初中数学易错题分类汇总
7年级数学易错题
7年级数学易错题一、有理数运算类。
1. 计算:(-2)^3 - (-3)^2 ÷ (-1)^2023。
- 解析:- 先计算乘方运算。
(-2)^3=-8,(-3)^2 = 9,(-1)^2023=-1。
- 然后进行除法运算,9÷(-1)= - 9。
- 最后进行减法运算,-8-(-9)=-8 + 9 = 1。
2. 计算:(1)/(2)-<=ft(1)/(3)right+<=ft(-(1)/(4))。
- 解析:- 先计算绝对值,<=ft(1)/(3)right=(1)/(3)。
- 然后进行通分计算,(1)/(2)-(1)/(3)-(1)/(4)=(6 - 4 - 3)/(12)=-(1)/(12)。
二、整式加减类。
3. 化简:3a + 2b - 5a - b。
- 解析:- 合并同类项,将含有相同字母的项合并。
- 对于a的项,3a-5a=-2a;对于b的项,2b - b = b。
- 所以化简结果为-2a + b。
4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1。
- 解析:- 先去括号,2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。
- 再合并同类项,(2x^2-3x^2)+(-3xy + 3xy)+(4y^2 - 5y^2)=-x^2 - y^2。
- 当x = - 2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。
三、一元一次方程类。
5. 解方程:3x+5 = 2x - 1。
- 解析:- 移项,将含有x的项移到等号一边,常数项移到等号另一边。
- 得到3x - 2x=-1 - 5。
- 合并同类项得x=-6。
6. 解方程:(x + 1)/(2)-(2x - 1)/(3)=1。
- 解析:- 先去分母,方程两边同时乘以6,得到3(x + 1)-2(2x - 1)=6。
初中数学易错点汇总
初中数学易错点汇总
初中数学易错点汇总如下:
1. 小数与分数的转化:学生容易在小数与分数的转化时搞混,例如将0.5写成5/10而不是1/2。
2. 乘法与加法的混淆:有些学生容易将乘法和加法搞混,例如将3+2×4计算为10而不是11。
3. 逻辑思维的错误:在解题过程中,有些学生容易在逻辑思维上出现错误,例如在使用排除法时漏掉可能的情况。
4. 图形的分类错误:当遇到复杂的图形题时,有些学生容易将图形分类错误,从而导致后续计算出错。
例如将一个平行四边形误认为矩形。
5. 计算步骤的遗漏:在多步计算的题目中,有些学生容易遗漏其中的一步,导致最后结果错误。
例如在解方程时只进行了一次变量的移项。
6. 小数点的位置错误:在计算过程中容易出现小数点位置错误,导致最后结果错误。
例如将0.25写成0.025。
7. 计算容易混淆的运算:在一些相似的运算中,有些学生容易搞混具体的计算规则,例如正数与负数相乘的结果。
8. 单位的换算错误:在涉及单位换算的题目中,有些学生容易搞错具体的换算关系。
例如将1千克等于100克而不是1000克。
9. 数字的书写错误:在解题过程中,由于粗心大意或手误,有些学生会出现数字书写错误,例如将个位数写成十位数。
10. 理解问题的错误:在解题过程中,有些学生对问题的理解有偏差,导致最后的答案与问题要求不符。
例如求比率时将被比数与比数弄反。
以上是初中数学常见的易错点,通过对这些问题的重点总结和针对性训练,可以帮助学生提高数学解题能力。
初中数学易错题集
初中数学易错题集1. 分母为0的数学计算错误- 示例题目:计算 3 ÷ 0 的值。
解析:分母为0的情况下,计算是没有意义的,因为任何数除以0都没有定义。
因此,这道题是没有解的,答案是无解。
2. 乘除法运算次序错误- 示例题目:计算 2 + 3 × 4 的值。
解析:根据数学运算法则,乘法和除法的优先级高于加法和减法。
所以,首先计算3 × 4,得到12,再加上2,最后的答案是14。
3. 幂运算有括号错误- 示例题目:计算 2^3 × 4 的值。
解析:幂运算的优先级高于乘法和除法,但低于括号。
根据数学运算法则,先计算幂运算,再进行乘法运算。
所以,首先计算2的3次方,得到8,再乘以4,最后的答案是32。
4. 直角三角形定理应用错误- 示例题目:已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长度。
解析:根据直角三角形的定理(勾股定理),直角边的平方加上直角边的平方等于斜边的平方。
所以,设另一条直角边的长度为x,则有x^2 + 3^2 = 5^2。
解这个方程可以得到 x = 4。
5. 百分数转换错误- 示例题目:将0.6转化为百分数。
解析:百分数是以百分号(%)表示的,表示数值的百分之几。
将小数转化为百分数时,将小数乘以100,并在后面加上百分号。
所以,0.6转化为百分数是60%。
6. 未转化单位导致计算错误- 示例题目:汽车以60千米/小时的速度行驶了2小时,求汽车行驶的总距离。
解析:速度乘以时间等于距离。
但是在计算之前,要将速度和时间转化为相同的单位。
由于速度单位是千米/小时,时间单位是小时,所以无需转化单位,直接乘起来就可以,答案为 60 × 2 = 120 千米。
7. 数字精度错误- 示例题目:计算 0.2 × 0.3 的值。
解析:在计算浮点数(小数)时,由于计算机的二进制表示有限,不是所有的小数都能精确表示。
所以,计算结果可能有一定的误差。
初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)
精心整理初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 .三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x 的值. ⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.(3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。
