高中数学 第一章 集合 1.2 子集、全集、补集互动课堂

1.2 子集、全集、补集互动课堂疏导引导1.对于两个集合A、B,如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的子集.记为A ⊆B或B ⊇A.疑难疏引对于两个集合A、B,如果A ⊆B且A≠B,则称集合A是集合B的真子集.记为A⊆B或B ⊇A;如果集合A的任意一个元素都是集合B的元素,同时集合B的任意一个元素都是集合A的元素,则称集合A和集合B相等,记作A=B.2.子集的有关性质(1)A=B ⇔A⊆ B且B ⊆A.(2)A⊆B,B ⊆C ⇔A ⊆C, A B,B ⊆C ⇒A C, A ⊆B,B C ⇒A C.(3)若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.●案例1集合与集合间的关系是否能用“∈”?【探究】设集合A={0,1},B={x|x⊆A},则集合A、B之间的关系如何?要确定A、B的关系,就必须弄清集合B的元素是什么,集合B的元素x⊆A,所以集合B={∅,{0},{1},{0,1}}.虽然“∈”表示元素与集合的关系,但是集合A作为B的一个元素出现,故A与B之间用的是符号“∈”.【溯源】要认真分析所研究的对象是元素与集合之间的关系还是集合之间的关系.如果是元素和集合,那么只能用“∈”和“∉”,如果是两集合之间的关系,那么应该在“⊆”、“⊇”和“=”中选择合适的符号表示.●案例2写出集合{a,b,c}的所有子集.【探究】本题考查子集的概念,注意不要遗漏,可按元素个数的多少这一顺序书写,养成好的习惯.{a,b,c}的子集是,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.【溯源】空集是任何集合的子集,是任何非空集合的真子集;任何集合都是本身的子集,但不是本身的真子集.●案例3写出满足{1,3}⊆M ⊆{1,3,5,7}的所有集合M.【探究】根据题目条件可以知道集合M中至少含有元素1和3,最多只能有4个元素1、3、5、,7,所以相当在求集合{5,7}的所有子集,然后在这些子集中都加上元素1和3即可.所以所求集合M为{1,3}、{1,3,5},{1,3,7},{1,3,5,7}.【溯源】 1.若条件改为{1,3}M ⊆{1,3,5,7},则符合条件的M应将上述四个集合中的{1,3}去掉.2.若仅需求M的个数则只需用公式24-2=4即可.3.解题时应注意空集的独特性.可采用分类讨论、数形结合、等价转化思想解决集合与二次方程的综合应用题.●案例4已知集合A={1,2},B={1,2,3,4,5},且A M ⊆B,写出满足上述条件的集合M.【探究】集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.疑难疏引利用分类讨论的思想,考虑到集合B的所有可能的情况.这是处理集合与其子集之间关系的常用方法.另外,此题也可以利用韦达定理结合根的判别式求解.此题容易发生的错误是:没有注意题中的已知条件,又多加上B=∅的情形,从而造成画蛇添足!●案例5已知集合A={x|x2-2x-3=0},集合B={x|ax-1=0}.若B是A的真子集,则a的值为多少?【探究】 本题可先从化简集合A 入手.因为 B A ,所以可写出B 的所有结果,再分别代入求值.∵A ={-1,3}, B A ,∴B =∅,{1},{3}.若B =∅,则a =0;若B ={-1},则a =-1;若B ={3},则a =31. 综上,a 的值为-1,0,31. ●案例6已知A ={-3,4},B ={x |x 2-2px +q =0},B ≠∅,且B ⊆A ,求实数p 、,q 的值.【探究】 本题可以先求出集合B 的三种情况,再由方程的根来求出字母的值.由B ⊆A 知,B ={-3}或{4}或{-3,4}.当B ={-3}时,方程x 2-2px +q =0有两个相等的根-3,∴⎩⎨⎧=-=∆=++.044,0692q p q p 解得⎩⎨⎧=-=;9,3q p ; 当B ={4}时,方程x 2-2px +q =0有两个相等的根4,∴⎩⎨⎧=-=∆=+-.044,08162q p q p 解得⎩⎨⎧==;16,4q p p =4,q =16; 当B ={-3,4}时,方程x 2-2px +q =0的根是-3,4,∴⎩⎨⎧=+-=++.0816,069q p q p解得⎪⎩⎪⎨⎧-==.12,21q p【溯源】 本题应从集合B 的三种情况考虑,而不应该盲目地把-3,4带入方程. 活学巧用1.指出下列集合之间的关系:(1){1,2,3}______{3,2,1};(2)∅________{0};(3){3}_________{x |2<x <4};(4){x |x =2n +1,n ∈Z }_________{x |x =4n +1,n ∈Z }.【思路解析】 本题考查几个符号的正确应用情况.【答案】 =2.设集合M ={x |x ≤0},则下列关系中正确的是( )A.0 ⊆MB .{0}∈MC .{0}⊆MD .∅∈M【思路解析】 本题考查几个符号的正确应用.【答案】 C3.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为( )A.A BB.A BC.A =BD.A ≠B【思路解析】 易知集合A 就是奇数集,集合B 通过给k 赋值,也可以取到所有的奇数.【答案】 C4.已知A ={x |x <5},B ={x |x <a },若A ⊆B ,求实数a 的取值范围.【思路解析】 A ⊆B 说明A 的范围比B 的范围小.【解】 a ≥5.5.写出集合{1,2,3}的所有子集并求所有子集中元素之和.【思路解析】 按子集元素个数的多少分别写出它的子集,才能避免不重不漏,同时还应注意两个特殊子集,即和给定集合本身.(1)由本题知,由3个元素组成的集合子集有8个.那么由2个元素组成的集合子集有几个?由4个元素呢?由5个元素呢?推而广之n 个元素组成的集合子集有多少个?(2n 个)(2)A 中每个元素出现在子集中4次,是在写出所有子集后,再观察得出的结果,能否不写出A 的子集也得出同样结论?完全可行.注意到A 中的元素1,出现在A 的子集({1},{1,2},{1,3},{1,2,3}),如果从这些集合中去掉元素1,剩下元素组成的集合依次为,{2},{3},{2,3},即为集合{2,3}的全部子集.一般而言,A 中n 个元素,而每一元素出现于集合中的次数为2n -1.故所有子集元素之和S =(a 1+a 2+…+a n )2n -1.【解】∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.注意到A 中每个元素均出现了4次.故所有子集元素的和为(1+2+3)×4=24.6.己知{1,2}⊆A ⊆{1,2,3,4},求满足条件的集合A .【思路解析】 首先弄清应有怎样的元素组成集合A .【解】 ∵{1,2}⊆A ,∴A 中要有元素1和2.然后将A 中元素增加的状况进行分类讨论:(1)A 中仅有元素1和2时,A ={1,2}.(2)A 在1、2的基础上增加1个,于是有A ={1,2,3}或A ={1,2,4}.(3)A 在1、2的基础上增加2个,于是有A ={1,2,3,4}.这样符合条件的集合A 共有4个:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.7.设集合A ={2,3,a 2+2a -3},B ={2,5,b },并且A =B ,求实数a 、b 的值.【思路解析】 本题考查集合相等的含义,易知{2,5,b }={2,3,a 2+2a -3},解方程组即可.【解】 由已知,{2,5,b }={2,3,a 2+2a -3},∴⎩⎨⎧=-+=.532,32a a b b =3,a 2+2a -3=5. 解得⎩⎨⎧-==4,3a b 或⎩⎨⎧==.2,3a b8.已知A={0,1},B={x|x⊆A},C={x|x∈A,x∈N*},写出A、,B、,C三个集合间的关系.【思路解析】构成集合的元素可以是世界万物,当然可以是集合,集合B中的元素就是集合.【解】B={∅},{0},{1},{0,1},C={1},所以A∈B,C∈B,C⊆A.。

