小升初数学重点考点内容精讲-数与代数.

合集下载

2023人教版小升初数学知识要点汇总

2023人教版小升初数学知识要点汇总

2023人教版小升初数学知识要点汇总第一部份数与代数(一)数的认识整数【正数、0、负数】一、一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

二、最小的一位数是1,最小的自然数是0。

三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

四、像 +4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

五、0既不是正数,也不是负数。

正数都大于0,负数都小于0。

六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

七、通常情况下,盈利用正数表示,亏损用负数表示。

八、通常情况下,上车人数用正数表示,下车人数用负数表示。

九、通常情况下,收入用正数表示,支出用负数表示。

十、通常情况下,上升用正数表示,下降用负数表示。

小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

九、整数和小数的数位顺序表:分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

小升初数学总复习知识梳理数的整除(附答案)

小升初数学总复习知识梳理数的整除(附答案)

小升初总复习数与代数第一单元数的认识第2节数的整除知识梳理典例精讲【例1】把自然数A和B分解质因数后分别是A=2×3×11×m,B=2×3×7×m。

A、B两数的最大公因数是78,这两个数的最小公倍数是多少?【分析】这里要明白最大公因数和最小公倍数的意义,A、B两数的最大公因数就是这两个数的全部公有的质因数的积,也就是2×3×m;A、B两数的最小公倍数就是这两个数的全部公有质因数及各自独有质因数的积,也就是2×3×m×11×7.根据两个数的最大公因数是78,求出m的值,本题便迎刃而解。

【解】因为2×3×m=78,所以m=78÷2×3=13,因此2×3×m×11×7=78×11×7=155。

答:这两个数的最小公倍数是155.即时演练1.25和30的最大公因数是(),最小公倍数是()。

2. 把自然数A和B分解质因数后分别是A=2×3×m,B=2×7×m。

A、B两数的最大公因数是22,这两个数的最小公倍数是多少?3.两个数的最小公倍数是150,最大公因数是15.这两个数分别是()和()。

【例2】有一些糖果,如果把6个装一包少1个;如果8个装一包也少一个;如果把5个装一包还是少一个。

这些糖果至少有多少个?【分析】这些糖果,把6个装一包少1个说明糖果的总个数比6的倍数少1个;8个装一包也少一个说明糖果总个数比8的倍数少1个;把5个装一包还是少一个说明糖果的总个数比5的倍数少1个。

所以这些糖果的总个数比5、6、8的公倍数少1,这里求至少有糖果多少个,就是求比5、6、8的最小公倍数少1的数。

【解】5、6、8的最小公倍数是120.120-1=119(个)答:这些糖果至少有119个。

人教版数学小升初知识点汇总

人教版数学小升初知识点汇总

人教版数学小升初知识点汇总一、数与代数。

1. 数的认识。

- 整数。

- 整数的意义:像 -3、-2、-1、0、1、2、3……这样的数统称为整数。

整数包括正整数、0和负整数。

- 整数的读法和写法:读数时,从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零;写数时,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

- 数的大小比较:先看位数,位数多的数大;如果位数相同,从最高位比起,相同数位上的数大的那个数就大。

- 小数。

- 小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。

- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

- 小数的读法和写法:读小数时,整数部分按照整数的读法来读,小数点读作“点”,小数部分顺次读出每一位上的数字;写小数时,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

- 小数的大小比较:先比较整数部分,整数部分大的数大;如果整数部分相同,再比较十分位,十分位上数大的数大;如果十分位相同,再比较百分位,依次类推。

- 分数。

- 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

- 分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

- 分数的分类:分数分为真分数(分子小于分母)和假分数(分子大于或等于分母),假分数可以化成带分数或整数。

- 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

- 分数的大小比较:同分母分数相比较,分子大的分数大;同分子分数相比较,分母小的分数大;异分母分数比较大小,先通分再比较。

- 百分数。

- 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。

百分数通常不写成分数形式,而采用百分号“%”。

小升初数学重点考点内容精讲-数与代数

小升初数学重点考点内容精讲-数与代数

小升初数学重点考点内容精讲-数与代数模块一数的认识考点一:因数和倍数典型试题判断题:12=2×6,所以2是因数,6是因数,12是倍数()【答案】×【详解】2和6是12的因数,12是2和6的倍数,描述因数和倍数关系时,不能单独说6是因数,12是倍数。

