秦九韶算法和进位制 课件

合集下载

§75秦九韶算法

§75秦九韶算法

§75秦九韶算法§75秦九韶算法──求多项式的值一、泰勒定理简介二、求多项式值的求法三、秦九韶算法1.直接法2.累乘法3.秦九韶算法1.步骤2.编程复杂函数多项式函数泰勒定理先改后算两大步降幂提因○补缺由内到外逐层算人工递推系数表4.其他法递推公式法人工系数表法三大语言三结构五种语句三案例高考主流是框图循环结构是重点辗转相除法与更相减损术进位制秦九韶算法注4:注1:自然语言框图程序设计语言注2:顺序结构条件结构循环结构输入语句注3:赋值语句输出语句条件语句循环语句───求最大公约数───求多项式的值框图的画法是次要的重点是要能看懂框图2.辗转相除法1.短除法求最大公约数的方法3.更相减损术数字较小短除法公质因数连续除除到所有商互质除数连乘是答案大除小余换大辗转除何时停0或11互质0除数即答案大减小差换大连续减何时停两相等即答案若可半可省功注:辗转相除法与更相减损术的异同点1.辗转相除法以除法运算为主3.两法本质上都是递推,都可用循环结构编程更相减损术以减法运算为主2.辗转相除法当除法运算余数为O或1时终止运算更相减损术当减法运算差为O时终止运算§75秦九韶算法──求多项式的值一、泰勒定理简介二、求多项式值的求法三、秦九韶算法1.直接法2.累乘法3.秦九韶算法1.步骤2.编程复杂函数多项式函数泰勒定理先改后算两大步降幂提因○补缺由内到外逐层算人工递推系数表4.其他法递推公式法人工系数表法常见的多项式(整式)函数我省的大压轴题,每年都是以三次函数来说事2013年的全国Ⅰ卷的小压轴题,是四次函数泰勒中值定理一、泰勒定理简介复杂函数多项式函数泰勒定理②n越大越精确①阶乘的概念:参课本P:32练习2麦克劳林公式一、泰勒定理简介复杂函数多项式函数泰勒定理1.直接法2.累乘法3.秦九韶算法最多n(n+1)/2次乘法,n次加法最多n次乘法,n次加法xn=(xn-1)xxn-1=(xn-2)xxn-2=(xn-3)x…二、求多项式值的求法4.其他法例如当n=10时……引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值直接法f(5)=55+54+53+52+5+1=3125+625+125+25+5+1=3906累乘法f(5)=55+54+53+52+5+1+5+1□=+□+□+□251253125625=3906引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值秦九韶算法f(5)=55+54+53+52+5+1=5×(54+53+52+5+1)+1=5×(5×(53+52+5+1)+1)+1=5×(5×(5×(52+5+1)+1)+1)+1=5×(5×(5×(5×(5+1)+1)+1)+1)+1=5×(5×(5×(5×6+1)+1)+1)+1=5×(5×(5×31+1)+1)+1=5×(5×156+1)+1=5×781+1=3906先改后算迭代法降幂提因○补缺由内到外逐层算人工递推系数表后算先改可以看出,该算法是:将求一个5次多项式f(x)的值转化成了求5个一次多项式的值的方法引例.求f(x)=x5+x4+x3+x2+x+1当x=5时的值1.直接法2.累乘法f(5)=55+54+53+52+5+13.秦九韶算法4.其他法55,54,53,52,5,1应用等比数列的求和公式最简洁吧秦九韶算法:设是一个n次的多项式先对该多项式按下面的方式进行改写:先改后算两大步降幂提因○补缺由内到外逐层算如何求该多项式的值呢?最后一项Vn是所求值秦九韶算法是将求一个n次多项式f(x)的值转化成了,求n个一次多项式的值的方法。