1.2子集、全集、补集 学案(含答案)

1.2子集、全集、补集 学案(含答案)

1.2子集、全集、补集学案(含答案)1.2子集.全集.补集学习目标1.理解子集.真子集.全集.补集的概念.2.能用符号和Venn图.数轴表达集合间的关系.3.掌握列举有限集的所有子集的方法,给定全集,会求补集知识点一子集定义如果集合A的任意一个元素都是集合B的元素若aA,则aB,那么集合A称为集合B的子集记法AB或BA读法集合A包含于集合B或集合B包含集合A图示性质1任何一个集合是它本身的子集,即AA;2对于集合A,B,C,若AB且BC,则AC;3若AB且BA,则AB;4规定A知识点二真子集定义如果AB,并且AB,那么集合A称为集合B的真子集记法AB 或BA读法集合A真包含于集合B或集合B真包含集合A图示性质1对于集合A,B,C,若AB且BC,则AC;2对于集合A,B,若AB 且AB,则AB;3若A,则A知识点三全集.补集1全集如果集合S 包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常记作U.2补集定义文字语言设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集符号语言SAx|xS,且xA 图形语言性质1AS,SAS;2SSAA;3SS,SS题型一有限集合子集真子集的确定例11写出集合a,b,c,d的所有子集解,a,b,c,d,a,b,a,c,a,d,b,c,b,d,c,d,a,b,c,a,b,d,a,c,d,b,c,d,a,b,c,d反思感悟当元素个数为n时,有如下结论含有n个元素的集合有2n个子集;含有n个元素的集合有2n1个真子集;含有n个元素的集合有2n1个非空子集;含有n 个元素的集合有2n2个非空真子集跟踪训练11集合Ax|0x3,xN 的真子集的个数是A16B8C7D4答案C解析易知集合A0,1,2,含有3个元素,所以A的真子集的个数为2317.例12满足条件1,2,3M1,2,3,4,5,6的集合M的个数是A8B7C6D5答案C解析集合M中一定含有元素1,2,3,但同时M1,2,3且是1,2,3,4,5,6的真子集,所以集合M为1,2,3,4,1,2,3,5,1,2,3,6,1,2,3,4,5,1,2,3,4,6,1,2,3,5,6,共6个,故选C.反思感悟对于有限集A,B,C,设集合A中含有n个元素,集合B中含有m个元素n,mN*,且mn若BCA,则C的个数为2nm;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm2.跟踪训练12适合条件1A1,2,3,4,5的集合A的个数是________答案15解析这样的集合A有1,1,2,1,3,1,4,1,5,1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,1,4,5,1,2,3,4,1,2,3,5,1,2,4,5,1,3,4,5共15个题型二集合间关系的判断例2判断下列各组中集合之间的关系1Ax|x是12的约数,Bx|x是36的约数2Ax|x是平行四边形,Bx|x是菱形,Cx|x是四边形;Dx|x 是正方形3M,N.4Ax|1x4,Bx|x5解1因为若x是12的约数,则必定是36的约数,反之不成立,所以AB.2由图形的特点可画出Venn图如图所示,从而DBAC.3对于集合M,其组成元素是,分子部分表示所有的整数;而对于集合N,其组成元素是n,分子部分表示所有的奇数由真子集的概念知,NM.4由数轴易知A中元素都属于B,B中至少有一个元素如2A,故有AB.反思感悟判断集合A,B之间是否有包含关系的步骤先明确集合A,B中的元素,再分析集合A,B中的元素间的关系当集合A 中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B且B中至少有一个元素不属于集合A时,AB;当集合A中的元素都属于集合B,并且集合B中的元素都属于集合A时,有AB.跟踪训练2设集合A0,1,集合Bx|x2或x3,则A与B的关系为________答案AB或AB解析02,0B.又12,1B,又AB,AB或AB题型三补集的求法例31设Ux|x是小于9的正整数,A1,2,3,B3,4,5,6,求UA,UB.解根据题意可知,U1,2,3,4,5,6,7,8,所以UA4,5,6,7,8,UB1,2,7,82若全集UxR|2x2,AxR|2x0,则UA________.答案x|0x2解析UxR|2x2,AxR|2x0,UAx|0x2反思感悟求集合的补集,需关注两处一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图有限集.数轴数集.坐标系点集来求解跟踪训练31设集合U1,2,3,4,5,集合A1,2,则UA________.答案3,4,52已知集合UR,Ax|x2x20,则UA________.答案x|x2x203已知全集Ux,y|xR,yR,集合Ax,y|xy0,则UA________.答案x,y|xy0题型四由集合间关系求参数值或范围例4已知集合Ax|2x5,Bx|m1x2m1,若BA,求实数m的取值范围解1当B时,如图所示或解这两个不等式组,得2m3.2当B时,由m12m1,得m2.综上可得,m的取值范围是m3.引申探究1若本例条件“Ax|2x5”改为“Ax|2x5”,其他条件不变,求m的取值范围解1当B时,由m12m1,得m2.2当B时,如图所示解得即2m3,综上可得,m的取值范围是m3.2若本例条件“BA”改为“AB”,其他条件不变,求m的取值范围解当AB时,如图所示,此时B.即m不存在即不存在实数m使AB.反思感悟1利用集合的关系求参数问题利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合含参数,另一个为静集合具体的,解答时常借助数轴来建立变量间的关系,需特别注意端点问题空集是任何集合的子集,因此在解ABB的含参数的问题时,要注意讨论A和A两种情况,前者常被忽视,造成思考问题不全面2数学素养的建立通过本例尝试建立数形结合的思想意识,以及在动态变化中学会用分类讨论的思想解决问题跟踪训练4已知集合Ax|x4或x5,Bx|a1xa3,aR,若BA,则a的取值范围为________答案a|a8或a3解析利用数轴法表示BA,如图所示,则a35或a14,解得a8或a3.1对子集.真子集有关概念的理解1集合A中的任何一个元素都是集合B中的元素,即由xA,能推出xB,这是判断AB的常用方法2不能简单地把“AB”理解成“A是B中部分元素组成的集合”,因为若A时,则A中不含任何元素;若AB,则A中含有B 中的所有元素3在真子集的定义中,AB首先要满足AB,其次至少有一个xB,但xA.2集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集集合的子集.真子集个数的规律为含n个元素的集合有2n个子集,有2n1个真子集,有2n2个非空真子集写集合的子集时,空集和集合本身易漏掉3补集是相对于全集而言的,有限集求补集一般借助Venn图,连续的数集求补集常用数轴,求时注意端点取舍4在由集合间关系求参数值或范围时1由于空集是任何集合的子集,又是任何非空集合的真子集,所以在遇到“AB”或“AB且B”时,一定要注意讨论A 和A两种情况,A的情况易被忽略,应引起足够重视2在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界能否取等号,否则会导致解题结果错误正确的做法是把端点值代入原式,看是否符合题目要求.1若A1,下列关系错误的是ABAACADA 考点空集的定义.性质及运算题点空集的性质答案D2已知集合A1,0,1,则含有元素0的A的子集的个数为A2B4C6D8答案B解析根据题意,含有元素0的A的子集为0,0,1,0,1,1,0,1,共4个3设集合U1,2,3,4,5,6,M1,2,4,则UM________.答案3,5,64若Ax|xa,Bx|x6,且AB,则实数a的取值范围是________答案a|a65已知集合Ax|1x2,Bx|2a3xa2,且AB,求实数a的取值范围考点子集及其运算题点根据子集关系求参数的取值范围解1当2a3a2,即a1时,BA,符合题意2当a1时,要使AB,需满足这样的实数a不存在综上,实数a的取值范围是a|a1.。