故答案为×。

易混易错点拨在说因数和倍数时,只能说谁是谁的因数,谁是谁的倍数,不能单独说某一个数是因数,某一个数是倍数。

如果只是描述乘法中的“因数”关系,可以这样说:在乘法算式12=2×6中,2是因数,6是因数,12是积。

拔高题训练1.一个数的最大因数和最小倍数都是30,这个数是()。

【答案】30【详解】一个数的最大因数和最小倍数就是这个数本身,所以这个数就是30。

考点二:质数、合数和分解质因数典型试题105的质因数有(),把它分解质因数是()。

【答案】3,5,7;105=3×5×7【详解】每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数。

105的质因数有3,5,7,105=3×5×7。

易混易错点拨1既不是1质数也不是合数,因此合数分解质因数后的算式中一定不能有1,这常常考点。

1也是所有数的公因数。

最小的质数是2,是个偶数,最小的合数是4。

拔高题训练2.下面各组数中,一定不能成为互质数的一组是()。

A.质数与合数B.奇数与偶数C.偶数与偶数D.质数与质数【答案】C【详解】根据互质数的定义,两个整数只有公因数1的时候是互质数,而两个偶数之间除了公因数1,至少还可以被2整除。

故答案为C。

考点三:2、3、5的倍数的特征,奇数偶数典型试题同时是2、3、5的倍数的最小三位数是(),是个()数。

【答案】120;偶【详解】因为同时是2和5的倍数的话,个位只能是0,又要求这个三位数最小,那么从百位最小是1的时候开始考虑,这个数是3的倍数,所以十位为2时,1+2+0=3,此时满足条件,这个数最小是120。

(完整版)数与代数的知识点

(完整版)数与代数的知识点

整理和复习1、数与代数(一)数的认识定义:像8,16,+1,0.6,+这样的数叫做正数41正数 写法和读法:正数前面加“+”号。

如+8读作:“正八” “+”号一般可以省略不写数 定义:像-1,-10.2,-7.9,-这样的数叫做负数41负数 写法和读法:负数前面加“-”号。

如-15读作:“负十五” 数字越大负数反而越小比0小的数是负数,比0大的数是正数“0”既不是正数,也不是负数。

正整数自然数 整数 0 数 (小数是特殊的分数)百分数:(1)分母是100的分数叫做百分数。

(2)表示一个数是另一个数的百分之几的数叫做百分数。

百分数又叫百分比或百分率。

百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。

知识点一:整数1、读数:从最高位起,一级一级的读。

读万级或亿级的数时要按照个级的读法来读,并在后面加上级名。

每一级末尾的0都不读,其他数位上不论连续有几个0,只读一个0。

写数:先确定最高位是哪一级的哪个数位,然后从高位起,一级一级往下写,哪一整数部分亿级万级个级小数点小数部分数位千 百 十 亿亿 亿 亿位 位 位 位千 百 十 万万 万 万位 位 位 位千 百 十 个位 位 位 位十 百 千......分 分 分计数单位千 百 十 亿亿 亿 亿千 百 十 万万 万 万千 百 十 一 (个).十 百 千......分 分 分......之 之 之......一 一 一......位一个单位也没有,就在哪个数位上写0。

2、数的改写与求近似数:为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。

如:2365500=236.55万(改写用“万”作单位的数)。

如:2365500≈237万(省略万位后面的尾数,写成近似数),如:7.62983≈7.6(保留一位小数)。

知识点二:小数1、小数的意义: 把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…可以用小数来表示。

20222023小升初数学知识体系(四大模块)汇总整理(30页规范可打印)

20222023小升初数学知识体系(四大模块)汇总整理(30页规范可打印)

2022-2023小升初数学知识点汇编第一章 数与代数一.数的意义和性质1.数的分类()()()1203正整数正数正整数自然数正分数(正小数)整数零负整数数数负整数负数负分数(负小数)正分数(正小数)分数(小数)负分数(负小数)零纯小数按整数部分是否为带小数有限小数小数的分类无限不循环小数按小数部分的位数是否有限无限小数纯循环小数循环小数混循环小数2.数的意义分数把单位“1”平均分为若干份,表示这样的一份或几份的数叫做分数。