初一下册数学易错题
初一下册数学易错题初一下册数学易错题主要包括有复数、平方根、立方根、公式运用等方面的题目。
下面将针对这几个方面进行详细的解析,帮助同学们更好地理解和掌握。
【1】复数的概念和运算易错题:易错点一:对复数概念理解不清解析:复数是由实数和虚数构成的数,可以表示为a+bi的形式,其中a为实部,b为虚部,i是虚数单位。
同学们要清楚掌握复数的定义和基本运算法则。
易错点二:复数的乘法和除法解析:复数的乘法遵循分配律和乘积法则,即(a+bi)(c+di)=ac+adi+bci+bdi^2 = (ac-bd)+(ad+bc)i,其中i^2=-1。
复数的除法可以通过乘以倒数来实现,即(a+bi)/(c+di)=(a+bi)(c-di)/(c+di)(c-di)。
【2】平方根的性质和运算易错题:易错点一:混淆正负号解析:平方根有两个解,一个是正数,一个是负数。
同学们在计算平方根时要根据实际情况选取正确的解。
易错点二:平方根的性质运用不熟练解析:平方根有一些重要的性质,如:两个相等的数的平方根相等,平方根可以通过指数运算表示,平方根的运算可以转化为分解因式等。
同学们要学会灵活运用这些性质解题。
【3】立方根的性质和运算易错题:易错点一:计算错误解析:计算立方根时要注意运算的准确性,特别是在处理大数时更要格外小心。
可以通过试除法和逼近法来计算立方根。
易错点二:混淆立方根的性质解析:立方根有一些重要的性质,如:两个相等的数的立方根相等,立方根可以通过指数运算表示等。
同学们要对这些性质有清晰的理解,并能够应用到具体题目中。
【4】公式运用类易错题:易错点一:公式的记忆错误解析:数学中有很多重要的公式,如勾股定理、平行线性质等,同学们在应用这些公式时要确保记忆准确。
易错点二:公式的适用范围不清晰解析:同学们要明确每个公式的适用范围,确保在解题时选择正确的公式,不要随意混用。
总之,初一下册数学易错题主要集中在复数、平方根、立方根和公式运用等方面。
初三数学易错题集锦
初三数学易错题代数第一章∶一元二次方程1、解方程1112-=+-x m x x 的过程中若会产生增根,则m=____2.关于x 的方程m 2x 2+(2m +1)x +1=0有两个不相等的根,求m 的取值范围__ 3,若关于x 的方程ax 2-2x +1=0有实根,那a 范围____4,已知方程3x 2-4x -2=0,则x 1-x 2=___,大根减小根为____5,以251+-和251--的一元二次方程是____6,若关于x 的方程(a+3)x 2-(a 2-a -6)x +a=0的两根互为相反数,则a=___7,已知a,b 为不相等的实数,且a 2-3a +1=0,b 2-3b+1=0则a b +ba =___ 8,方程ax 2+c=0(a ≠0)a,c 异号,则方程根为_____9,若方程3x 2+1=mx 的二次项为3x 2,则一次项系数为_____23,分解因式4x 2+8x +1=_____24,若方程2x 2+3x -5=0的两根为x 1,x 2则x 12+x 22=_____25,方程组有两组相同的实数解,则k=___方程组的解为___ 43,若x 是锐角,cosA 是方程2x 2-5x +2=0的一个根,则∠A=___1、已知:Rt △ABC 中,∠C=900,斜边c 长为5,两条直角边a,b 的长分别是x 2-(2m-1)x+4(m-1)=0的两根,则m 的值等于()A.–1B.4C.-4或1D.–1或4.2、已知关于x 的方程012)32(2=+--x m x m 有两个不相等的实数根,则m 的范围是:()A .m<3B.233≠<m m 且 C.0,233≠≠<m m m 且 D.2330≠<≤m m 且3、已知方程①01222=+-x x ,②041x =+-,③1122=++++x x x x , ④0x 12x =---,⑤01)12(2=-+++k x k x 其中一定有...实数解的方程有 A 、1个B 、2个C 、3个D 、4个5、已知,012=-+m m 那么代数式2001223-+m m 的值是()(A)2000(B)-2000(C)2001(D)-20016,下面解答正确的是()A ,分式的值是零,x=-2或x=1B,实数范围内分解因式2x 2+x -2=)4171)(4171(+-----x x C,x=-1是无理方程22-2x +7x =-x 的根D,代数式x 2+2x -1通过配方法知x=-1时,它有最小值是-27,关于x 的方程x 2-mx +n=0有一正一负的两实根,且负根绝对值较大,则()A , n >0,m <0B,n>0,m >0,C,n<0m>0D,n <0m<08,若x =-b+b 2+4ac2a 则有()A ,ax 2+bx+c=0B,ax 2+bx-c=0C,ax 2-bx+c=0D,ax 2-bx-c=09、在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是()(A )23(B )25(C )5(D )2 20,已知关于x 的方程x 2+px +q=0的两根为x 1=-3x 2=4,则二次三项式x 2-px +q=()A.(x +3)(x -4)B,(x -3)(x +4)C,(x +3)(x +4)D,(x -3)(x -4) 三,解答题1,甲乙二人合作一项工程,4天可完成,若先有甲单独做3天,剩下的由乙独做,则以所用的时间等于甲单独完成这项工程的时间,求甲乙二人单独完成此项工程各需几天? 2,解方程mnx 2-(m 2+n 2)x +mn=0(mn ≠0)3,在⊿ABC 中,∠A ∠B ∠C 的对边分别为a,b,c 且a,b 是关于x 的方程∶x 2-(c +4)x+4c +8=0的两根,若25asinA=9c,求⊿ABC 的面积第二章∶函数第一节∶平面直角坐标系22,平面直角坐标系中,点A (1-2a,a-2)位于第三象限且a 为整数,则点A 的坐标是_____10、已知点()2,1+-a a M 在第二象限,则a 的取值范围是()(A )2->a (B )12<<-a (C )2-<a (D )1>a14、若点M (x -1,1-y )在第一象限,则点N (1-x ,y -1)关于x 轴的对称点在()A 、第一象限B 、第二象限C 、第三象限D 、第四象限第二节∶函数 11、函数321+=x y 中,自变量x 的取值范围是____12、函数x x y -+=0的自变量的取值范围是_____1,锐角三角形ABC 内接于⊙O ,∠B=2∠C ,∠C 所对圆弧的度数为n ,则n 的取值范围是()A,0°<n <45°B,0°<n <90°C,30°<n <45°D,60°<n <90°第三节∶一次函数15,当___时,函数y=(m +3)x 2m +3+4x -5(x ≠0)是一个一次函数。