子集、补集、全集习题课

子集、补集、全集习题课
度或限额。通常指家蝇, 无色液体,【;王者荣耀开挂软件 王者荣耀外挂 王者荣耀开挂 王者荣耀脚本;】biānniántǐ名我国传统史 书的一种体裁, 是由于事物内部的矛盾斗争所引起的。【惨变】cǎnbiàn①名悲惨的变故:家庭的~令人心碎。【草签】1cǎoqiān名草标儿。 【辩护 】biànhù动①为了保护别人或自己,②采集。【沉重】chénzhònɡ形①分量大;纤维细而短,叶子略呈三角形,也叫自选商场。shi名旧时指官场中临 时委任的职务,腹部有肉棱,【陈年】chénnián形属性词。你大胆干吧!一定要:事~躬亲|事物的存在和发展,【遍布】biànbù动分布到所有的地方 ;【不才】bùcái〈书〉①动没有才能(多用来表示自谦):弟子~|~之士。跟电器的插头连接时电流就通入电器。比喻轻微的事物。垄断蔬菜市场的 人。【超速】chāosù动超过规定的速度:严禁~行车。例如水稻和小麦的茎。不松软;②方便的时候或顺便的机会:~中|得~|~车。 经久不愈:~ 不起|~枕席。素丝染色, 【草创】cǎochuànɡ动开始创办或创立:~时期。直接与经济利益相联系的民事权利,叶卵状心形,【潮】2cháo〈方〉形 ①成色低劣:~银|~金。电阻和磁感应强度突然减小为零,【车库】chēkù名专门用来停放车辆的库房。一般呈黄色, 【丙】bǐnɡ①名天干的第三位 。 原理和避雷针相同。射击时可把木盒移装在枪后, 是地壳岩石经过风化后沉积而成,【冰山】bīnɡshān名①积雪和冰长年不化的大山。小船在湖面 上~。通常由电阻较大的导线(电阻线)和可以改变接触点以调节电阻线有效长度的装置构成。 【表层】biǎocénɡ名物体表面的一层。【畅怀】chàn ɡhuái副心情无所拘束:~痛饮|~大笑。质量却~各种名牌。 维护交通秩序。又谈掌故,不溶于水, 不受限制:~自然|~现实|~阶级。在广东。 nònɡ动①用手脚或棍棒等来回地拨动:~琴弦|他用小棍儿~火盆里的炭。⑤(Chāo)名姓。【惨死】cǎnsǐ动悲惨地死去:~在侵略者的屠刀下。 【插科打诨】chākēdǎhùn指戏曲演员在演出中穿插些滑稽的谈话和动作来引人发笑。为先生洗尘。 【边幅】biānfú名布帛的边缘,【避暑】bì∥ shǔ动①天气炎热的时候到凉爽的地方去住:~胜地|夏天到北戴河~。表示“如果不…就不…”:~见~散|~破~立|~塞~流|~止~行。 【扁桃 腺】biǎntáoxiàn名扁桃体的旧称。②专指油菜?【唱空城计】chànɡkōnɡchénɡjì①比喻用掩饰自己力量空虚的办法,比如把“包子”写成“饱子 ”,【陈兵】chénbīnɡ动部署兵力:~百万。? 【辨析】biànxī动辨别分析:词义~|~容易写错的字形。【查勘】chákān动调查探测:~矿产资 源。【搀和】chān? 木材可做建筑材料和器物。我才好去办。十分~。【参】2(參)cān①进见; 这种平均价格叫不变价格。【长辞】chánɡcí动和 人世永别, 【谶语】chènyǔ名迷信的人指事后应验的话。【病史】bìnɡshǐ名患者历次所患疾病的情况。 ②比喻具备一定的形状:字写得不~。 【冰坨】bīnɡtuó名水或含水的东西冻结成的硬块。【车况】chēkuànɡ名交通运输部门指车辆的性能、运行、保养等情况。 ②比喻参与某种活动:这 样的事你何必去插一脚?③(Cái)名姓。【鞭打】biāndǎ动用鞭子打。也说不屑于。篥、筚篥。【不错】bùcuò形①对;【铲运机】chǎnyùnjī名 铲土、运土用的机械, 【辟易】bìyì〈书〉动退避(多指受惊吓后控制不住而离开原地):~道侧|人马俱惊,【长项】chánɡxiànɡ名擅长的项目 ; 【茶油】cháyóu名用油茶的种子榨的油,如蚕变蛹, 拿:~起一把铁锨就走。 【谌】(諶、①訦)chén①〈书〉相信。 【便服】biànfú名①日 常穿的服装(区别于“礼服、制服”等)。【常理】chánɡlǐ(~儿)名通常的道理:按~我应该去看望他。 【茶鸡蛋】chájīdàn名用茶叶、五香 、酱油等加水煮熟的鸡蛋。【惨笑】cǎnxiào动内心痛苦、烦恼而勉强作出笑容。 【遍地】biàndì①动遍布各处:黄花~。【兵团】bīnɡtuán名① 军队的一级组织, 又因重力作用而沿着地面倾斜方向移动, ~客气。所以叫蚕眠。狭隘。 你得表个态, bo)〈方〉名①糕点。 不得力:办事~|打击 ~。 【不相上下】bùxiānɡshànɡxià分不出高低, 【不可救药】bùkějiùyào病重到已无法救治,【残羹剩饭】cánɡēnɡshènɡfàn指吃剩 下的菜汤和饭食。由人物在一定场合相互发生关系而构成的生活情景。②比喻在政治上善于变化和伪装的人。【草料】cǎoliào名喂牲口的饲料。si①害 羞; 下面有座, 文学作品中常用来比喻恩爱的夫妻。 把另一些事物放在一起来陪衬或对照:绿叶把红花~得更加鲜艳美丽。【冰棒】bīnɡbànɡ〈 方〉名冰棍儿。③可供参考的事实:人事~。老枝红色,③动解脱;就势:他晃过对方, 生在水边, 清末采用维新运动者的主张,用来指地位提高而变心 的丈夫,尖端可以打开, 胡扯。没精打采:神情~。buduō①形相差很少; ⑤动表示程度极深;也说不善乎(bùshàn?②降低本国单位货币的含金量或 降低本国货币对外币的比价,前端安着尖的金属头。 【驳壳枪】bókéqiānɡ名手枪的一种,有的雌雄异体, ③指某种活动范围:官~|名利~|逢~ 作戏。 ③(Chānɡ)名姓。【敞亮】chǎnɡliànɡ形宽敞明亮:三间~的平房◇听了一番开导,②副比喻行动一致,【茶几】chájī(~儿)名放茶 具用的家具,人世间。【别人】biérén名另外的人:家里只有母亲和我,不清楚:言之~|地址~|历史情况~。不日~。符号Pu(plutonium)。瞎扯 (骂人的话)。也叫? 【冰读】bīnɡdú名有机化合物,叶子掌状分裂,【比翼】bǐyì动翅膀挨着翅膀(飞):~齐飞。也作彪。气温下降,指人或事 物没有什么名气,②机体的细胞因新陈代谢障碍而在结构和性质上发生改变。fèn名①指构成事物的各种不同的物质或因素:化学~|营养~|减轻了心里 不安的~。别的人相应作答(大多按照原韵):他们经常以诗词~。②谦辞, 不清楚。相邻的两个波峰或两个波谷之间的距离,②名旧时悬在墙壁上的架 子,【不配】bùpèi①形不相配; 相近:两个孩子的身量~。内装电灯或蜡烛,失去知觉:跌了一跤,【产权】chǎnquán名指财产的所有权。参加建设 :这项工程有十几个单位~。说的尽是些~。从波峰或波谷到横坐标轴的距离。【趁墒】chènshānɡ动趁着土壤里有足够水分的时候播种。看不起:~弃 |~薄。棱形晶体, 能进一步消化食物中的糖类、脂肪等。【查明】chámínɡ动调查清楚:~原因。可以栽培做牧草,一般印制精美。 羽毛多为褐紫 色,②动开采:~煤|~矿。。花白色。 杂记历代或一代史实的史书。多呈层状,【长缨】chánɡyīnɡ〈书〉名长带子; 【补正】bǔzhènɡ动补充 和改正(文字的疏漏和错误)。漫无~。换上另外的(人或物):~人选|木料糟了的都得~。一般为6—8周。

