无线视频传输技术的发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线视频传输技术的发展
随着移动通信业务的增加,无线通信已获得非常广泛的应用。无线网络除了提供语音服务之外,还提供多媒体、高速数据和视频图像业务。无线通信环境(无线信道、移动终端等)以及移动多媒体应用业务的特点对视频图像的视频图像编码与传输技术已成为当今信息科学与技术的前沿课题。
1 无线视频传输技术面临的挑战
数字视频信号具有如下特点:
·数据量大
例如,移动可视电话一般采用QCIF分辨率的图像,它有176X144=25344像开绿灯。如果每个像素由24位来表示,一帧图像的数据量依达 594kbit。考虑到实时视频图像传输要求的帧频(电视信号每秒25帧),数据传输速率将达到14.5Mbps!
·实时性要求高
人眼对视频信号的基本要求是,延迟小,实时性好。而普通的数据通信对实时性的要求依比较低,因此相对普通数据通信而言,视频通信要求更好的实时性。
无线环境则具有如下特点:
·无线信道资源有限
由于无线信道环境恶劣,有效的带宽资源十分有限。实现大数据量的视频信号的传输,尤其在面向大众的无线可视应用中,无线信道的资源尤其紧张。
·无线网络是一个时变的网络
无线信道的物理特点决定了无线网络是一个时变的网络。
·无线视频的Qos保障
在移动通信中,用户的移动造成无线视频的Qos保障十分复杂。
由此可以看出,视频信号对传输的需要和无线环境的特点存在尖锐的矛盾,因此无线视频传输面临着巨大的挑战。一般来说,无线视频传输系统的研究设计目标如表1所示。
表1 无线视频传输系统的主要性能指标和设计目标
事实上,表1中许多性能指标是相互制约的。例如,视频图像压缩比的提高会增加编码算法的复杂度,因此会影响算法的实时实现,并且可能降低视频的恢复质量。
2 视频压缩编码技术
视频信息的数据量十分惊人,要在带宽有限的无线网络上传送,必须经过压缩编码。目前国际上存在两大标准化组织——ITU-T和MPEG——专门研究视频编码方法,负责制公平统一的标准,方便各种视频产品间的互通性。这些协议集中了学术界最优秀的成果。
除各种基于国际标准的编码技术外,还有许多新技术的发展十分引人注目。
2.1 基于协议的视频压缩编码技术
国际电信联盟(ITU-T)已经制定的视频编码标准包括H.261(1990年)、H.263(199 5年)、H.263+(1998年),2000年 11月份将通过H.263++的最终文本。H.26X系列标准是专门用于低比特率视频通信的视频编码标准,具有较高的压缩比,因此特别适合于无线视频传输的需要。它们采用的基本技术包括:DCT变换、运动补偿、量化、熵编码等。H.263+和H.263++中更增加考虑了较为恶劣的无线环境,设计了多种增强码流鲁棒性的方法,定义了分线编码的语法规则。
MPEG制定的视频编码标准有MPEG-1(1990年)、MPEG-2(1994年)、MPEG-4(完善中)。其中MPEG-1、MPEG-2基本已经定稿,使用的基本技术和H.26X相同。MPEG-1、MPEG-2的特点在于针对的应用主要是数字存储媒体,码率高,它们并不适于无线视频传输。人们熟知的VCD、DVD是MPEG-1、MPEG-2的典型应用。随后,MPEG组织注意到了低比特率应用潜在的巨大市场,开始和ITU-T进行竞争。在 MPEG-4的制定中,不仅考虑了高比特率应用,还特别包含了适于无线传输的低比特率应用。MPEG-4标准的最大特点是基于视频对象的编码方法。
无线通信终端是多种多样的,其所处的网络结构、规模也是互异的。视频码流的精细可分级性(Fine Granularity Scalability)适应了传输环境的多样性。
编码协议并不提供完全齐备的解决方案。一般来说,协议内容主要包括码流的语法结构、技术路线、解码方法等,而并未严格规定其中一些关键算法,如运动估计算法、码率控制算法等。运动估计算法在第3部分有较为详细的介绍。码率控制方案在第4部分有较为详细的介绍。
2.2 其他视频压缩编码技术
除上述基于协议的视频标准之外,还有一些优秀的算法由于商业的原因,暂时没有被国际标准完全接纳。典型的例子是DCT变换和小波变换之争。虽然利用小波变换可以取得更好的图像恢复质量,但是因为DCT变换使用较早,有很多商业产品的支持,因此小波变换很难在一夜之间取代DCT变换现有的地位。其他编码方法如,分形编码、基于模型的编码方法、感兴趣区优先编码方法等也都取得了一定的成果,具有更强的压缩能力。但是算法实现过于复杂,达到完全实用尚有一段距离。
在基于小波的低比特率图像压缩算法的研究中,根据小波图像系数的空间分布特性,以及小波多分辨率的视频特点,人们引入矢量量化以充分利用小波图像系数的相关性。根据传统的运动补偿难以与小波变换相结合这一情况,人们还提出了将空间二维帧内小波变换与时间轴一维小波变换相结合的三维小波变换方法。
人类的视觉是一种积极的感受行为,不仅与生理因素有关,还取决于心理因素。人们观察与理解图像时常常会不自觉地对某引起区域产生兴趣。整幅图像的视觉质量往往取决于感兴趣区(ROI:Region of Interest)的图像质量。在保障ROI区部分图像质量的前提下,其他部分可以进行更高的压缩。这样在大大压缩数据量的同时,仍有满意的图像恢复质量。这就是感兴趣区优先编码策略。
3 视频编码实时性研究
由于视频数据的特殊性,视频传输系统对实时性要求很高。这里重点介绍基于视频编码协议算法的实时性问题。小波编码等算法虽然有许多优点,但是算法复杂度太高,目前难于达到实时性要求。下面介绍基于协议编码算法中的几个重要环节,它们对提高视频编码系统实时性有重要作用。
3.1 运动估计
预测编码可以有效去除时间域上的冗余信息,运动估计则是预测编码的重要环节。运动估计是要在参考帧中找到一个和当前帧图像块最相似的图像块,即最佳匹配块。估计结果用运动向量来表示。研究运动估计算法就是要研究匹配块搜索算法。
研究分析表示,原始运动估计算法在编码器运行中消耗了编码器70%左右的执行时间。因此,为了提高编码器执行速度必须首先提高运动估计算法的效率。
穷尽搜索法是最原始的运动估计算法,它能得到全局最优结果,但是由于运算量大,不宜在实现应用中使用。快速运动估计算法通过减小搜索空间,加快了搜索过程。虽然快速运动估计算法得到的运动向量没有穷尽搜索法的结果那样精确,但是由于它可以显著减少运算时间,精度也能满足很多应用的需要,因而它们的应用十分广泛。典型的快速搜索算法有:共轭方向搜索法(CDS)、二维对数法(TDL)、三步搜索法(TSS)、交叉搜索法(CSA)等。
3.2 算法结构的并行化
并行化处理的体系结构十分有利于提高系统处理能力,加之视频编码算法有很强的并行处理潜力,因此,人们研究了编码算法的并行运算能力,进一步保障了编码算法的实时实现。