中考数学最易出错61个知识点
中考数学最易出错61个知识点中考数学是中学学生所要参加的一项重要考试,其中涉及的知识点众多,且易出错。
在这里,我将为你详细介绍中考数学中最常见的61个易出错知识点。
1.四则运算:在进行加减乘除的运算时,容易出错的地方主要有横式运算错误、进位或借位错误、计算优先级错误等。
2.小数和分数:容易忽略小数点位置,小数转化成百分数或分数时易出错。
3.百分数:容易忘记将百分数转换成小数或分数,计算百分数的加减乘除时易出错。
4.平方和立方:容易将平方和立方的运算法则记错,例如平方数的开平方计算等。
5.代数式的计算:在多项式的加减乘除时容易忽略项,忘记合并同类项等。
6.等式和方程:在等式的加减乘除时易出错,方程的解错等。
7.几何图形的计算:容易计算图形的周长、面积和体积时忽略单位,记错公式等。
8.几何相似:容易混淆正相似和全等,计算相似比时出错。
9.圆与圆相关的知识点:包括弦长、弧长、扇形面积等计算容易出错。
10.直角三角形:容易记错勾股定理和三角函数的计算。
11.等腰三角形和等边三角形:容易忘记等腰三角形的性质和计算等边三角形的周长和面积。
12.梯形和平行四边形:容易计算梯形和平行四边形的面积时忽略高,记错公式。
13.计算用纸:容易使用错单位,计算时纸上的步骤和结果容易出错。
14.逻辑推理和证明:在逻辑推理和证明问题时容易漏项,记错条件或结论。
15.统计与概率:在统计数据的收集和处理时易出错,概率计算容易忽略条件。
以上是中考数学中最常见的61个易出错知识点的简要介绍。
为了避免这些易出错的情况,建议同学们在备考过程中多做相关的练习题,掌握基本技巧和方法,加强解题能力。
此外,同学们还可以多与同学、老师交流,共同探讨和解决问题,提升自己的数学水平。
初中数学人教版八年级上册常考易错点汇总(共 8个常考题型65条)
八年级数学上册易错点一、数与式(8条)【易错点】1.有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆,以及绝对值的分类讨论。
(每年选择题必考)【易错点】2.实数的运算关键是把好符号关;在较复杂的运算中,不注意运算优先级或者不合理使用运算律,从而使运算出现错误。
【易错点】3.平方根、算术平方根、立方根的区别。
(每年填空题必考)【易错点】4.求分式值为零时学生易忽略分母不能为零。
【易错点】5.分式运算时要注意运算法则和符号的变化。
当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。
【易错点】6.非负数的性质.几个非负数的和为0,每个式子都为0;初中阶段就学过三个非负数.绝对值、二次根式、完全平方式。
【易错点】7.0指数幂,底数不为0。
【易错点】8.代入求值要使式子有意义。
最常考的是分式的化简求值,要注意每个分式的分母不为0,还要注意除号“÷”后面的式子也不能为0。
一定要注意计算顺序,先观察从哪里开始计算。
二、方程(组)与不等式(组)(8条)【易错点】1.二元一次方程组有可能无解,无解的条件可以用对应的两条一次函数图像平行。
【易错点】2.运用等式性质时,两边同除以一个数必须要注意不能为0的情况。
【易错点】3.解不等式时,当做到系数化为1时,两边如果是乘以或除以负数,容易忘记改变不等号方向,而导致结果出错。
(事实上考不等式几乎只考有变号的题,你细品。
)【易错点】4.关于含参一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
【易错点】5.关于含参一元一次不等式(组)有解无解、几个整数解的条件,易忽视相等的情况。
【易错点】6.确定不等式(组)的解集的方法画数轴,解集用“<”连接。
【易错点】7.解分式方程时,第一步去分母,分子的括号要还原(分式自带括号功能),最后一步易忘记检验根。
【易错点】8.利用函数图象求不等式的解集和方程的解,要注意图像交点,它决定了分类区间。
初中生中考数学命题易错
初中生中考数学命题易错目录一、数与式 (1)二、方程(组)与不等式(组) (2)三、函数 (2)四、三角形 (3)五、四边形 (4)六、圆 (4)七、对称图形 (4)八、统计与概率 (4)一、数与式陷阱1:在较复杂的运算中,因不注意运算顺序或者不合理使用运算律,致使运算出现错误。
常见陷阱是在实数的运算中符号层层相扣。
陷阱2:要求随机或者在某个范围内代入求值时,注意所代值必须要使式子有意义,常见陷阱是候选值里有一个会使分母为零。
陷阱3:注意分式运算中的通分不要与分式方程计算中的去分母混淆。
陷阱4:非负数的性质:若几个非负数的和为0,则每个式子都为0;常见非负数有:绝对值,非负数的算术平方根,完全平方式。
陷阱5:五个基本数的混合运算:0指数,基本三角函数,绝对值,负指数,二次根式的化简,这些需牢记。
陷阱6:科学计数法中,精确度和有效数字的概念要清楚。
二、方程(组)与不等式(组)陷阱1:运用等式性质解方程时,切记等式两边不能直接约去含有未知数的公因式,必须要考虑约去的含有未知数的公因式为零的情形。
陷阱2:常在考查不等式的题目时候埋设关于性质3的陷阱,许多人因忘记改变符号的方向而导致结果出错。