12-06-25高一数学《秦九韶算法与进位制》(课件)-优质课件

12-06-25高一数学《秦九韶算法与进位制》(课件)-优质课件

2012年上学期
按由里到外的顺序,依此计算一次 多项式当x = 5时的值:
v0 5 v1 5 5 2 27 v2 27 5 3.5 138.5 v3 138.5 5 2.6 689.9 v4 689.9 5 1.7 3451.2 v5 3451.2 5 0.8 17255.2
按由里到外的顺序,依此计算一次 多项式当x = 5时的值:
v0 5 v1 5 5 2 27 v2 27 5 3.5 138.5 v3 138.5 5 2.6 689.9
湖南长郡卫星远程学校
制作 15
2012年上学期
按由里到外的顺序,依此计算一次 多项式当x = 5时的值:
110011(2) 1 25 1 24 0 23 0 22 1 21 1 20
湖南长郡卫星远程学校
制作 15
2012年上学期
二、二进制与十进制的转换
1. 二进制数转化为十进制数
例1. 将二进制数110011(2)化成十进制数 解:根据进位制的定义可知
110011(2) 1 25 1 24 0 23 0 22 1 21 1 20
制作 15
2012年上学期
2. 十进制转换为二进制 [例2] 把89化为二进制数 2 89 余数
湖南长郡卫星远程学校
制作 15
2012年上学期
2. 十进制转换为二进制 [例2] 把89化为二进制数
2 89 余数 2 48 1
湖南长郡卫星远程学校
制作 15
2012年上学期
2. 十进制转换为二进制
湖南长郡卫星远程学校
制作 15
2012年上学期
二、二进制与十进制的转换

秦九韶算法课件

秦九韶算法课件

(2)已知一个五次多项式f(x)=2x5-4x3+3x2 -5x+1,用秦九韶算法求这个多项式当x=3 是的值.
秦九韶算法课件
[探究] 1.用秦九韶算法求多项式的值时,几 次多项式就做几次乘法运算,对吗?
2.用秦九韶算法求多项式f(x)=anxn+an-1xn -1ቤተ መጻሕፍቲ ባይዱ…+a1x+a0在x=x0时的值时,v0是什么? v1呢?
秦九韶算法课件
[规律总结] 用秦九韶算法时要正确将多项 式的形式进行改写,然后由内向外依次计 算.当多项式函数中间出现空项时,要以系 数为零的齐次项补充.
秦九韶算法课件
用秦九韶算法求多项式f(x)=7x7+6x6+5x5+ 4x4+3x3+2x2+x当x=3时的值.
[探究] 解决本题首先需要将原多项式化成 f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+ 1)x的形式,其次再弄清v0,v1,v2,…,v7 分别是多少,再针对这些式子进行计算.
秦九韶算法课件
用更相减损术检验: 80-36=44, 44-36=8, 36-8=28, 28-8=20, 20-8=12, 12-8=4, 8-4=4. 故80和36的最大公约数是4.
秦九韶算法课件
[规律总结] 更相减损术与辗转相除法都能
求两个数的最大公约数,二者的区别与联系
求出其中两个数的最大公约数,再求这个最 大公约数与第三个数的最大公约数,所得的 结果就是这三个数的最大公约数.
秦九韶算法课件
[解析] 先求175与100的最大公约数: 175=100×1+75,100=75×1+25,
75=25×3, ∴175与100的最大公约数是25. 再求25与75的最大公约数:
39, 42=39×1+3,39=3×13, ∴288和123的最大公约数是3.

高二数学秦九韶算法-18页PPT资料

高二数学秦九韶算法-18页PPT资料
算法2:
f(5)=55+54+53+52+5+1
=5×(54+53+52+5+1 ) +1 =5×(5×(53+52+5 +1 )+1 ) +1 =5×(5×(5×(52+5 +1) +1 ) +1 ) +1 =5×(5×(5×(5 ×(5 +1) +1 )+1)+1) +1
共做了4次乘法运算,5次加法运算。
算法案例
第二课时
复习引入:
1、求两个数的最大公约数的两种方法分别是 ( )和( )。
2、两个数21672,8127的最大公约数是 ( ) A、2709 B、2606 C、2703 D、2706
新课讲解:
怎样求多项式f(x)=x5+x4+x3+x2+x+1当x=5时的值呢?
计算多项式f(x) =x5+x4+x3+x2+x+1
要求多项式的值,应该先算最内层的一次多项式的值,即
然后,由内到外逐v层1 计a算n x一次an多1项式的值,即
v2 v1x an2 v3 v2 x an3

vn vn1x a0
最后的一 项是什么?
这种将求一个n次多项式f(x)的值转化成求n个一 次多项式的值的方法,称为秦九韶算法。
多项式的值
思考:你能设计程序把“秦九韶算法”表示出来
吗?
(1)、算法步骤:
第一步:输入多项式次数n、最高次项的系数an和x 的值. 第二步:将v的值初始化为an,将i的值初始化为n-1.
第三步:输入i次项的系数an.
第四步:v=vx+ai, i=i-1.
第五步:判断i是否大于或等于0,若是,则返回第 三步;否则,输出多项式的值v。

