电磁场与电磁波第四版课后思考题答案

合集下载

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

电磁场与电磁波(第四版)课后答案 谢处方 第二章习题

2)
3)
, 处于外导体内部,
4)
2. 一半径为R的电介质球内计划强度为 求(1)极化电荷的体密度和面密度。
2 自由电荷密度。 3 球内、外的电场分布。
, 其中k为一常数。
(1)极化电荷的体密度。 极化电荷的面密度
(2)根据高斯定律自由电荷密度。
(3)根据高斯定律求电场分布。 球内电场分布
球Байду номын сангаас电场分布
,d=
lcm,横截面积s =10cm2。
求:
x=0和x=d 区域内的总电荷量;
x=d/2和x=d区域内的总电荷量。
• 解: (1)
• (2)
2.8 一个点电荷 位于 处,
另一个点电荷
位于 处,
空间有没有电场强度

解:
个点电荷的电场公式为
点 ?

, 即有
由此可得个分量为零的方程组:
2
解之: 当
有一平行的圆柱形空腔,其横截面如图所示。 的磁感应强度, 并证明空腔内的磁场是均匀的。
试计算各部分
解: 将题中问题看做两个对称电流的叠加: 一个是密度为 均匀分布在半径为 的圆柱内, 另一个是密度为 均匀 分布在半径为 的圆柱内。
由安培环路定律在 磁场分别为

中分布的
b
a d
空间各区域的磁场为 圆柱外 圆柱内的空腔外 空腔内
因此, 在z>0的区域有 在z<0的区域有
表示为矢量形式
为面电流的外法 向单位矢量
2.25平行双线与一矩形回路共面,设a=0.2m,b=c=d=0.1m, 求回路中的感应电动势。 解: 先求出平行双线在回路中的磁感应强度
回路中的感应电动势为

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 四章习题解答

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 四章习题解答

四章习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ=③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n xaπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n xA x a n b a a ππ==⎰2(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩,故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③a题4.1图题 4.2图002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x b n n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑ 两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn dU U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ 故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d nb b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。

《电磁场与电磁波》(第四版)课后习题解答(全)

《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。

和向量错误!未找到引用源。

垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波第四版课后思考题

电磁场与电磁波第四版课后思考题

《电磁场与电磁波理论》思考题第1章思考题1.1 什么是标量?什么是矢量?什么是矢量的分量?1.2 什么是单位矢量?什么是矢量的单位矢量?1.3 什么是位置矢量或矢径?直角坐标系中场点和源点之间的距离矢量是如何表示的?1.4 什么是右手法则或右手螺旋法则?1.5 若两个矢量相互垂直,则它们的标量积应等于什么?矢量积又如何?1.6 若两个矢量相互平行,则它们的矢量积应等于什么?标量积又如何?1.7 若两个非零矢量的标量积等于零,则两个矢量应垂直还是平行?1.8 若两个非零矢量的矢量积等于零,则两个矢量应垂直还是平行?1.9 直角坐标系中矢量的标量积和矢量积如何计算?1.10 什么是场?什么是标量场?什么是矢量场?1.11 什么是静态场或恒定场?什么是时变场?1.12 什么是等值面?它的特点有那些?1.13 什么是矢量线?它的特点有那些?1.14 哈密顿算子为什么称为矢量微分算子?1.15 标量函数的梯度的定义是什么?物理意义是什么?1.16 什么是通量?什么是环量?1.17 矢量函数的散度的定义是什么?物理意义是什么?1.18 矢量函数的旋度的定义是什么?物理意义是什么?1.19 什么是拉普拉斯算子?标量和矢量的拉普拉斯运算分别是如何定义的?1.20 直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的?1.21 三个重要的矢量恒等式是怎样的?1.22 什么是无源场?什么是无旋场?1.23 为什么任何一个梯度场必为无旋场?为什么任何一个无旋场必为有位场?1.24 为什么任何一个旋度场必为无源场?为什么任何一个无源场必为旋度场?1.25 高斯散度定理和斯托克斯定理的表示式和意义是什么?1.26 什么是矢量的唯一性定理?1.27 在无限大空间中是否存在既无源又无旋的场?为什么?1.28 直角坐标系中的长度元、面积元和体积元是如何表示的?1.29 圆柱坐标系中的长度元、面积元和体积元是如何表示的?1.30 球面坐标系中的长度元、面积元和体积元是如何表示的?2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay

3az
)
;②
A−B =
53 ;③ A • B = −11;

θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2

1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;

电磁场与电磁波(第四版)课后答案__谢处方

电磁场与电磁波(第四版)课后答案__谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(完整版)电磁场与电磁波(第四版)课后答案详解--谢处方

(完整版)电磁场与电磁波(第四版)课后答案详解--谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z +-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B AB ,得1cos AB θ-=(135.5= (5)A 在B 上的分 量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

电磁场和电磁波[第四版]课后问题详解及解析汇报__谢处方,共138页

电磁场和电磁波[第四版]课后问题详解及解析汇报__谢处方,共138页

电磁场与电磁波(第四版)课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A BC 。

解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e(3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=111238=A B AB ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A=A cos AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