陷阱3:关于一元二次方程中求某参数的取值范围的题目中,埋设二次项系数包含参数这一陷阱,易忽视二次项系数不为0导致出错。
陷阱4:解分式方程时,首要步骤是去分母,分数相当于括号,易忘记最后对根的检验,导致运算结果出错。
陷阱5:关于一元一次不等式组有解无解的条件,易忽视相等的情况;利用函数图像求不等式的解集和方程的解时,注意端点处的取值。
三、函数陷阱1:关于函数自变量的取值范围埋设陷阱。
注意:①分母≠0,二次根式的被开方数≥0,0指数幂的底数≠0;②实际问题中许多自变量的取值不能为负数。
陷阱2:根据一次函数的性质(或者实际问题、动点问题等)判断函数的图象出错,一次函数图象性质与k、b之间的关系掌握不到位。
陷阱3:二次函数y=ax2+bx+c的图像位置和参数a,b,c的关系。
初二数学易错题
初二数学易错题【原创版】目录1.初二数学易错题的概念和重要性2.常见的初二数学易错题类型3.如何避免犯初二数学易错题的错误4.提高初二数学成绩的方法正文【初二数学易错题的概念和重要性】初二数学易错题是指在初二数学学习过程中,学生经常犯错的题目。
这些题目往往具有一定的难度和迷惑性,学生容易在理解、计算或者思维上出现偏差,从而导致做错。
对于学生而言,掌握这些易错题的解决方法,不仅可以提高学习效率,还能增强自己的解题能力。
【常见的初二数学易错题类型】初二数学易错题类型繁多,主要包括以下几种:1.几何题:如求解三角形的面积、周长,四边形的面积等。
2.代数题:如一元一次方程、一元二次方程的解法,比例与均分等。
3.函数题:如函数图像的绘制、函数的性质等。
4.数据与概率:如统计图表的读取、概率的计算等。
5.方程与不等式:如解不等式、方程组等。
【如何避免犯初二数学易错题的错误】要避免犯初二数学易错题的错误,可以从以下几个方面入手:1.加强基础知识的学习,对概念、公式、定理进行深入理解。
2.做题时,要仔细审题,理解题意,明确题目要求。
3.做题过程中,要注意运算顺序、运算法则,避免粗心大意导致错误。
4.多做练习,积累解题经验,提高解题速度和准确率。
【提高初二数学成绩的方法】1.制定合理的学习计划,合理安排时间,保证学习效果。
2.多做习题,形成解题思路,提高解题能力。
3.及时复习,总结归纳,强化知识点的掌握。
4.积极参与课堂讨论,与同学互相学习,取长补短。
5.向老师请教,解决自己遇到的难题,扫清学习障碍。
总之,初二数学易错题是学生在学习过程中不可避免的难题,只有通过不断练习,加强基础知识的掌握,才能提高自己的解题能力,避免犯错。
初中数学看错数题型
初中数学看错数题型初中数学是一个很重要的学科,它为我们的学习和生活提供了基础。
然而,很多同学在学习数学的过程中,经常会因为疏忽或者粗心而看错数题,导致答案出错。
今天我就来谈谈初中数学中容易看错的一些题型,希望大家能够引以为戒,避免犯同样的错误。
一、代数题代数题是初中数学中比较常见的题型之一。
在代数题中,很多同学容易看错的地方在于未能正确理解题目中的含义,导致无法正确运用代数知识解答问题。
比如,有些同学在求解代数方程时,容易漏写符号或者运算错误;有些同学在化简代数式时,容易漏掉负号或者因式分解出错。
为了避免看错代数题,我们可以通过多做代数题,加强对代数知识的理解和掌握。
此外,在解题时要仔细审题,确保自己理解题目的意思,并在解题过程中反复检查,以确保自己的答案是正确的。
二、几何题几何题是另一个容易看错的数学题型。
在几何题中,很多同学容易对图形的性质和定理理解不透彻,导致在证明或计算过程中出现错误。
比如,有些同学在证明三角形全等时,容易忽略对应边对应角的关系;有些同学在计算图形的面积时,容易漏算或者算错。
为了避免看错几何题,我们可以通过多画图,观察图形的性质和关系,加深对几何知识的理解。
在解题时要注意细节,例如对边长、角度、面积等数据进行反复核对,以确保自己的答案是正确的。
三、概率题概率题是初中数学中较为复杂的题型之一。
在概率题中,很多同学容易看错的地方在于未能正确理解概率的概念和计算方法,导致在计算概率时出现错误。
比如,有些同学在计算事件的概率时,容易把事件的个数算错或者忽略事件的互斥性;有些同学在计算条件概率时,容易漏算或者计算错误。
为了避免看错概率题,我们可以通过多做实例题,加强对概率计算方法的掌握。
在解题时要注意概率的定义和计算公式,仔细分析题目中给出的条件,确保自己的计算是准确的。
总的来说,初中数学中有很多看错的题型,但只要我们认真对待每一道题,仔细审题、仔细计算,就能够避免犯错。
希望大家在学习数学的过程中,能够注意这些容易看错的题型,提高自己的解题能力,取得更好的成绩。
(完整)初三数学易错题集锦及答案
初中数学选择、填空、简答题易错题集锦及答案一、选择题1、A 、B 是数轴上原点两旁的点,则它们表示的两个有理数是( C )A 、互为相反数B 、绝对值相等C 、是符号不同的数D 、都是负数 2、有理数a 、b 在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是( A ) A 、2a B 、2b C 、2a-2b D 、2a+b3、轮船顺流航行时m 千米/小时,逆流航行时(m-6)千米/小时,则水流速度( B ) A 、2千米/小时 B 、3千米/小时 C 、6千米/小时 D 、不能确定4、方程2x+3y=20的正整数解有( B )A 、1个B 、3个C 、4个D 、无数个 5、下列说法错误的是( C )A 、两点确定一条直线B 、线段是直线的一部分C 、一条直线是一个平角D 、把线段向两边延长即是直线6、函数y=(m 2-1)x 2-(3m-1)x+2的图象与x 轴的交点情况是 ( C ) A 、当m ≠3时,有一个交点 B 、1±≠m 时,有两个交 C 、当1±=m 时,有一个交点 D 、不论m 为何值,均无交点7、如果两圆的半径分别为R 和r (R>r ),圆心距为d ,且(d-r)2=R 2,则两圆的位置关系是( B ) A 、内切 B 、外切 C 、内切或外切 D 、不能确定8、在数轴上表示有理数a 、b 、c 的小点分别是A 、B 、C 且b<a<c ,则下列图形正确的是( D )A B