算法案例—秦九韶算法.ppt

算法案例—秦九韶算法.ppt
方法二:先计算x2的值,然后依次计算x2·x,(x2·x)·x,
((x2·x)·x)·x的值,这样每次都可以利用上一次计算的结果.
9次乘法运算,5次加法运算
与第一种做法相比,这种做法中,乘法的运算次数减少了, 因而能提高运算效率.而且对于计算机来说,做一次乘法所需的 运算时间比做一次加法要长得多,因此第二种做法能更快地得 到结果.
秦九韶算法
秦九韶和《数书九章》
秦九韶
秦九韶(约公元1202年-1261年),字 道古,南宋末年人,出生于鲁郡(今山东 阜一带人)
据史书记载,他“性及机巧,星象、 音律、算术以至营造无不精究”,还尝从李 梅亭学诗词。他在政务之余,以数学为主线 进行潜心钻研,且应用范围至为广泛:天文 历法、水利水文、建筑、测绘、农耕、军事、 商业金融等方面。
问题1:怎样求多项式f(x)=2x5-5x4-4x3+3x2-6x+7 当x=5时的值?
方法三:能否有更好的算法,解决任意多项式的求值问题?
f(x)=2x5-5x4-4x3+3x2-6x+7 =(2x4-5x3-4x2+3x-6)x+7 =((2x3-5x2-4x+3)x-6)x+7 =(((2x2-5x-4)x+3)x-6)x+7 =((((2x-5)x-4)x+3)x-6)x+7

v0=2 v1=v0x-5=2×5-5=5
问题1:怎样求多项式f(x)=2x5-5x4-4x3+3x2-6x+7 当x=5时的值?
方法三:能否有更好的算法,解决任意多项式的求值问题?
f(x)=2x5-5x4-4x3+3x2-6x+7 =(2x4-5x3-4x2+3x-6)x+7 =((2x3-5x2-4x+3)x-6)x+7 =(((2x2-5x-4)x+3)x-6)x+7 =((((2x-5)x-4)x+3)x-6)x+7

-1.3第2课时 秦九韶算法与进位制

-1.3第2课时 秦九韶算法与进位制

题型三 十进制化k进制
例3 将十进制数458分别转化为四进制数和六进制数. 解 算式如图,
则458=13 022(4)=2 042(6).
反思感悟 十进制数化为k进制数的思路为 除k取余 → 倒序写出 → 标明基数 .
跟踪训练3 把89化为二进制数. 解 算式如图,
则89=1 011 001(2).
题型二 k进制化为十进制
例2 二进制数110 011(2)化为十进制数是什么数? 解 110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=32+16+2+1 =51.
反思感悟 将k进制数anan-1…a1a0(k)化为十进制数的方法:把k进制数anan-1 …a1a0(k)写成各数位上的数字与基数k的幂的乘积之和的形式,然后计算出结 果即为对应的十进制数.
知识点三 进制间的转化
1.一般地,将k进制数anan-1…a1a0(k)转化为十进制: anan-1…a1a0(k)=an×kn+an-1×kn-1+…+a1×k1+a0×k0. 2.把十进制的数化为k进制的数的方法是: 把十进制数除以k,余数为k进制的右数第一位数.把商再除以k,余数为k进制右 数第二位数;依次除以k,直至商为0.这个方法称为除k取余法.
算的是
A.1×2
B.24
C.2+1
D.1×2+2
解析 因为f(x)=(((x+2)x+3)x+1)x+1,据由内到外的运算规律可知先运算 的是1×2+2.
4.下列各数中,最小的数是 A.85(9) C.1 000(4)
B.210(6) D.111 111(2)
解析 85(9)=8×9+5=77, 210(6)=2×62+1×6+0=78, 1 000(4)=1×43=64, 111 111(2)=1×25+1×24+1×23+1×22+1×2+1=63. 故最小的是63.