小数把单位“1”平均分成10份、100份、1000份…,这样的一份或几份可以用分母是10、100、1000、…的分数来表示,也可以用小数来表示。

百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

3.数位整数部分小数点小数部分…亿级 万级 个级数位… 千亿位 百亿位 十亿位亿位千万位 百万位 十万位万位 千位 百位 十位 个位· 十分位 百分位 千分位万分位 …计数单位 … 千亿 百亿 十亿 亿千万 百万 十万 万 千 百 十 个十分之一 百分之一 千分之一 万分之一…4.性质二.数的读写三.数的改写1.四舍五入(≈)在求近似数时,如果被舍去部分的首位数字小于5,就直接舍去;如果被舍去部分的首位数字等于5或大于5,就在保留部分的末位上加1。

要求把小数保留到哪一位,先看这一位后一位上的数字,再按“四舍五入”法省略。

2.多位数改写为“万”、“亿”…(1)直接改写:改写为“万”,小数点左移4位,后面加万;改写为“亿”,小数点左移8位,后面加亿;(2)近似改写:先四舍五入省略掉“万”或“亿”后面的尾数,再在后面加“万”或“亿”。

3.假分数、带分数、整数互化(1)⇒假分数整数、带分数≠÷⋅⋅⋅⋅⋅⋅⇒余数余数零,则假分数=商分子分母=商余数分母余数=零,则假分数=商(2)⇒带分数假分数×带分数整数部分带分数分母+带分数分子假分数=带分数分母4.小数、分数、百分数互化(1)⇒小数分数先改写成分母是10、100、1000…的分数,再约分;(2)⇒分数小数分子÷分母;(3)⇒小数百分数先把小数点右移两位,再添加“%”;(4)⇒百分数小数先把小数点左移两位,再去掉“%”;(5)⇒分数百分数先把分数化成小数,再写成百分数;(6)⇒百分数分数先写成分数,再约分。

小升初数学代数知识点总结

小升初数学代数知识点总结

小升初数学代数知识点总结一、一元一次方程1. 解一元一次方程一元一次方程通常是指一个未知数的一次方程,解一元一次方程的基本步骤是首先将方程化为等式形式,然后通过加减乘除的运算,将方程化简为最简形式,最后找到未知数的解,对于方程2x+3=7,我们首先化简方程得到2x=4,然后再除以2,得到x=2,所以方程的解是x=2。

2. 解一元一次方程的实际问题一元一次方程的解决实际问题是代数知识在解决实际问题的应用,例如:小华的妈妈告诉她:“你放学后乘地铁回家,地铁票是3元,坐两站要花费15元,你可以用一元钱坐一站地铁,坐两站要花多少钱?” 本题就可以通过一元一次方程来解决。

二、整式运算1. 同类项的加减在整式的加减中,同类项的加减是一个非常重要的步骤,同类项是指具有相同的字母部分和相同的指数部分的代数项,对同类项进行加减时,只需要对它们的系数部分进行加减操作,例如:3x+2x=5x。

2. 整式的乘法整式的乘法是指两个整式相乘的操作,整式的乘法有分配律、结合律、交换律等性质,例如:(3x+4)(2x+5)=6x^2+15x+8x+20=6x^2+23x+20。

3. 整式的除法整式的除法是指两个整式相除的操作,通常是将整式按照幂从高到低的顺序排列,然后再进行除法运算。

三、方程的解法1. 因式分解法因式分解法是指将一个多项式化为若干个因式相乘的形式,例如:2x^2+7x+3=0,可以分解为(2x+1)(x+3)=0,从而得到方程的解x=-1/2,x=-3。