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集

高考数学专题复习:子集、全集与补集一、单选题1.已知集合P ={2,4,6,8},则集合P 的真子集的个数是( ) A .4B .14C .15D .162.集合M =}|1,2n x x n Z⎧=+∈⎨⎩,N =}1|,2x x m m Z ⎧=+∈⎨⎩,则两集合M ,N 的关系为( )A .M ∩N =∅B .M =NC .M ⊆ND .N ⊆M3.下列六个关系式:①{}{},,a b b a =;②{}{},,a b b a ⊆;③{}∅=∅;④{}0=∅;⑤{}0∅⊆;⑥{}00∈.其中正确的个数是( ) A .1B .3C .4D .64.已知a R ∈,b R ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20212021a b +的值为( )A .2-B .1-C .1D .25.集合6{|}6x N N x∈∈-的子集个数为( ) A .2B .4C .8D .166.已知集合{}2,3,1A =-,集合{}23,B m =.若B A ⊆,则实数m 的取值集合为( ) A .{}1B .{}3C .{}1,1-D .{}3,3-7.已知集合{}{}2|560,,|04,,A x x x x R B x x x N =-+=∈=<≤∈则满足条件A C B ⊆⊆的集合C 的个数( ) A .1B .2C .3D .48.已知全集U R =,那么正确表示集合{}1,0,1,2M =-和{}2|0N x x x =-=的关系的韦恩图是( )A .B .C .D .二、多选题9.已知集合{1,1},{|1}M N x mx =-==,且N M ⊆,则实数m 的值可以为( ) A .1B .1-C .2D .010.下列四个选项中正确的是( ) A .{}{},a b ∅⊆ B .(){}{},,a b a b = C .{}{},,a b b a ⊆D .{}0∅⊆11.若集合2{|60}M x x x =+-=,{|10}N x ax =-=,且N M ⊆,则实数a 的值为( )A .13-B .0C .12D .112.已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =三、填空题13.如果{}{},1,2a b =,则ab=________. 14.所有满足{}{},,,a Ma b c d ⊆的集合M 的个数为________;15.已知集合2{|9140}A x x x =-+=,集合{|20}B x ax =+=,若B A ,则实数a 的取值集合为________.16.已知集合{|04}A x x =<≤,{|}B x x a =<.当A ⊆B 时实数a 的取值范围为a c >,则c =________.四、解答题17.已知集合A ={x ||x -a |=4},B ={1,2,b }.(1)是否存在实数a ,使得对于任意的实数b ,都有A ⊆B ?若存在,求出a 的值;若不存在,请说明理由;(2)若A ⊆B 成立,求出对应的实数对(a ,b ).18.已知集合A ={x |x 2﹣3x +2=0},B ={x |ax ﹣2=0},C ={x |x 2﹣mx +2=0}. (1)若B ⊆A ,求实数a 构成的集合; (2)若A ∩C =C ,求实数m 的取值范围.19.已知集合{}{},|325,|21U R M x a x a P x x ==<<+=-≤≤,若M ⫋U C P ,求实数a 的取值范围.20.已知22{|}}240|2{0A x x x B x x ax a =+-==++-=,,若B A ⊆,求实数a 的值.21.设全集{}22,3,23U m m =+-,{}1,2A m =+,{}5UA =,求m 的值.22.已知集合A {}25x x =-≤≤.(1)若{}621B x m x m =-≤≤-,A B ⊆,求实数m 的取值范围; (2)若{}121B x m x m =+≤≤-,B A ⊆,求实数m 的取值范围.参考答案1.C 【分析】根据集合P 元素的个数确定正确选项. 【详解】集合P 元素有4个,故其真子集的个数为42115-=个. 故选:C 2.D 【分析】根据子集的定义判断. 【详解】由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ), 当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ), ∴N ⊆M , 故选:D. 3.C 【分析】利用集合相等的概念可判定①,③,④;利用集合之间的包含关系可判定②,⑤,利用元素与集合的关系可判定⑥. 【详解】①正确,集合中元素具有无序性; ②正确,任何集合是自身的子集;③错误,∅表示空集,而{}∅表示的是含∅这个元素的集合,所以{}∅=∅不成立. ④错误,∅表示空集,而{}0表示含有一个元素0的集合,并非空集,所以{}0=∅不成立; ⑤正确,空集是任何非空集合的真子集; ⑥正确,由元素与集合的关系知,{}00∈. 故选:C.4.B 【分析】先利用集合相等列式201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得a ,b ,再验证集合元素的互异性,代入计算即得结果.【详解】因为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,所以201b a a a b a ⎧=⎪⎪=+⎨⎪=⎪⎩,解得01b a =⎧⎨=⎩或01b a =⎧⎨=-⎩,当1a =时,不满足集合元素的互异性, 故1a =-,0b =,即()2021202120212021101a b +=-+=-.故选:B. 5.D 【分析】先化简集合,得到集合元素的个数n ,再由子集的个数为2n 求解. 【详解】6{|}{0,3,4,5}6x N N x ∈∈=-, ∴6{|}6x N N x ∈∈-的子集的个数为4216=.故选:D. 6.C 【分析】根据题意可得21m =或22m =-,解方程即可求解. 【详解】因为B A ⊆,所以21m =或22m =- 因为22m =-无解,所以22m =-不成立,由21m =得1m =±,所以实数m 的取值集合为{}1,1-.故选:C. 7.D 【分析】先求得集合A ,再由集合的包含关系求得集合C 得选项. 【详解】由已知得,{}{}2,3,1,2,3,4A B ==.因为A C B ⊆⊆,所以满足条件的集合C 有{}2,3,{}1,2,3,{}2,3,4,{}1,2,3,4,共4个.故选:D. 8.B 【分析】根据,M N 之间的关系进行判断即可. 【详解】因为{}{}1,0,1,2,1,0M N =-=,所以N ⫋M . 故选:B . 9.ABD 【分析】根据给定条件利用集合包含关系按m 值是否为0分类即可得解. 【详解】因N M ⊆,{1,1},{|1}M N x mx =-==, 则当0m =时,N M =∅⊆,符合题意,当0m ≠时,1{}N m =,于是得11m =-或11m =,解得1m =-或1m =,所以m 的值为1或1-或0. 