秦九韶算法课堂教学PPT

秦九韶算法课堂教学PPT

秦九韶算法的数学证明
秦九韶算法的证明
秦九韶算法的正确性可以通过数 学证明来证实,证明的关键在于 利用多项式的递推关系和数学归
纳法。
递推关系的证明
证明秦九韶算法中的递推关系是正 确的,可以通过数学归纳法来证明。
算法复杂度的分析
秦九韶算法的时间复杂度为O(n), 空间复杂度为O(1),比直接法更高 效。
将多项式表示为 “v[0]+v[1]*x+v[2]*x^2+...+v[n]*x ^n”的形式,通过n次乘法和加法运 算得到多项式的值。
利用多项式的递推关系,通过迭代计 算多项式的值,可以减少计算量。
多项式系数与根的关系
多项式的根
多项式等于0的解称为多项式的根 。
系数与根的关系
多项式的系数与多项式的根之间 存在一定的关系,可以通过求解 方程组得到多项式的根。
详细描述
Java语言具有面向对象的特性,能够培养学生的面向对象编程思维。使用Java实 现秦九韶算法可以让学生体验到严谨的编程规范和代码组织方式,同时也能加深 对算法的理解和应用。
使用C实现秦九韶算法
总结词
底层操作,高效执行
详细描述
C语言具有底层操作的特性,能够让学生更加深入地了解计算机底层的工作原理。使用C实现秦九韶算法可以让学 生更加深入地理解算法的实现细节,同时也能提高他们的编程能力和执行效率。
03
秦九韶算法的编程实现
使用Python实现秦九韶算法
总结词
简洁明了,易于理解
详细描述
Python语言具有简洁的语法和易读性,适合初学者学习。使用Python实现秦九 韶算法可以让学生快速理解算法的基本思想,并通过简单的代码实现加深对算 法的理解。

秦九韶算法与进位制-课件

秦九韶算法与进位制-课件

• v2=21×2+0=42; v6=348×2+2=698;
• v3=42×2+3=87; v7=698×2+1=1397.
• ∴f(2)=1397.
• [例5] 将五进制数434化为二进制数. • [解析] 先将五进制数化为十进制数. • 434(5)=4×52+3×51+4×50=119, • 再将十进制数119化为二进制数.
• 2.利用把k进制数化为十进数的一般方法就可以 将8进制数314706(8)化为十进制数,然后根据该 算法,应用循环结构可以设计程序.
• 314706(8)=3×85+1×84+4×83+7×82+0×81 +6×80=104902.所以,化为十进制数是104902.
• 8 进 制 数 314706(8) 中 共 有 6 位 , 因 此 可 令 a = 314706,k=8,n=6,设计程序如下:

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/52021/3/52021/3/53/5/2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年3月5日星期 五2021/3/52021/3/52021/3/5

15、最具挑战性的挑战莫过于提升自 我。。2021年3月2021/3/52021/3/52021/3/53/5/2021

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/3/52021/3/52021/3/53/5/2021 8:16:44 AM

11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021

秦九韶算法和进位制

秦九韶算法和进位制
意思是:(1)第一个数字an不能等于0; (2)每一个数字an,an-1,…,a1,a0都须小于k.
k进制的数也可以表示成不同位上数字与 基数k的幂的乘积之和的形式,即 anan-1…a1a0(k)=an×kn+an-1×kn-1 注意这是一
+…+a1×k1+a0×k0 . 个n+1位数.
[问题3]二进制只用0和1两个数字,这 正好与电路的通和断两种状态相对应,因 此计算机内部都使用二进制.计算机在进 行数的运算时,先把接受到的数转化成二 进制数进行运算,再把运算结果转化为十 进制数输出.
变为求几个一次式的值
v5=v4x+7=534×5+7=2677 几次乘法
所以,当x=5时,多项式的值是2677. 几次加法?
这种求多项式值的方法就叫秦九韶算法.
练习:用秦九韶算法求多项式 f(x)=2x6-5x5-4x3+3x2-6x当x=5时的值.
当x=5时,多项式的值是15170.
注意:n次多项式有n+1项,因此缺少哪一项 应将其系数补0.
同理: 3421(5)=3×53+4×52+2×51+1×50.
C7A16(16)=12×164+7×163+10×162
+1×161+6×160.
一般地,若k是一个大于1的整数,那么以k为 基数的k进制数可以表示为一串数字连写在一起 的形式 anan-1…a1a0(k) (0<an<k,0≤an-1,…,a1,a0<k)先 Nhomakorabea成如下形式
89=an×2n+an-1×2n-1+…+a1×21+a0×20 .