2. (平方)根的概念、性质和运算平方根是指一个非负数a,使得b^2=a,通常用符号√a表示。

平方根有一些性质,如:√a*√b=√(a*b),√(a/b)=√a/√b等。

3. 一次根的性质与求法(用公式)一次根的性质是指一元一次方程的根与系数之间的关系,例如:方程ax+b=0有唯一解x=-b/a。

四、实数及其运算1. 绝对值的概念和性质绝对值的概念是指一个实数离原点的距离,通常用符号|a|表示,当a>=0时,|a|=a;当a<0时,|a|=-a。

数与代数的知识点

数与代数的知识点

数与代数的知识点数与代数是数学中的两个重要分支,它们是数学的基础,并在各个领域应用广泛。

下面将介绍数与代数的主要知识点。

一、数的概念与性质1.自然数与整数:自然数是从1开始逐一增加的整数,整数包括自然数以及其相反数和0。

2.有理数与无理数:有理数是可以表示为两个整数的比,无理数是不能表示为有理数的数。

3.实数与虚数:实数包括有理数和无理数,虚数是不能表示为实数的数。

二、运算与运算性质1.加减乘除:四则运算包括加法、减法、乘法和除法,它们有特定的运算规则和性质。

2.二次根式与分数指数:二次根式表示平方根,分数指数表示根号。

3.运算律与法则:例如交换律、结合律、分配律等都是数的运算律。

三、整式与分式1.整式:整式由字母与常数经过四则运算组成,例如多项式、幂函数等。

2.分式:分式由两个整式相除得到,它由分子和分母组成,可以进行化简与运算。

四、方程与不等式1.一元一次方程:一元一次方程是含有一个未知数的一次方程,解方程就是求使等式成立的未知数的值。

2.一元二次方程:一元二次方程是含有一个未知数的二次方程,可以通过配方法、公式法等求解。

3.不等式:不等式是含有不等号的关系表达式,可以通过图像或运算法则求解。

五、函数与图像1.函数的概念:函数是一个量与另一个量之间的关系,可以用公式、图像或表格来表示。

2. 一次函数:一次函数是函数的一种,其表达式为y=ax+b,其中a 和b为常数。

3. 二次函数与指数函数:二次函数是函数的一种,其表达式为y=ax^2+bx+c,指数函数是以常数为底的幂函数。

4.对数函数与三角函数:对数函数是指对数与指数函数的反函数,三角函数包括正弦、余弦、正切等。

六、排列与组合1.排列:排列是指从给定的一组元素中选取若干个元素按照一定的顺序排列的方法总数。

2.组合:组合是指从给定的一组元素中选取若干个元素,不考虑顺序的方法总数。

3.阶乘与二项式定理:阶乘是指n!=n×(n-1)×(n-2)×...×2×1,二项式定理是关于多项式展开的公式。

2021-2022六年级数学小升初知识点总结—数与代数:应用题(2)

2021-2022六年级数学小升初知识点总结—数与代数:应用题(2)