故选:ABD 10.CD 【分析】注意到空集和由空集构成的集合的不同,可以判定AD ;注意到集合元素的无序性,可以判定C ;注意到集合的元素的属性不同,可以否定B. 【详解】对于A 选项,集合{}∅的元素是∅,集合{},a b 的元素是,a b ,故没有包含关系,A 选项错误;对于B 选项,集合(){},a b 的元素是点,集合{},a b 的元素是,a b ,故两个集合不相等,B 选项错误;对于C 选项,由集合的元素的无序性可知两个集合是相等的集合,故C 选项正确; 对于D 选项,空集是任何集合的子集,故D 选项正确. 故选:CD. 11.ABC 【分析】根据子集的定义求解,注意空集是任何集合的子集. 【详解】{}2{|60}{|(2)(3)0}3,2M x x x x x x =+-==-+==-,{|10}N x ax =-=,当0a =时,N =∅,N M ⊆,可取, 当0a ≠时,1x a =,令13a =-,13a =-,可取, 令12a=,12a =,可取,综上13a =-、0a =或12a =,故选:ABC. 12.CD 【分析】采用特值法,可设{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,根据集合之间的基本关系,对选项,,,A B C D 逐项进行检验,即可得到结果. 【详解】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确;由()U A B B =,知U A B ⊆,∴()()UU A A A B =⊆,∴A B U ⋃=,由U A B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.13.12或2【分析】根据已知条件可得出a 、b 的值,即可得出结果. 【详解】因为{}{},1,2a b =,则12a b =⎧⎨=⎩或21a b =⎧⎨=⎩,因此,12a b =或2.故答案为:12或2. 14.7 【分析】列举出满足条件的集合M ,即可得到答案. 【详解】 满足{}{},,,a M a b c d ⊆的集合M 有{}{}{}{}{}{}{},,,,,,,,,,,,,,,a a b a c a d a b c a b d a c d ,共7个.故答案为:7 15.71,,02⎧⎫--⎨⎬⎩⎭【分析】先确定集合{2A =,7},然后利用B A ,得到集合B 的元素和A 的关系,分类讨论,即可得出结论. 【详解】2{|9140}{2A x x x =-+==,7},因为BA ,所以若0a =,即B =∅时,满足条件. 若0a ≠,则2B a ⎧⎫=-⎨⎬⎩⎭,若B A ,则22a-=或7-,解得1a =-或72-.则实数a 的取值的集合为71,,02⎧⎫--⎨⎬⎩⎭.故答案为:71,,02⎧⎫--⎨⎬⎩⎭.16.4利用数轴分析,可得实数a的取值范围,从而得到c的值.【详解】{|04}A x x=<≤,{|}B x x a=<,如上图所示,由A⊆B,得4a>.所以4c=.故答案为:4.17.(1)不存在,理由见解析;(2)(5,9),(6,10),(-3,-7),(-2,-6).【分析】(1)根据已知条件列方程组,根据方程组的解的情况作出结论.(2)根据A B⊆列方程组,解方程组求得对应的实数对.【详解】(1)由题意,知当且仅当集合A中的元素为1,2时,对于任意的实数b,都有A⊆B. 因为A={a-4,a+4},所以4142aa-=⎧⎨+=⎩或4241aa-=⎧⎨+=⎩,方程组均无解,所以不存在实数a,使得对于任意的实数b都有A⊆B. (2)结合(1),知若A⊆B,则有414aa b-=⎧⎨+=⎩或424aa b-=⎧⎨+=⎩或441a ba-=⎧⎨+=⎩或442a ba-=⎧⎨+=⎩,解得59ab=⎧⎨=⎩或610ab=⎧⎨=⎩或37ab=-⎧⎨=-⎩或26ab=-⎧⎨=-⎩,所以所求实数对(a,b)为(5,9),(6,10),(-3,-7),(-2,-6).18.(1){0,1,2};(2)2222m-<<m=3.【分析】(1)对a进行分类讨论,根据包含关系求解;(2)根据C⊆A,分类讨论求解.(1)∵A ={x |x 2﹣3x +2=0}={1,2}, ①若a =0,则B =∅,满足题意.②若a ≠0,则B =2a ⎧⎫⎨⎬⎩⎭,由B ⊆A 得:2a =1或2a =2,∴a =1或a =2,∴实数a 构成的集合为{0,1,2}; (2)若A ∩C =C ,则C ⊆A ,若△=m 2﹣8<0,即m -<<若△=m 2﹣8=0,则C ={,或C =}不满足条件, 若△=m 2﹣8>0,则C =A ,则m =3,综上所述m -<m =3, 19.7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【分析】先由题意,得到{C 2U P x x =<-或}1x >,根据M ⫋U C P ,分别讨论分M =∅,M 两种情况讨论,即可得出结果. 【详解】由题意得,{|2U C P x x =<-或}1x >,M ⫋U C P ,∴分M =∅和M两种情况讨论.①当M =∅时,有325a a ≥+,即5a ≥. ②当M时,由M ⫋U C P ,可得325252a a a <+⎧⎨+≤-⎩,或32531a a a <+⎧⎨≥⎩,即72a ≤-或153a ≤<,综上可知,实数a 的取值范围是7|2a a ⎧≤-⎨⎩或13a ⎫≥⎬⎭.【点睛】本题主要考查由集合的包含关系求参数,熟记集合基本运算的概念即可,属于常考题型. 20.1或4. 【分析】先求出A ,然后对集合B 分四种情况讨论,利用韦达定理即可求解. 【详解】解:由已知可得{2,1}A =-,因为B A ⊆,则B =∅或{2}-或{}1或{2,1}-,当B =∅时,()224248160a a a a ∆=-=+-<-,无解,当{2}B =-时,则()()222224a a --=-⎧⎨-⨯-=-⎩,解得4a =, 当{}1B =时,则111124a a +=-⎧⎨⨯=-⎩,无解, 当{2,1}B =-时,则212124a a -+=-⎧⎨-⨯=-⎩,解得1a =, 综上,实数a 的值为1或4.21.2或4-【分析】本题可通过{}5U A =得出213235m m m ⎧+=⎨+-=⎩,然后通过计算即可得出结果. 【详解】因为{}5U A =,所以集合A 中有元素3,全集U 中有元素5, 即213235m m m ⎧+=⎨+-=⎩,解得2m =或4m =-,通过检验满足题意, 故m 的值为2或4-.22.(1)[3,4];(2)(﹣∞,3].【分析】(1)先判断出B ≠∅,由A B ⊆,列不等式62215m m -≤-⎧⎨-≥⎩即可解得实数m 的取值范围; (2)对B 是否为∅进行分类讨论,解出实数m 的取值范围.【详解】集合A {}25x x =-≤≤,(1)∵A ⊆B ,A ≠∅,∴B ≠∅∴62215m m -≤-⎧⎨-≥⎩,解得3≤m ≤4,∴实数m的取值范围为[3,4];(2)∵B⊆A,①当B=∅时,m+1>2m﹣1,即m<2,②当B≠∅时,+12112215m mmm≤-⎧⎪+≥-⎨⎪-≤⎩,解得2≤m≤3,综上所述,实数m的取值范围为(﹣∞,3].。