秦九韶算法与进位制课件

秦九韶算法与进位制课件

1.理解秦九韶算法的关键:一是弄清算法原理是加法对 乘法的分配律,二是弄清算法设计中递推关系是一个反复执
行的运算,故用循环语句来实现.
(1)秦九韶算法过程分析:
由于vv0k==vakn-,1x+an-k. 其中 k=1,2,…,n. 这样我们便可由 v0 依次求出 v1,v2,…,vn: v1=v0x+an-1,v2=v1x+an-2,v3=v2x+an-3,…,vn= vn-1x+a0. 于是我们用 v 来记录每次一次式计算的结果,最初赋值 v=an,用 v=v*x+an-i 实现递推循环,i 的初值为 1,i=i+ 1 记录循环次数,i≤n 控制何时结束循环输出 v.f(x)的系数 ak 用一个循环语句实现输入.
• WEND • PRINT b • END
• 程序框图
• 依据此程序:
• 第1轮(i=1)循环结束时b=a0. • 第2轮(i=2)循环结束时b=a1k+a0. •…
• 第j轮(i=j)循环结束时,b=aj-1kj-1+aj- 2kj-2+…+a1k+a0.
• 最后结束时,b=ankn+an-1kn-1+…+a1k +a0.
• 1.把一个n次多项式f(x)=anxn+an-1xn-1 +…+a1x+a0改写成如下形式:
• f(x)=anxn+an-1xn-1+…+a1x+a0 • =(anxn-1+an-1xn-2+…+a1)x+a0 • =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 • =+…+a1)x+a0
• 算法程序为: • INPUT “a,k=”;a,k • b=0 • i=0
• DO • q=a\k • r=a MOD k • b=b+r*10^i • i=i+1 • a=q
• LOOP UNTIL q=0 • PRINT b • END • 用WHILE语句编程如下:

新课标人教版高中数学必修三第一章 第三节《算法案例》第二课时秦九韶算法与进位制(共33张ppt)

新课标人教版高中数学必修三第一章 第三节《算法案例》第二课时秦九韶算法与进位制(共33张ppt)
1.3 算法案例
第2课时 秦九韶算法与进位制
2019.11
课程标准
通过阅读中 国古代数学 中的算法案 例,体会中 国古代数学 对世界数学 发展的贡献
学习要求
数学素养
1.了解算法的含义,体会算法的思想
数学抽象
2.在分析案例的基础上了解算法的基本特

数学运算
3.理解秦九韶算法的计算过程,并了解它 逻辑推理
v5 v4x 0.8 2826.2 5 0.8 14130.2
所以当x=5时,多项式的值为14130.2
例2 阅读下列程序,说明它解决的实际问题是什么?
INPUT “x=”;a n=0 y=0 WHLE n<5
y=y+(n+1)*a˄n n=n+1 WEND PRINT y END
62 0
余数
2 4 0 2
458=13022(4)=2042(6)
例2 将五进制数3241(5)转化为七进制数.
30241(5)=3×54+2×52+4×5+1=1946.
7 1946 7 278 7 39
结束
INPUT “a,k=”
b=0 i=0 DO
q=a\k
r=a MOD k
b=b+r*10∧i i=i+1 a=q
a,k
LOOP UNTIL q=0 PRINT b END
例1 将十进制数458分别转化为四进制数和六进制数.
4 458 4 114 4 28
47 41
0
余数
2 2 0 3 1
6 458 6 76 6 12
利用除k取余法,将十进制数a化为k进制数b的算法步骤如何设计?