小升初数学专题复习训练——数与代数应用题(2)知识点复习一.百分数的实际应用【知识点归纳】①出勤率=出勤人数÷总人数×100%发芽率=发芽种子数÷试验种子数×100%小麦的出粉率=面粉的重量÷小麦的重量×100%产品的合格率=合格的产品数÷产品总数×100%职工的出勤率=实际出勤人数÷应出勤人数×100%②纳税问题:缴纳的税款叫应纳税款应纳税额与各种收入的比率叫做税率税款=应纳税金×税率③利息问题:存入银行的钱叫本金;取款时,银行多支付的钱叫做利息利息与本金的比值叫做利率利息=本金×利率×时间【命题方向】常考题型:例1:某公司开会,有25人缺席,有100人出席,这个会议的出席率是()A、80% B、75% C、100%答:出席率是80%;故选:A.点评:此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘以百分之百.例2:某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,这个商店卖出这两件商品是赚钱还是亏本?分析:可以这样想,赚了20%,亏本20%是和谁比较呢?是与原价比较,因此原价是单位“1”,赚了20%就是说原价的(1+20%)是60元,求原价,用除法,60÷(1+20%)=50(元),同理亏本20%就是说原价的(1-20%)是60元,求原价,用除法,60÷(1-20%)=75(元).解:[60÷(1+20%)+60÷(1-20%)]-60×2=[50+75]-120;=125-120;=5(元);答:这两件商品亏了5元.点评:解决这个问题的关键是正确确定单位“1”,找出对应关系.二.分数、百分数复合应用题【知识点归纳】含有三个已知条件的两步计算的应用题,有两个或两个以上的基本数量关系组成的,通常叫做复合应用题;分数、百分数复合应用题,运算按照分数和百分数的运算法则进行运算即可,通常是将分数化成百分数.【命题方向】=200(米).答:这捆电线长200米.三.简单的工程问题【知识点归纳】探讨工作总量、工作效率、工作时间三个数量之间相互关系的一种应用题.解题关键:把工作总量看做单位“1”,工作效率就是工作时间的倒数,然后,根据题目的具体情况,灵活运用公式.数量关系式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率合作时间=工作总量÷工作效率和【命题方向】常考题型:间=工作总量÷工作效率即可求得两人合打需要的时间,由此即可进行选择.故选:A.点评:此题考查了工作时间=工作总量÷工作效率在实际问题中的灵活应用,把工作总量看做单位“1”得出甲和乙的工作效率是解决本题的关键.例2:要装配210台电脑,已经装了6天,每天装配15台,剩下的每天装配20台,还要几天才能装完?分析:我们运用要装配电脑的台数减去已经装的台数,除以剩下的每天装配的台数,就是要用的天数.解:(210-15×6)÷20=120÷20=6(天);答:还要6天才能装完.点评:本题运用“工作总量÷工作效率=工作时间”进行解答即可.四.简单的归一应用题【知识点归纳】已知相互关联的两个量,其中一个量在改变,另一个量也随之改变,其变化的规律是相同的,这种问题称之为归一问题.归一问题可以分为一次归一问题、两次归一问题.一次归一问题:用一步运算就能求出单一量的归一问题,又称单归一两次归一问题:用两步运算才能求出单一量的归一问题,又称双归一归一问题还可以分为正归一问题、反归一问题.正归一问题:用等分除法求出单一量之后,再用乘法计算结果的归一问题反归一问题:用等分除法求出单一量之后,再用除法计算结果的归一问题解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后,以它为标准,根据题目的要求算出结果.数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=分数(反归一)【命题方向】常考题型:分析:先算出平均每小时做多少个零件,再算出3小时做多少个零件,把40件零件看做单位“1”,进一步求出3小时做的占40件得几分之几.解:平均每小时做的零件数:40÷5=8(个),故选:A.点评:解答此题的关键是先求得单一量,再由不变的单一量求得总量,进一步得出答案.例2:3台织布机4小时织布336米,照这样计算,1台织布机8小时织布多少米?分析:照这样计算,说明每台织布机,每小时织布量不变,先用336除以3台,求出每台4小时的织布量,再除以4小时,求出每台每小时的织布量,然后乘上8小时即可求解.解:336÷3÷4×8,=112÷4×8,=28×8,=224(米);答:1台织布机8小时织布224米.点评:解答此题的关键是先求得单一量,再由不变的单一量求得总量.五.简单的归总应用题【知识点归纳】是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量,求得单位数量的个数(或单位数量).特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过,变化的规律相反,和反比例算法彼此相通.数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量.“归一”与“归总”的区别:“归一”先求出单一量,再求总量;“归总”是先出总量,再求单一量.【命题方向】常考题型:例1:小明打算16天看完一本故事书,平均每天看15页.现在要10天看完,平均每天应看多少页?分析:先求出这本书共有多少页,再把这些页数平均分到10天.解:16×15÷10,=240÷10,=24(页);答:平均每天应看24页.点评:本题先求出不变的总量,再根据总量求解.六.归一、归总加条件的三步应用题【知识点归纳】1.理解题意,分析出是归一还是归总题型.2.理解乘除与加减混合的三步运算式题的运算顺序,并能正确地计算.【命题方向】常考题型:例1:3名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人9人.分析:由“3名工人5小时加工零件90件”,可知每人每小时加工零件90÷5÷3=6(个);要在10小时完成540个零件,那么每小时完成540÷10=54(个),因此需要工人54÷6=9(人).解:540÷10÷(90÷5÷3),=54÷6,=9(人);答:需要工人9人.故答案为:9.点评:此题解答的关键是先求出每人每小时加工的零件个数,然后再求10小时完成540个零件需要的人数.例2:在图书室借阅图书的期限为10天,10天后超过的天数要按每册0.5元收取延时服务费.小明借了一本故事书,如果每天看5页,16天才能全部看完.请你帮他算一算,他至少每天多看几页才能准时归还而不交延时服务费?分析:要想能准时归还而不交延时服务费,就必须10天看完这本书,所以要先求出这本书一共有多少页,就是求16个5页是多少,用乘法,即16×5;然后用总页数除以10天,就是他每天要看的页数,即16×5÷10;用这个页数减去5,就是每天要多看的页数,即16×5÷10-5.解:16×5÷10-5=80÷10-5=8-5=3(页)答:他至少每天多看3页才能准时归还而不交延时服务费.点评:本题还可以用逆推法,要求他至少每天多看几页才能准时归还而不交延时服务费,就要先求出他应看的页数,他应看的页数就要用总页数÷10天,总页数又是原来每天看的页数×16天.七.简单的行程问题【知识点归纳】计算路程,时间,速度的问题,叫做行程问题.解题关键及规律:同时同地相背而行:路程=速度和×时间同时相向而行:两地的路程=速度和×时间同时同向而行(速度慢的在前,快的在后):追及问题=路程÷速度差同时同地同向而行(速度慢在后,快的在前):路程=速度差×时间.故选:C.点评:本题主要考查学生时间、路程、速度差的掌握情况.。