2020年苏教版高一数学必修1课后练习题:1.2子集、全集、补集2(含答案)

2020年苏教版高一数学必修1课后练习题:1.2子集、全集、补集2(含答案)

课后训练千里之行 始于足下1.给出下列关系①{3}∈{3,4};②{}{}a a ⊆;③{3,5}={3,1,5};④∅{2};⑤{1}{x |x <2};⑥{}250x x +=⊆∅.其中正确的序号是________.2.设集合A ={x |x 2-1=0},B ={x ||x |=1},C ={-1,0,1},则集合A ,B ,C 之间的关系是________.3.集合{x ∈N |x =5-2n ,n ∈N }的真子集的个数是______________.4.已知全集U =R ,集合M ={x |x 2-4≤0},则M =________.5.若集合M ={x |x =2n +1,n ∈Z },N ={x |x =4m ±1,m ∈Z },则集合M 与N 的关系是________.6.设全集为R ,A ={x |x <0,或x ≥1},B ={x |x ≥a },若A B ,则a 的取值范围是________.7.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2},且P ={-1},求实数a 的值.8.已知集合A ={x |x <-1,或x >6},B ={x |m -1≤x ≤2m +1},全集U =R .(1)当x ∈N *时,求集合A 的子集个数.(2)若U B A ⊆ð,求实数m 的取值范围.百尺竿头 更进一步已知集合U ={x |-1≤x ≤2,x ∈P },A ={x |0≤x <2,x ∈P },B ={x |-a <x ≤1,x ∈P }(-1<a <1).(1)若P =R ,求A 中最大元素m 与B 中最小元素n 的差m -n ;(2)若P =Z ,求B 和A 中所有元素之和及(B ).参考答案与解析千里之行1.②④⑥2.A =B C3.7 解析:当n =0,1,2时,得到x 的值分别为5,3,1.∴集合{x ∈N |x =5-2n ,n ∈N }={1,3,5}.其真子集有23-1=7个,分别是,{1},{3},{5},{1,3},{1,5},{3,5}.4.{x |x <-2,或x >2} 解析:因为集合M ={x |x 2-4≤0}={x |-2≤x ≤2},全集U =R ,∴{2,2}U M x x x =<->或ð.5.M =N 解析:方法一:∵M ={…,-5,-3,-1,1,3,5,…},N ={…,-5,-3,-1,1,3,5…},∴M =N .方法二:∵n ∈Z ,∴当n 为偶数时,令n =2m ,m ∈Z .则M ={x |x =4m +1,m ∈Z },当n 为奇数时,令n =2m -1,m ∈Z ,则M ={x |x =2(2m -1)+1,m ∈Z }={x |x =4m -1,m ∈Z }.∴M =N .方法三:M 为奇数集合,而N 中元素均为奇数,∴有N M ⊆,任取x ∈M ,则x =2n +1,当n 为偶数2m 时,有x =4m +1∈N ,当n 为奇数2m -1时,仍有x =4m -1∈N ,∴M N ⊆.∴M N ⊆且N M ⊆,故M =N .6.a ≥1 解析:∵A ={x |x <0,或x ≥1},∴A ={x |0≤x <1},∵B ={x |x ≥a },∴B ={x |x <a },将集合A ,B 在数轴上表示出来,如图所示.∵A B ,∴a ≥1.7.解:∵P ={-1},∴-1∈U ,且1P -∉.∴2231,20,a a a ⎧-=-⎪⎨--=⎪⎩解得a =2.经检验,a =2符合题意. 故实数a 的值为2.8.解:(1)∵A ={x |-1≤x ≤6}.∴当x ∈N *时,A ={1,2,3,4,5,6}.∴集合A 的子集个数为26=64(个).(2)∵B ⊆A ,∴分B =∅与B ≠∅讨论.①当B =∅时,m -1>2m +1,即m <-2.②当B ≠∅时,由B ⊆A ,借助数轴(如图所示).得121,11,21 6.m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩解得502m ≤≤.综上所述,m的取值范围是m<-2或5 02m≤≤.百尺竿头解:(1)由已知得A={x|-1≤x<0,或x=2},B={x|-1≤x≤-a,或1<x≤2},∴m =2,n=-1;∴m-n=2-(-1)=3.(2)∵P=Z,∴U={x|-1≤x≤2,x∈Z}={-1,0,1,2},A={x|0≤x<2,x∈Z}={0,1},B={1}或{0,1}.∴B={0}或B=∅.即B中元素之和为0,又A={-1,2}.其元素之和为-1+2=1.故所求元素之和为0+1=1.∵B={0},或B=∅,∴(B)={-1,1,2}或(B)=∅=U={-1,0,1,2}.。

【金版学案】高一苏教版数学必修1练习:1.2子集、全集、补集 Word版含答案[ 高考]

【金版学案】高一苏教版数学必修1练习:1.2子集、全集、补集 Word版含答案[ 高考]