2020版数学人教A版必修3课件:第一章 1.3 第2课时 秦九韶算法与进位制

2020版数学人教A版必修3课件:第一章 1.3 第2课时 秦九韶算法与进位制

第一章§1.3 算法案例第2课时 秦九韶算法与进位制学习目标XUEXIMUBIAO1.了解秦九韶算法.2.了解生活中的各种进位制,了解计算机内部运算为什么选择二进制.3.会用除k取余法把十进制转换为各种进位制,并理解其中的数学规律.NEIRONGSUOYIN内容索引自主学习题型探究达标检测1自主学习PART ONE知识点一 秦九韶算法1.求n 次多项式的值的算法,有一种比较好的算法叫秦九韶算法.2.秦九韶算法的一般步骤:把一个n 次多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0改写成如下形式:(…((a n x +a n -1)x +a n -2)x +…+a 1)x +a 0,求多项式的值时,首先计算________一次多项式的值,即v 1= ,然后由内向外逐层计算一次多项式的值,即v 2=,v 3= ,…,v n = ,这样,求n 次多项式f (x )的值就转化为求的值.最内层括n 个一次多项式号内a n x +a n -1v 1x +a n -2v 2x +a n -3v n -1x +a 0知识点二 进位制若k是一个大于1的整数,那么以k为基数的k进制数可以表示为一串数字连写在一起的形式a n a n-1…a1a0(k)(a n,a n-1,…,a1,a0∈N,0<a n<k,0≤a n-1,…,a1,a0<k).为了区分不同的进位制,常在数的右下角标明基数,如二进制数10(2),六进制数341(6),十进制数一般不标注基数.思考 59分59秒再过1秒是多少时间?答案 1小时.上述计时法遵循的是满60进一,称为六十进制.类比给出k进制的概念.“满k进一”就是k进制,k进制的基数是k.知识点三 进制间的转化1.一般地,将k进制数a n a n-1…a1a0(k)转化为十进制:a n a n-1…a1a0(k)=a n×k n+a n-1×k n-1+…+a1×k1+a0×k0.2.把十进制的数化为k进制的数的方法是:把十进制数除以k,余数为k进制的右数第一位数.把商再除以k,余数为k进制右数第二位数;依次除以k,直至商为0.这个方法称为除k取余法.1.二进制数中可以出现数字3.( )2.把十进制数转化成其它进制数的方法是除k 取余法.( )3.不同进制数之间可以相互转化.( )思考辨析 判断正误SIKAOBIANXIPANDUANZHENGWU√√×2题型探究PART TWO题型一 秦九韶算法的应用例1 用秦九韶算法求多项式f(x)=x5+5x4+10x3+10x2+5x+1当x=-2时的值.解 f(x)=x5+5x4+10x3+10x2+5x+1=((((x+5)x+10)x+10)x+5)x+1.当x=-2时,有v0=1;v1=v0x+a4=1×(-2)+5=3;v2=v1x+a3=3×(-2)+10=4;v3=v2x+a2=4×(-2)+10=2;v4=v3x+a1=2×(-2)+5=1;v5=v4x+a0=1×(-2)+1=-1.故f(-2)=-1.反思感悟 (1)先将多项式写成一次多项式的形式,然后运算时从里到外,一步一步地做乘法和加法即可.这样比直接将x=-2代入原式大大减少了计算量.若用计算机计算,则可提高运算效率.(2)注意:当多项式中n次项不存在时,可将第n次项看作0·x n.跟踪训练1 用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64当x=2时的值.解 根据秦九韶算法,把多项式改写成如下形式:f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64.由内向外依次计算一次多项式当x=2时的值:v0=1;v1=1×2-12=-10;v2=-10×2+60=40;v3=40×2-160=-80;v4=-80×2+240=80;v5=80×2-192=-32;v6=-32×2+64=0.所以当x=2时,多项式的值为0.题型二 k进制化为十进制例2 二进制数110 011(2)化为十进制数是什么数?