北师大版小升初数与代数知识点总结

北师大版小升初数与代数知识点总结

知识点总结知识点一:常用的单位换算1、长度单位换算:1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1米=100厘米2、面积单位换算:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米3、体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米1立方分米=1升 1立方厘米=1毫升 1升=1000毫升4、重量单位换算:1吨=1000千克 1千克=1000克 1千克=1公斤5、人民币单位换算:1元=10角 1角=10分 1元=100分6、时间单位换算:1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月判断闰年平年的方法:一般的,能被4整除的年份是闰年,不能被4整除的年份是平年。

如:1988年2008年是闰年;2005年2006年2007年是平年。

但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年。

平年2月28天,闫年2月29天平年全年365天,闫年全年366天1日=24时 1时=60分 1分=60秒 1时=3600秒解题方法技巧:大单位换小单位,用乘法;小单位换大单位,用除法;知识点二:倍数与因数1、自然数:像0,1,2,3,4,5,6……这样的数是自然数。

最小的自然数是0,没有最大的自然数。

注意:我们现在研究的都是0除外的自然数,所以最小的一位数是1。

2、像-3,-2,-1,0,1,2,3,……这样的数是整数。

没有最大和最小的整数。

自然数一定是整数,整数不一定是自然数。

(即整数包括自然数)3、如果c⨯(a,b,c都是不为0的自然数),那么a和b就是c的因数,cba=就是a和b的倍数。

4、倍数与因数是相互依存,不能单独存在。

易错点如下:例1:4×5=20,4是因数,20是倍数,这是错误的。

小升初数学复习重点:代数初步知识

小升初数学复习重点:代数初步知识

小升初数学复习重点:代数初步知识代数初步知识一、用字母表示数1 用字母表示数的意义和作用* 用字母表示数,能够把数量关系简明的表达出来,同时也能够表示运算的结果。

2用字母表示常见的数量关系、运算定律和性质、几何形体的运算公式(1)常见的数量关系路程用s表示,速度v用表示,时刻用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c(3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。

c=4a平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

s=(a+b)h/2s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

c=∏d=2∏rs=∏r?扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

s=∏nr?/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a?v=a?圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v 表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.3 用字母表示数的写法数字和字母、字母和字母相乘时,乘号能够记作“.”,或者省略不写,数字要写在字母的前面。

数与代数主要知识点

数与代数主要知识点

数与代数主要知识点
数与代数是数学的主要分支之一,主要涉及数的性质和数字运算,以及基本的代数运算和代数方程。

其中的主要知识点包括:
1. 数的性质:整数、分数、小数、正数、负数、实数等不同类型的数,以及它们的大小比较和排列顺序。

2. 数的运算:加法、减法、乘法、除法等基本运算,以及它们的运算
规则和性质,如交换律、结合律、分配律等。

3. 数的方幂与开平方:指数、幂运算、平方、立方等概念,以及对数
和指数函数。

4. 代数表达式和代数方程:变量、常数以及它们之间的运算关系,如
代数式、代数方程、等式、不等式等。

5. 代数运算:代数式的合并、展开和化简,多项式的加减乘除等基本
运算。

6. 一元一次方程和一元一次不等式:一次方程的解的求法,以及方程
和不等式在图像上的表示和解的范围。

7. 二元一次方程组和二元一次不等式组:两个未知数的方程组和不等
式组的解的求法,以及它们在平面上的图像表示和解的范围。

8. 分式:分子、分母以及它们之间的运算关系,如分式的化简、约分、通分等。

9. 根式:根号、开平方、平方根等概念,以及根式的化简和求值。

10. 因式分解和整式运算:多项式的因式分解和合并,以及多项式的
乘法和除法运算。

这些是数与代数的主要知识点,通过学习它们,可以帮助我们更
好地理解数的性质和运算规律,以及解决各种数学问题。

数与代数主要知识点(一)

数与代数主要知识点(一)