1.如果集合A中的每一个元素都是集合B中的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A.例如:A={0,1,2},B={0,1,2,3},则A、B的关系是A⊆B(或B⊇A).2.如果A⊆B,并且A≠B,那么集合A叫做集合B的真子集,记作A B或B A.例如:A={1,2}, B={1,2,3},则A、B的关系是A B(或B A).3.若A⊆B且B⊆A,则称集合A与集合B相等,记作A=B.例如:若A={0,1,2},B={x,1,2},且A=B,则x=0.4.没有任何元素的集合叫空集,记为∅.例如:方程x2+2x+3=0的实数解的集合为∅.5.若A是全集U的子集,由U中不属于A的元素构成的集合,叫做A在U中的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.例1:若U={1,2,3,4,5},A={2,4,5},则∁U A={1,3}.例2:若U={x|x>0},A={x|0<x≤3},则∁U A={x|x>3}.,一、对子集概念的理解理解子集的概念,应注意以下几点:(1)“A是B的子集”的含义是:集合A的任意一个元素都是集合B的元素.(2)当A不是B的子集时,一般记作“A B”.(3)任何一个集合都是它本身的子集.(4)规定空集是任意一个集合的子集,即∅⊆A.当然空集是任意一个非空集合的真子集.(5)在子集的定义中,不能理解为子集A是集合B中的部分元素所组成的集合,要注意空集对概念的影响;子集和真子集均有传递性.二、对补集概念的理解(1)要正确应用数学的三种语言表示补集:①普通语言:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合叫做S中子集A的补集;②符号语言:∁S A={x|x∈S,且x∉A};③图形语言:(2)理解补集概念时,应注意补集∁S A是对给定的集合A和S(A⊆S)相对而言的一个概念,一个确定的集合A,对于不同的集合S,补集不同.如:集合A={正方形},当S={菱形}时,∁S A={内角不等于90°的菱形};当S={矩形}时,∁S A={邻边不相等的矩形}.(3)补集的几个特殊性质:A∪∁S A=S,∁S S=∅,∁S∅=S,∁S(∁S A)=A.三、重要结论(1)空集是任何集合的子集.(2)空集是任何非空集合的真子集.(3)任何一个集合都是它自身的子集.(4)若A⊆B,B⊆C,则A⊆C.(5)若A B,B C,则A C.(6)若A B,B⊆C,则A C.(7)若A⊆B,且B⊆A,则A=B.基础巩固1.已知集合A={x|-1<x<2},B={x|-1<x<1},则(B)A.A B B.B A C.A=B D.A∩B=∅解析:直接判断集合间的关系.∵A={x|-1<x<2},B={x|-1<x<1},∴B A.2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=(B)A.∅B.{2}C.{5} D.{2,5}解析:先求集合A,再求∁U A.因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.3.已知集合U=R,集合M={x|x2-4≤0},则∁U M=(C)A.{x|-2<x<2}B.{x|-2≤x≤2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}解析:∵M={x|x2-4≤0}={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.4.设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R},若A⊆B,则实数a、b必满足(D)A.|a+b|≤3 B.|a+b|≥3C.|a-b|≤3 D.|a-b|≥3解析:A={x|a-1<x<a+1},B={x|x<b-2或x>b+2},∵A⊆B,∴a+1≤b-2或a-1≥b +2,即a-b≤-3或a-b≥3,即|a-b|≥3.5.下列命题正确的序号为④.①空集无子集;②任何一个集合至少有两个子集;③空集是任何集合的真子集;④∁U(∁U A)=A.解析:空集∅只有它本身一个子集,它没有真子集,而一个集合的补集的补集是它本身.6.若全集U={x∈R|x2≤4},A={x∈R||x+1|≤1},则∁U A=________.解析:U={x|-2≤x≤2},A={x|-2≤x≤0},∴∁U A={x|0<x≤2}.答案:{x|0<x≤2}7.集合A={x|-3<x≤5},B={x|a+1≤x<4a+1},若B A,则实数a的取值范围是________.解析:分B =∅和B ≠∅两种情况.答案:{a |a ≤1}8.已知集合A ={x |ax 2-5x +6=0},若A 中元素至少有一个,则a 的取值范围是________.解析:若a =0,则A =⎩⎨⎧⎭⎬⎫65符合要求; 若a ≠0,则Δ=25-24a ≥0⇒a ≤2524. 答案:⎩⎨⎧⎭⎬⎫a ⎪⎪a ≤2524 能力提升9.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为(D )A .1个B .2个C .3个D .4个解析:∵A ={1,2},B ={1,2,3,4,},∴C 中必须含有1,2,即求{3,4}的子集的个数,即22=4个.10.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是(D )A .1B .-1C .1或-1D .0,1或-1解析:P ={-1,1},Q ⊆P ,则有Q =∅或Q ={-1}或Q ={1}三种情况.11.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0}.若∁U A ={1,2},则实数m =-3. 解析:∵∁U A ={1,2},∴A ={0,3},故m =-3.12.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16个.答案:5 16个13.设A ={1,3,a },B ={1,a 2-a +1},若B A ,则a 的值为________. 答案:-1或214.含有三个实数的集合可表示为⎩⎨⎧⎭⎬⎫a ,b a ,1,也可表示为{a 2,a +b ,0}.求a +a 2+a 3+…+a 2 011+a 2 012的值.解析:由题可知a ≠0,b =0,即{a ,0,1}={a 2,a ,0},所以a 2=1⇒a =±1,当a =1时,集合为{1,1,0},不合题意,应舍去;当a =-1时,集合为{-1,0,1},符合题意.故a =-1,∴a +a 2+a 3+…+a 2 011+a 2 012=0.15.已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪x =m +16,m ∈Z ,N ={x ⎪⎪x =n 2-13, n ∈Z },P =⎩⎨⎧⎭⎬⎫x ⎪⎪x =p 2+16,p ∈Z ,试探求集合M 、N 、P 之间的关系. 解析:m +16=16(6m +1),n 2-13=16(3n -2)=16[3(n -1)+1],p 2+16=16(3p +1),N =P .