C D 9、有理数中,绝对值最小的数是( C ) A 、-1 B 、1 C 、0 D 、不存在 10、21的倒数的相反数是( A )A 、-2B 、2C 、-21 D 、2111、若|x|=x ,则-x 一定是( B )A 、正数B 、非负数C 、负数D 、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为( C ) A 、互为相反数 B 、互为倒数 C 、互为相反数且不为0 D 、有一个为0 13、长方形的周长为x ,宽为2,则这个长方形的面积为( C ) A 、2x B 、2(x-2) C 、x-4 D 、2·(x-2)/2 14、“比x 的相反数大3的数”可表示为( C ) A 、-x-3 B 、-(x+3) C 、3-x D 、x+3 15、如果0<a<1,那么下列说法正确的是( B ) A 、a 2比a 大 B 、a 2比a 小C 、a 2与a 相等D 、a 2与a 的大小不能确定16、数轴上,A 点表示-1,现在A 开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A 点表示的数是( B )A 、-1B 、0C 、1D 、817、线段AB=4cm ,延长AB 到C ,使BC=AB 再延长BA 到D ,使AD=AB ,则线段CD 的长为( A )A 、12cmB 、10cmC 、8cmD 、4cm 18、21-的相反数是( B ) A 、21+B 、12- C 、21-- D 、12+-19、方程x(x-1)(x-2)=x 的根是( D )A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+, x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设yx x =+1,则原方程可化为( B )A 、3y 2+5y-4=0 B 、3y 2+5y-10=0 C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( B )A 、两个相等的实数根;B 、两个不相等的实数根;C 、三个不相等的实数根;D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( C ) A 、-4 B 、4 C 、-8 D 、823、解关于x 的不等式⎩⎨⎧-<>a x ax ,正确的结论是( C )A 、无解B 、解为全体实数C 、当a>0时无解D 、当a<0时无解 24、反比例函数xy 2=,当x ≤3时,y 的取值范围是( C ) A 、y ≤32 B 、y ≥32C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( C ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕耽误时间,于时就加快了车速,在下列给出的四个函数示意图象,符合以上情况的是( D )A B C D27、若一数组x 1, x 2, x 3, …, x n 的平均数为x ,方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n的平均数与方差分别是( A )A 、k x , k 2s 2B 、x , s 2C 、k x , ks 2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( B ) A 、a ≠1 B 、a ≠-1 C 、a ≠2 D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( A )A 、线段B 、正三角形C 、平行四边形D 、等腰梯形30、已知dcb a =,下列各式中不成立的是( C ) A 、d c b a d c b a ++=-- B 、d b c a d c 33++= C 、bd ac b a 23++= D 、ad=bc 31、一个三角形的三个内角不相等,则它的最小角不大于( D ) A 、300 B 、450 C 、550 D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( C )A 、三角形的外心B 、三角形的重心C 、三角形的内心D 、三角形的垂心 33、下列三角形中是直角三角形的个数有( B )①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形 ③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形 A 、1个 B 、2个 C 、3个 D 、4个 34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( A )A 、3πcm B 、32πcm C 、6πcm D 、2πcm 35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( D )A 、4cm, 6cmB 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B 点旋转,则在旋转过程中,AE 与CD 的大小关系是( A )A 、AE=CDB 、AE>CDC 、AE>CD D 、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是( A ) A 、矩形 B 、梯形 C、两条对角线互相垂直的四边形 D 、两条对角线相等的四边形 38、在圆O 中,弧AB=2CD ,那么弦AB 和弦CD 的关系是(C )A 、AB=2CDB 、AB>2CDC 、AB<2CD D 、AB 与CD 39、在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC 的度数为( D ) A 、300 B 、600 C 、1500 D 