解 110 011(2)=1×25+1×24+0×23+0×22+1×21+1×20=32+16+2+1=51.反思感悟 将k进制数a n a n-1…a1a0(k)化为十进制数的方法:把k进制数a n a n-1…a1a0(k)写成各数位上的数字与基数k的幂的乘积之和的形式,然后计算出结果即为对应的十进制数.跟踪训练2 (1)把二进制数1 110 011(2)化为十进制数.解 1 110 011(2)=1×26+1×25+1×24+0×23+0×22+1×21+1×20=115.(2)将8进制数314 706(8)化为十进制数.解 314 706(8)=3×85+1×84+4×83+7×82+0×81+6×80=104 902.所以,化为十进制数是104 902.题型三 十进制化k 进制解 算式如图,例3 将十进制数458分别转化为四进制数和六进制数.则458=13 022(4)=2 042(6).反思感悟 十进制数化为k进制数的思路为跟踪训练3 把89化为二进制数.解 算式如图,则89=1 011 001(2).典例 用秦九韶算法求多项式f (x )=x 5+0.11x 3-0.15x -0.04当x =0.3时的值.核心素养之数学运算HEXINSUYANGZHISHUXUEYUNSUAN 秦九韶算法求多项式的值解 将f (x )写为f (x )=((((x +0)·x +0.11)x +0)x -0.15)x -0.04.按从内到外的顺序,依次计算多项式的值:v 0=1,v 1=1×0.3+0=0.3,v 2=0.3×0.3+0.11=0.2,v 3=0.2×0.3+0=0.06,v 4=0.06×0.3-0.15=-0.132,v 5=-0.132×0.3-0.04=-0.079 6.∴当x =0.3时,f (x )的值为-0.079 6.素养评析 (1)当多项式中出现空项时,利用秦九韶算法求多项式的值,必须补上系数为0的相应项.这是本题的易错点.(2)理解运算对象即求多项式的值,掌握运算法则即秦九韶算法,这些均是数学核心素养之数学运算的具体体现.3达标检测PART THREE1.已知175(r)=125(10),则r的值为A.1B.5√C.3 D.8解析 ∵1×r2+7×r1+5×r0=125,∴r2+7r-120=0,∴r=8或r=-15(舍去),∴r=8,故选D.2.用秦九韶算法计算多项式f(x)=6x6+5x5+4x4+3x3+2x2+x+7在x=0.4时的值时,需做加法和乘法的次数的和为A.10B.9√C.12D.8解析 f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7,∴做加法6次,乘法6次,∴6+6=12(次),故选C.3.用秦九韶算法求多项式f(x)=x4+2x3+3x2+x+1当x=2时的值时,第一次运算的是A.1×2B.24√C.2+1D.1×2+2解析 因为f(x)=(((x+2)x+3)x+1)x+1,据由内到外的运算规律可知先运算的是1×2+2.4.下列各数中,最小的数是A.85(9)B.210(6)√C.1 000(4)D.111 111(2)解析 85(9)=8×9+5=77,210(6)=2×62+1×6+0=78,1 000(4)=1×43=64,111 111(2)=1×25+1×24+1×23+1×22+1×2+1=63.故最小的是63.5.(1)将二进制数 (2)转化成十进制数;1611111⋅⋅⋅个解 (2)=1×215+1×214+…+1×21+1×20=216-1.1611111⋅⋅⋅ 个(2)将53(8)转化为二进制数.解 先将八进制数53(8)转化为十进制数:53(8)=5×81+3×80=43;再将十进制数43转化为二进制数的算法如图.所以53(8)=101 011(2).课堂小结KETANGXIAOJIE1.要把k进制数化为十进制数,首先把k进制数表示成不同位上数字与k的幂的乘积之和,其次按照十进制的运算规则计算和.2.十进制数化为k进制数(除k取余法)的步骤:3.用秦九韶算法求多项式f(x)当x=x0时的值的思路为(1)改写;(2)计算(3)结论f(x0)=v n.。