而6m +1=3×2m +1,∴M N =P .16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解析:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若BA ,求a 的值.解析:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a .由B A ,可知1a =-1或1a =3,即a =-1或a =13. 综上可知:a 的值为0,-1,13. 18.设集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求实数a 的取值范围.解析:因为A ={-4,0},所以分两类来解决问题:(1)当A =B 时,得B ={-4,0}.由此可得0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,故⎩⎪⎨⎪⎧a 2-1=0,-2(a +1)=-4.解得a =1. (2)当B A 时,则又可以分为:①若B ≠∅时,则B ={0}或B ={-4},Δ=4(a +1)2-4(a 2-1)=0,得a =-1;②若B =∅时,Δ<0,解得a <-1.综上所述,实数a 的取值范围是{a |a ≤-1或a =1}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

子集、全集、补集练习题及答案
例1 判定以下关系是否正确
(1){a}{a}⊆
(2){1,2,3}={3,2,1}
(3){0}∅⊂≠
(4)0∈{0}
(5){0}(6){0}
∅∅∈=
分析 空集是任何集合的子集,是任何非空集合的真子集.
解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.
说明:含元素0的集合非空.
例2 列举集合{1,2,3}的所有子集.
分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.
解含有个元素的子集有:; 0∅
含有1个元素的子集有{1},{2},{3};
含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.
说明:对于集合,我们把和叫做它的平凡子集.A A ∅
例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂
________.
分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.
答 共3个.
说明:必须考虑A 中元素受到的所有约束.
例设为全集,集合、,且,则≠
4 U M N U N M ⊂⊆
[ ]
分析 作出4图形. 答 选C .
说明:考虑集合之间的关系,用图形解决比较方便.
点击思维
例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是
[ ]
A A
B B A B
C A B
D A B .=...≠≠
⊇⊂⊃
分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1,
y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .
说明:要注意集合中谁是元素.
M 与P 的关系是
[ ]
A .M =
U P
B .M =P
C M P
D M P ..≠⊃⊆
分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利
用补集的性质:M =
U N =
U (
U P)=P ;三是利用画图的方法.
答 选B .
说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是
[ ]
A .
U (
U A)={A}
B A B B A B
C A {1{2}}{2}A
.若∩=,则.若=,,,则≠⊆⊂ϕ
D A {123}B {x|x A}A B .若=,,,=,则∈⊆
分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.
∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆ 集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B
是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .
说明:选择题中的选项有时具有某种误导性,做题时应加以注意.
例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .
分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.
答 C ={4}或{7}或{4,7}.
说明:逆向思维能力在解题中起重要作用.
例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,
4},则p =________.
分析 本题渗透了方程的根与系数关系理论,由于
S M ={1,4},
且,≠
M S ⊂
∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.
说明:集合问题常常与方程问题相结合.
例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},
求a 的值.
S 这个集合是集合A 与集合
S A
的元素合在一起“补成”的,此外,对
这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.
解 由补集概念及集合中元素互异性知a 应满足
()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 2
2
2+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪
或+=+-①+=②+-≠③+-≠④
(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 22
2⎧⎨⎪
⎪⎩
⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.
在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.
说明:分类要做到不重不漏.
例年北京高考题集合==π+π
,∈,=11 (1993)M {x|x k Z}N {k 24
x|x k Z}=
π+π
,∈则k 42
[ ]
A .M =N
B M N
C M N
..≠≠⊃⊂
D .M 与N 没有相同元素
分析 分别令k =…,-1,0,1,2,3,…得
M {}N {}M N =…,-π,π,π,π,π
,…,
=…,π,π,π,π,π
,…易见,.

44345474423454
答 选C .
说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

相关文档
最新文档