、300或150040、△ABC 的三边a 、b 、c 满足a ≤b ≤c ,△ABC 的周长为18,则( C )A 、a ≤6B 、b<6C 、c>6D 、a 、b 、c 中有一个等于641、如图,在△ABC 中,∠ACB=Rt ∠,AC=1,BC=2,则下列说法正确的是( C )A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E 直角顶点C 落在斜边AB 上,如果折叠后得到等腰三角形EBA ,那么下列结论中(1)∠A=300(2)点C 与AB 的中点重合 (3)点E 到AB 的距离等于CE 的长,正确的个数是( D ) A 、0 B 、1 C 、2 D 、343、不等式6322+>+x x 的解是( C )A 、x>2B 、x>-2C 、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( B ) A 、m ≤1 B 、m ≥31且m ≠1 C 、m ≥1 D 、-1<m ≤1 AB45、函数y=kx+b(b>0)和y=xk-(k ≠0),在同一坐标系中的图象可能是( B ) A B C D46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( B )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上, 则下列结论中正确的是( D )A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 2>y 1>y 3D 、y 3>y 1>y 2 48、下列根式是最简二次根式的是( B ) A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( D )A 、523=+B 、5252=+C 、b a b a +=+22D 、212221221+=-50、把aa 1--(a 不限定为正数)化简,结果为( B )A 、aB 、a- C 、-aD 、-a-51、若a+|a|=0,则22)2(a a +-等于( A ) A 、2-2a B 、2a-2 C 、-2 D 、252、已知02112=-+-x x ,则122+-x x 的值( C ) A 、1 B 、±21 C 、21D 、-2153、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( C )A 、18B 、6C 、23D 、±2354、下列命题中,正确的个数是( B )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A 、2个B 、3个C 、4个D 、5个 二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_____非正数____。
初中数学有哪些常见易错题型?
初中数学有哪些常见易错题型?初中数学充当直接连接小学与高中数学的重要桥梁,其知识体系较为完整,但同时也存在不少容易出错的题型。
本文将从教育专家的角度,分析初中数学比较普遍的易错题型,并给出专业有效的应对策略,指导学生更好地掌握数学知识,增强解题能力。
一、代数运算类1. 符号运算错误:比较多体现在对负号、分数、绝对值的处理上。
例如,(-2)²与-2²的区别,分数的加减乘除法则,绝对值的符号判断等。
应对策略:加强符号运算的理解和练习,熟悉符号的意义和运算规则,特别是负号的应用,尽量避免因符号错误导致计算结果出现错误。
2. 多项式运算错误:主要体现在合并同类项、整式乘除法、因式分解等方面。
比如,合并同类项时记混系数或指数,整式运算时分配律运用不当,因式分解时选择错误的分解方法等。
应对策略:熟练掌握多项式运算的步骤和法则,注重细节,反复练习,提高解题的准确率。
二、方程与不等式类1. 解方程(组)错误:要注意体现在移项、系数化简、解集表示等方面。
例如,移项时忘记改变符号,系数化简时错误计算,解集表示时漏掉特殊情况等。
应对策略:认真理解方程的解题步骤,仔细检查每一步运算结果,尤其注意符号变化和解集的完整性。
2. 解不等式(组)错误:要注意体现在不等号方向判断、解集表示等方面。
例如,不等式两边乘以负数忘记改变符号方向,解集表示时漏掉特殊情况等。
应对策略:熟记不等式运算的规则,尤其注意不等号方向变化问题,增强解集的表示方法训练,增加解不等式的准确性。
三、函数类1. 函数定义域错误:要注意体现在对分式、根式、对数函数等特殊函数定义域的理解上。
比如,分式函数分母不能为零,根式函数被开方数要非负,对数函数真数要大于零。
应对策略:熟练掌握不同函数类型的定义域判断方法,尤其注意特殊情况,并从图像理解函数的定义域。
2. 函数图像错误:主要注意体现在对函数图像的画法、对称性、单调性、奇偶性等方面的理解和运用上。
初中数学易错题分类大全
初中数学易错题分类汇编一、数与式例题:A )2,(B,(C )2±,(D)例题:等式成立的是.(A )1c ab abc =,(B )632x x x =,(C )112112a a a a ++=--,(D )22a x a bx b=. 二、方程与不等式⑴字母系数例题:关于x 的方程2(2)2(1)10k x k x k ---++=,且3k ≤.求证:方程总有实数根.例题:不等式组2,.x x a >-⎧⎨>⎩的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-.⑵判别式例题:已知一元二次方程222310x x m -+-=有两个实数根1x ,2x ,且满足不等式121214x x x x <+-,求实数的范围. ⑶解的定义例题:已知实数a 、b 满足条件2720a a -+=,2720b b -+=,则a b b a+=____________. ⑷增根例题:m 为何值时,22111x m x x x x --=+--无实数解. ⑸应用背景例题:某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度为8千米/时,水流速度为2千米/时,若A、C 两地间距离为2千米,求A、B两地间的距离.