秦九韶算法和进位制 课件

秦九韶算法和进位制  课件
秦九韶算法和进位制
基础梳理
1.秦九韶计算多项式的方法 f(x)=anxn+an-1xn-1+an-2xn-2+…+a1x+a0 =(anxn-1+an-1xn-2+an-2xn-3+…+a1)x+a0 =((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =… =(…((anx+an-1)x+an-2)x+…+a1)x+a0. 例如:已知一个3次多项式为f(x)=x3-2x2+x-1,用 秦九韶算法求这个多项式当x=2时的值. 解析:f(x)=x3-2x2+x-1=(((x法计算多项式f(x)=3x6+4x5+5x4+ 6x3+7x2+8x+1当x=0.4时的值时,需要做乘法和加法 的次数分别为( A )
A.6,6 B.5,6 C.5,5 D.6,5
题型二 秦九韶算法的程序框图与程序 例2 设计利用秦九韶算法计算5次多项式f(x)=a5x5
A.10 000 (2)
B.10 100(2)
C.11 001(2) D.10 001(2)
5.二进制数10 0001(2)等于十进制数____3_3___.
自测评价
1.关于进位制说法错误的是( D )
A.进位制是人们为了计数和运算方便而约定的记数
系统
B.二进制就是满二进一,十进制就是满十进一 C.满几进一,就是几进制,几进制的基数就是几 D.为了区分不同的进位制,必须在数的右下角标明
跟踪 训练
3.把十进制数53化为五进制数为________. 解析:
答案:203(5)
方法二
答案:B
跟踪 训练
2.写出将k进制数a转换为十进制数(共有n 位):a=anan-1…a3a2a1(k)=ank(n-1)+an-1k(n-2) +…+a3k2+a2k1+a1k0的算法步骤.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法案例 秦九韶算法和进位制
用秦九韶算法求函数值
用秦九韶算法求多项式f(x)=2x6-3x5+4x4- x3+2x2+x-3,当x=2时的值. 解析:f(x)=((((((2x-3)x+4)x-1)x+2)x+ 1)x-3) 因为V0=2,V1=1,V2=6,V3=11,V4=24, V5=49,V6=95, 所以f(2)=95.
A A.6,6 B.5,6 C.5,5 D.6,5
秦九韶算法的程序框图与程序
设计利用秦九韶算法计算5次多项式f(x)=a5x5 +a4x4+a3x3+a2x2+a1x+a0当x=x0时的值的 程序框图. 解析:程序框图如下:
ห้องสมุดไป่ตู้
点评:秦九韶算法的步骤:
十进制数与二进制数的互化
把十进制数53化为二进制数为( ) A.101 101(2) B.110 101(2) C.110 001(2) D.100 001(2) 解析:方法一(除二取余法) 53=2×26+1,26=2×13+0,13=2×6+1,6= 2×3+0,3=2×1+1,1=2×0+1;余数由后往前 写得110 101.
点评:当多项式函数中间出现空项时,利用秦 九韶算法求函数值,要补上系数为0的相应 项.当然当一个多项式函数空项很多时,用一 般的计算方法可能更简单一些.如对于f(x)=x6 -2x2+5,求f(2)的值,就没有必要再利用秦九 韶算法了,直接将x=2代入计算即可.
►跟踪训练 1.用秦九韶算法计算多项式f(x)=3x6+4x5+ 5x4+6x3+7x2+8x+1当x=0.4时的值时,需要 做乘法和加法的次数分别为( )
十进制数与其他进制数的互化
把十进制数53化为八进制数为 ________________________________________ ________________.
答案:65(8)
点评:把一个非十进制数转化为另一种非十进制 数,通常是把这个数先转化为十进制数,然后再 利用除k取余法,把十进制数转化为k进制数.而 在使用除k取余法时要注意三点:(1)必须除到所 得的商是0为止;(2)各步所得的余数必须从下到 上排列;(3)切记在所求数的右下角标明基数.
►跟踪训练 3.把十进制数53化为五进制数为__2_0_3_(5_) __.
解析:
方法二 答案:B
►跟踪训练 2.写出将k进制数a转换为十进制数(共有n位):a= anan-1…a3a2a1(k)=ank(n-1)+an-1k(n-2)+…+a3k2+a2k1 +a1k0的算法步骤.
解析:算法步骤: 第一步,输入a,k和n的值. 第二步,将b的值初始化为0,i的值初始化为1. 第三步,b=b+ai·ki-1,i=i+1. 第四步,判断i>n是否成立.若是,则执行第五步;否 则返回第三步. 第五步,输出b的值.
相关文档
最新文档