数与代数主要知识点(一)数与代数主要1. 数的基本概念•自然数:从1开始的正整数,用N表示。

•整数:包括自然数、0和负整数,用Z表示。

•有理数:可以表示为两个整数的比值,用Q表示。

•实数:包括有理数和无理数,用R表示。

•复数:包括实部和虚部的数,用C表示。

2. 数的运算•加法:数与数的相加,用”+“表示。

•减法:数与数的相减,用”-“表示。

•乘法:数与数的相乘,用”*“表示。

•除法:数与数的相除,用”/“表示。

3. 数的性质•交换律:加法和乘法满足交换律,即a + b = b + a,a * b = b * a。

•结合律:加法和乘法满足结合律,即(a + b) + c = a + (b +c),(a * b) * c = a * (b * c)。

•分配律:乘法对加法满足分配律,即a * (b + c) = a * b + a * c。

4. 代数方程•代数方程:含有未知数的等式,如2x + 3 = 7。

•方程的解:使得等式成立的未知数的值,如x = 2。

•一元一次方程:只含有一个未知数的一次方程,如ax + b = 0。

•一元二次方程:含有一个未知数的二次方程,如ax^2 + bx + c = 0。

•系数:方程中未知数的系数,如ax。

5. 代数函数•函数:一种特殊的关系,每一个自变量(x)都对应一个唯一的函数值(y)。

•一次函数:函数的最高次数为1的函数,表示为y = kx + b。

•二次函数:函数的最高次数为2的函数,表示为y = ax^2 + bx + c。

•指数函数:函数的自变量为指数的函数,表示为y = a^x。

•对数函数:函数的自变量为函数值的对数的函数,表示为y = loga(x)。

6. 代数运算•多项式运算:对多项式进行加法、减法和乘法的运算。

•因式分解:将多项式表示为因子的乘积的形式。

•方程求解:将方程化为等式,并求得未知数的值。

以上是数与代数主要的知识点,包括数的基本概念、运算规则,代数方程和函数的基本概念,以及代数运算的方法。

小升初数学专题一数与代数重难点

小升初数学专题一数与代数重难点

一:概念题1、一个多位数的百万位和百位上都是9,十万位和十位上都是5,其他数位上都是0,这个数写作(),四舍五入到万位约是()。

2、一个九位数,最高位是是奇数中最小的合数,百万位上是最小的质数,万位上是最大的一位数,千位上是同时能被2和3带队的一位数,百位上是最小的合数,其余各位上都是最小的自然数,这个数写作(),读作()。

3、三个连续奇数的和是645。

这三个奇数中,最小的奇数是()。

4、差是1的两个质数是()和(),它们的最小公倍数是()。

5、观察并完成序列:0、1、3、6、10、()、21、()。

6、在一条长50米的大路两旁,每隔5米栽一棵树(两端都要栽),一共可栽()棵树。

7、被减数减去减数,差是0.4,被减数、减数与差的和是2,减数是()。

8、两个数的积是45.6,一个因数扩大100倍,另一个因数缩小到原来的1/10,积是()。

9、将一条57 长的绳子平均截成5段,每段占这条绳子的( ---- ),是()米。

10、4/7 的分数单位是(),它含有()个这样的单位,它的倒数是()。

11、3/7 的分子加上12,要使分数的大小不变,分母应加上()。

12、三个分数的和是21/10,它们的分母相同,分子的比是1∶2∶3,这三个分数分别是()、()、()。

13、小明有一摞书,分别平均分给5人、6人、7人后,都剩下3本,这摞书至少有()本。

14、根据国家统计局统计,2004年我国总人口为129988万人,读作()万人,四舍五入到亿位约是()。

15、京福高速公路三明段已顺利通车,累计投资二十九亿四千二百万元,这个数写作(),改写成以“亿元”作单位的数是()亿元。

16、我国香港特别行政区的总面积是十一亿零三百万平方米,写作()平方米,改写成用“万平方米”作单位()。

4、你知道全国小学生的人数吗?这个数是由1个亿、2个千万、8个百万和9个十万5个千组成的,这个数写作(),这个数四舍五入到万位约是()万。

17、3/5米表示把()平均分成()份,取其中的()份,也可以表示把()平均分成()份,取其中的()份。

小学数学数与代数知识点整理

小学数学数与代数知识点整理

小学数学数与代数知识点整理小学数学数与代数知识点整理第一章数和数的运算一、概念一)整数1.整数的意义:自然数和负整数都是整数。

2.自然数:表示物体个数的数字,如1、2、3……。

表示没有物体时,用0表示。

3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10.这种计数法叫做十进制计数法。

4.数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

练题:1)分数的单位是1/8的最大真分数是(7/8),它至少再添上(1)个这样的分数单位就成了假分数。

2)在1/4、15/24、7/4、9/12四个数中,分数单位相同的是(15/24),相等的分数是(1/4)和(9/12)。

3)3/7的分子加上6,要使分数的大小不变,分母应加上(7)。

5.数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a;如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。