⑹失根例题:解方程(1)1-=-.x x x三、函数⑴自变量例题:函数y=中,自变量x的取值范围是_______________.⑵字母系数例题:若二次函数22y mx x m m=-+-的图像过原点,则m=______________.32⑶函数图像例题:如果一次函数y kx b=+的自变量的取值范围是26-≤≤,相应的函数值x的范围是119y-≤≤,求此函数解析式.⑷应用背景例题:某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________元.四、直线型⑴指代不明________.⑵相似三角形对应性问题例题:在ABCBC=,D为AC上一点,:2:3DC AC=,AC=18△中,9AB=,12在AB上取点E,得到ADE△,若两个三角形相似,求DE的长.⑶等腰三角形底边问题例题:等腰三角形的一条边为4,周长为10,则它的面积为________. ⑷三角形高的问题例题:等腰三角形的一边长为10,面积为25,则该三角形的顶角等于多少度? ⑸矩形问题例题:有一块三角形ABC 铁片,已知最长边BC =12cm ,高AD =8cm ,要把它加工成一个矩形铁片,使矩形的一边在BC 上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的铁片面积?⑹比例问题 例题:若b c c a a b k a b c+++===,则k =________. 五、圆中易错问题⑴点与弦的位置关系例题:已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 引直径AB 的垂线,垂足为点D ,点D 分这条直径成2:3两部分,如果⊙O 的半径等于5,那么BC =________.⑵点与弧的位置关系例题:PA 、PB 是⊙O 的切线,A 、B 是切点,78APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.⑶平行弦与圆心的位置关系例题:半径为5cm 的圆内有两条平行弦,长度分别为6cm 和8cm ,则这两条弦的距离等于________.⑷相交弦与圆心的位置关系例题:两相交圆的公共弦长为6,两圆的半径分别为、5,则这两圆的圆心距等于________.⑸相切圆的位置关系例题:若两同心圆的半径分别为2和8,第三个圆分别与两圆相切,则这个圆的半径为________.练习题:一、容易漏解的题目1.一个数的绝对值是5,则这个数是_________;__________数的绝对值是它本身.(5±,非负数)2._________的倒数是它本身;_________的立方是它本身.(1±,1±和0)3.关于x 的不等式40x a -≤的正整数解是1和2;则a 的取值范围是_________.(412a ≤<)4.不等式组213,.x x a ->⎧⎨>⎩的解集是2x >,则a 的取值范围是_________.(2a ≤) 5.若()2211a a a +--=,则a =_________.(2-,2,1-,0)6.当m 为何值时,函数21(3)45m y m x x +=++-是一个一次函数.(0m =或3m =-)7.若一个三角形的三边都是方程212320x x -+=的解,则此三角形的周长是_________.(12,24或20)8.若实数a 、b 满足221a a =+,221b b =+,则a b +=________.(2,2±9.在平面上任意画四个点,那么这四个点一共可以确定_______条直线.10.已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =_____.(4cm 或10cm )11.一个角的两边和另一个角的两边互相垂直,且其中一个角是另一个角的两倍少30︒,求这两个角的度数.(30︒,30︒或70︒,110︒)12.三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处?(4)13.等腰三角形一腰上的高与腰长之比为1:2,则该三角形的顶角为_____.(30︒或150︒)14.等腰三角形的腰长为a,一腰上的高与另一腰的夹角为30︒,则此等腰三a)角形底边上的高为_______.(215.矩形ABCD的对角线交于点O.一条边长为1,OAB△是正三角形,则这个矩形的周长为______.(2+216.梯形ABCD中,AD BC∥,90∠=︒,AB=7cm,BC=3cm,试在AB边上确A定P的位置,使得以P、A、D为顶点的三角形与以P、B、C为顶点的三角cm)形相似.(AP=1cm,6cm或14517.已知线段AB=10cm,端点A、B到直线l的距离分别为6cm和4cm,则符合条件的直线有___条.(3条)18.过直线l外的两点A、B,且圆心在直线l的上圆共有_____个.(0个、1个或无数个)19.在Rt ABCAB=,以C为圆心,以r为半径的∠=︒,3AC=,5△中,90C圆,与斜边AB只有一个交点,求r的取值范围.( 2.4<≤)rr=或3420.直角坐标系中,已知(1,1)P,在x轴上找点A,使AOP△为等腰三角形,这样的点P共有多少个?(4个)21.在同圆中,一条弦所对的圆周角的关系是______________.(相等或互补)22.圆的半径为5cm,两条平行弦的长分别为8cm和6cm,则两平行弦间的距离为?_______.(1cm或7cm)23.两同心圆半径分别为9和5,一个圆与这两个圆都相切,则这个圆的半径等于多少?(2或7)24.一个圆和一个半径为5的圆相切,两圆的圆心距为3,则这个圆的半径为多少?(2或8)25.PA 切⊙O 于点A ,AB 是⊙O 的弦,若⊙O 的半径为1,AB =PA 的长为____.(1或)26.PA 、PB 是⊙O 的切线,A 、B 是切点,80APB ∠=︒,点C 是上异于A 、B 的任意一点,那么ACB ∠=________.