倍数和因数是相互依存的。

例如,35能被7整除,所以35是7的倍数,7是35的因数。

1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

例如,10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10.2)一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。

3)常用规律:①个位数是2、4、6、8的数,都能被2整除,例如202、480、304都能被2整除。

②个位数是0或5的数,都能被5整除,例如5、30、405都能被5整除。

③一个数的各位数的和能被3整除,这个数就能被3整除,例如12、108、204都能被3整除。

④一个数各位数的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

⑤一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

小升初数学知识点汇总

小升初数学知识点汇总

小升初数学知识点汇总一、数与代数1、整数整数包括正整数、零和负整数。

像0、1、2、3 这样的数是自然数,自然数是整数的一部分。

整数的计数单位有个、十、百、千、万、十万、百万、千万、亿等。

整数的读法:从高位到低位,一级一级地读,每一级末尾的 0 都不读出来,其他数位连续有几个 0 都只读一个零。

整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写 0。

2、小数把整数 1 平均分成 10 份、100 份、1000 份……得到的十分之几、百分之几、千分之几……可以用小数表示。

小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

3、分数把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

分数的写法:先写分数线,再写分母,最后写分子。

4、百分数表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。

百分数通常用“%”来表示。

5、数的大小比较(1)整数的大小比较:位数不同的,位数多的数就大;位数相同的,从最高位比起,相同数位上的数大的那个数就大。

(2)小数的大小比较:先比较整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……(3)分数的大小比较:分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大。

分子和分母都不同的分数,先通分,再比较大小。

6、数的运算(1)加法:把两个数合并成一个数的运算。

(2)减法:已知两个加数的和与其中一个加数,求另一个加数的运算。

(3)乘法:求几个相同加数的和的简便运算。

(4)除法:已知两个因数的积与其中一个因数,求另一个因数的运算。

数与代数知识点

数与代数知识点

数与代数知识点数与代数是数学中非常重要的基础领域,它涵盖了从基本的数字概念到复杂的代数运算等众多内容。

接下来,让我们一起深入了解数与代数的主要知识点。

一、数的认识首先是自然数,它是人类最早认识的数,用于计数和排序,如 1、2、3 等等。

整数包括正整数、零和负整数。

正整数就是我们常见的自然数,零表示没有数量,负整数则用于表示相反的数量关系。

分数是把一个整体平均分成若干份,表示其中一份或几份的数。

例如,把一个苹果平均分成 4 份,其中的 1 份就是 1/4 个苹果。

小数是分数的另一种表示形式,它可以更精确地表示数量。

比如 05 就相当于 1/2。

在数的认识中,还有有理数和无理数的概念。

有理数包括整数和分数,而无理数则是无限不循环小数,比如圆周率π。

二、数的运算加法是把两个或多个数量合并在一起的运算。

例如,3 + 5 = 8,表示把 3 和 5 这两个数量合起来是 8。

减法是已知两个数的和与其中一个加数,求另一个加数的运算。

比如 8 3 = 5,表示从 8 里面去掉 3 还剩下 5。

乘法是求几个相同加数和的简便运算。

例如 3 × 4 表示 4 个 3 相加,结果是 12。

除法是已知两个因数的积与其中一个因数,求另一个因数的运算。

比如 12 ÷ 3 = 4,表示 12 里面有 4 个 3。

在数的运算中,还有四则混合运算的规则,先算乘除,后算加减,有括号的先算括号里面的。

三、代数初步用字母表示数是代数的基础。

例如,我们可以用字母 a 表示一个未知数。

代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子。

方程是含有未知数的等式。

通过解方程可以求出未知数的值。

例如,2x + 3 = 9,我们可以通过解方程得出 x = 3。

四、整式单项式是由数与字母的积组成的代数式,单独的一个数或一个字母也叫做单项式。

多项式是几个单项式的和。

整式的加减运算,就是合并同类项,把同类项的系数相加,字母和字母的指数不变。

【小升初】数学总复习数与代数

【小升初】数学总复习数与代数

数与代数一概念(一)整数1 整数的意义自然数和0都是整数。

2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b 能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档