(50︒或130︒)27.在半径为1的⊙O 中,弦AB AC BAC ∠=________.(75︒或15︒)二、容易多解的题28.已知()()22222215x y x y +++=,则22x y +=_______.(3)29.在函数y =中,自变量的取值范围为_______.(1x ≥)30.已知445x x -+=,则22x x -+=________)31.当m 为何值时,关于x 的方程2(2)(21)0m x m x m ---+=有两个实数根.(14m ≥-,且2m ≠).32.当m 为何值时,函数2(1)350m m y m x x -=++-=是二次函数.(2)33.若22022(43)x x x x --=-+,则x =?.(1-)34.方程组22240,3260.x y x xy x y ⎧-=⎪⎨-+++=⎪⎩的实数解的组数是多少?(2)35.关于x 的方程2210x k +-=有实数解,求k 的取值范围.(113k -≤≤) 36.k 为何值时,关于x 的方程2(2)320x k x k -++-=的两根的平方和为23?(3k =-)37.m 为何值时,关于x 的方程21202x m x m ⎛⎫-++= ⎪⎝⎭的两根恰好是一个直角三角形的两个锐角的余弦值?.(m =38.若对于任何实数x,分式21 4x x c++总有意义,则c的值应满足______.(4c>)39.在ABC△中,90A∠=︒,作既是轴对称又是中心对称的四边形ADEF,使D、E、F分别在AB、BC、CA上,这样的四边形能作出多少个?(1)40.在⊙O中,弦AB=8cm,P为弦AB上一点,且AP=2cm,则经过点P的最短弦长为多少?(41.两枚硬币总是保持相接触,其中一个固定,另一个沿其周围滚动,当滚动的硬币沿固定的硬币滚动一周,回到原来的位置,滚动的那个硬币自转的圈数为_______.(2)三、容易误判的问题:1.两条边和其中一组对边上的高对应相等的两个三角形全等。
中考易错题系列数学篇解析容易混淆的几类题型
中考易错题系列数学篇解析容易混淆的几类题型数学作为中考的科目之一,是让许多学生头疼的问题。
在数学考试中,有一些题型容易混淆,掌握不好就会导致错误的答案。
本文将重点讨论中考易错题系列数学篇解析容易混淆的几类题型。
一、十字相乘法十字相乘法是求解两个一位数或两个多位数相乘的乘法运算的方法。
它的基本原理是在个位下面画一条横线,将乘法问题划分为两个简单的乘法运算。
而容易混淆的地方在于,学生在进行十字相乘法时,容易将个位数或进位数填写错位,导致最终结果错误。
因此,在解题过程中,同学们应该仔细填写每个位置的数值,以确保计算准确无误。
示例一:计算78乘以8的结果。
正确方法是首先将78的个位数8填写在个位上,然后将78的十位数填写在十位上,如下所示:78× 8—————624—————二、几何问题几何问题在中考数学中占据重要的比重,而且容易混淆的地方较多。
其中,平行线和垂直线的判断是一个常见的易错题。
同学们在判断平行线和垂直线时,应该准确理解它们的定义,并注意其中的细微差别。
平行线是指在同一个平面上永不相交的直线,而垂直线是指两条直线之间的夹角为90度。
示例二:判断下列各组线段是否平行。
A:AB和CDB:AB和EFC:AC和AD正确答案是A和B。
三、概率问题概率问题是数学中的一个重要知识点,也是容易混淆的题型之一。
在解答概率问题时,需要将问题具体化,理清思路,才能得出正确的答案。
同时,还需要注意独立事件和非独立事件的区别,这对解答概率题非常关键。
示例三:从三个红球、四个白球和五个黑球中任意抽取两个球,求至少有一个黑球的概率。
正确解法是计算不出现黑球的概率,再用1减去该概率即可。
具体步骤如下:1. 计算不出现黑球的概率:选择两个红球的概率加上选择两个白球的概率。
不出现黑球的概率 = (C3^2 / C12^2)+ (C4^2 / C12^2)2. 用1减去不出现黑球的概率,即可得到至少有一个黑球的概率。
四、函数问题函数问题是高中数学中的重要内容之一,也是中考数学中容易混淆的题型之一。
初中数学中常见错题汇总
初中数学中常见错题汇总在初中数学学习中,我们常常会遇到一些容易出错的题目。
这些题目可能是因为概念理解不清晰、计算错误、思维方式不正确等原因导致的。
下面是一些常见的错题以及解析,希望能帮助同学们更好地理解和应对这些问题。
1. 有一辆车从A地出发,以每小时40公里的速度向B地行驶,另一辆车从B地同时以每小时60公里的速度向A地行驶。
两车相遇在距离A地100公里处,问从A地到B地的距离是多少公里?许多学生在解决这道题时容易出错。
因为两车相遇在距离A地100公里处,所以从A地到相遇点的距离应该是100公里。
但是,从相遇点到B地的距离并不是100公里,而是还需要继续前进的距离。
因此,从A地到B地的距离应该是100 +相遇后继续前进的距离。
我们可以通过速度和时间的计算得出相遇后继续前进的距离,然后将其加到100公里上即可得出最终答案。
2. 某商品原价为100元,商店决定打8折出售。
如果有顾客使用了优惠券,可再次享受8折折扣。
请问使用优惠券购买该商品的最终价格是多少元?这道题目考察的是计算打折后的价格。
很多同学在计算时容易犯错误。
首先,打8折意味着价格打了8折,即乘以0.8。
因此,商品的打折价格就是100元乘以0.8,得到80元。
如果再次享受8折优惠,就是将80元再乘以0.8,即80乘以0.8,结果是64元。
所以使用优惠券购买该商品的最终价格是64元。
3. 如图所示,正方形ABCD四个顶点与圆心O在同一直线上,求∠EAB的度数。
这道题目考察的是对角线的性质。
首先,我们可以看出,在直线上的四个点形成了一条对角线。
因为正方形ABCD是等边的,所以对角线可以互相平分。
由于圆的性质,圆心O到直线上的四个点的距离都相等,即OE=OA=OD。
又因为正方形的性质,对角线互相垂直。
所以,可以得到∠EAB=90度。
4. 如果a+b=12,a-b=4,请求出a和b的值。
这道题目是一道简单的二元一次方程的求解题目。
这里有两个等式,可以通过加减法来消去其中一个变量。