最新电磁场与电磁波第四版课后思考题答案第四版全 谢处方饶克谨 高等教育出版社资料

最新电磁场与电磁波第四版课后思考题答案第四版全 谢处方饶克谨 高等教育出版社资料

2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。

当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。

就可将带电体所带电荷看成集中在带电体的中心上。

即将带电体抽离为一个几何点模型,称为点电荷。

2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。

2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。

2.4简述和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。

表明静电场是无旋场。

2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。

高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。

2.6简述 和 所表征的静电场特性。

表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。

安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。

2.8简述电场与电介质相互作用后发生的现象。

在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=∙∇E 0=⨯∇E ερ/=∙∇E0=⨯∇E ⎰⎰=⋅VS dVS d E ρε01 0=⋅∇BJ B 0μ=⨯∇0=⋅∇B J B0μ=⨯∇0μI l d B C 0μ⎰=⋅ P∙∇=-p ρnsp e ∙=P ρE P ED εε=+=0在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即 2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系? 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度: 磁化电流面密度与磁化强度: 2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么? 磁场强度定义为: 国际单位之中,单位是安培/米(A/m) 2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么? 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。

电磁场与电磁波(第四版)课后答案详解--谢处方

电磁场与电磁波(第四版)课后答案详解--谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s ABθ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案
2—7 证明通过任意封闭曲面的传导电流和位移电流之和等于零。
2—8 一长度 l = 1m ,内外导体半径分别为 a = 1m m , b = 3.5 m m 的同轴电容器中填 充相对介电常数 εr = 7 的介质,内外导体间的外加电压 u = 200 sin(377t)V。求位
5
移电流 id ,并同传导电流 ic 比较。 答案: id = 2.34 ×10−5 cos(377t) A 。 2—9 一平板电容器的极板面积 s = 15 cm2 ,间距 d = 0.2 cm 电容器内填充媒质的电参数
答案: E = 8.34(ax − 3ay + 6az ) V m 。 2—5 一点电荷 Q = 50 nC ,位于直角坐标系的原点,求点(2,4,− 5)处的电通量密度。
答案: D
=
5 54π
(2ax
+ 4ay
− 5az ) 。
2—6 两种理想电介质的相对介电常数分别为 εr1 = 2.5和εr2 = 5 ,其分界面为 z = 0 的平
a
答案:
=

2
5 5
⎫ ⎪⎪ ⎬

b=
5 5
⎪ ⎪⎭
a
=
25 5
⎫ ⎪⎪ ⎬
b=−
5⎪ 5 ⎪⎭
( ) 1-3
若矢量 A 和矢量 B 是任意常矢量,证明:
2
A× B
=
A2B2 −
A•B 2。
1-4 求圆柱坐标系中从 z 轴上的 z = z0 指向点处 p(r,ϕ,0)的单位矢量。
答案: aR
=
rar − z0az r 2 + z02
⎡ 2 sinhξ cosη
⎢ ⎢

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案
的表达式。
3
答案: A = ax Ax + ay Ay + az Az
其中, Ax = (
2x2 + x3z + xy2 z + xz3 ) x2 + y2
(x2 + y2 + z2)2 ;
Ay = (
2xy + x2 yz + y3z + yz3) x2 + y2
(x2 + y2 + z2)2 ;
⎤ ⎥ ⎥
=
⎡ sin θ ⎢⎢cosθ
cosϕ cosϕ
⎢⎣ Aiϕ ⎥⎦ ⎢⎣ − sin ϕ
sinθ sinϕ cosθ sinϕ
cosϕ
cosθ ⎤ ⎡ Aix ⎤

sin
θ
⎥ ⎥
⎢ ⎢
Aiy
⎥ ⎥

0 ⎥⎦ ⎢⎣ Aiz ⎥⎦
而 Aix = Ri sinθi cosϕi , Aiy = Ri sinθi sin ϕi , Aiz = Ri cosϕi 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
为 ε = 2.56ε0 ,μ = μ0 , σ = 3.5 ×10−5 S/m,两极板间施加直流电压U0 = 50 V 。求

电磁场和电磁波[第四版]课后答案及解析__谢处方,共138页

电磁场和电磁波[第四版]课后答案及解析__谢处方,共138页

电磁场与电磁波(第四版)课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C。

解 (1)23A x y z+-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o s AB θ=11238=A B A B ,得1c o sAB θ-=(135.5= (5)A 在B 上的分量 B A=A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

完整版电磁场与电磁波第四版谢处方版思考题目答案资料

完整版电磁场与电磁波第四版谢处方版思考题目答案资料

一:1.7 什么是矢量场的通量?通量的值为正,负或 0 分别表示什么意义?矢量场F 穿出闭合曲面S 的通量为: 当 大于 0时,表示穿出闭合曲面 S 的通量多于进入的通量,此时 闭合曲面S 内必有发出矢量线的源,称为正通量源当 小于 0 时,有汇集矢量线的源,称为负通量源。

当 等于 0 时 闭合曲面内正通量源和负通量源的代数和为 源。

1.8 什么是散度定理 ?它的意义是什么? 矢量分析中的一个重要定理:矢量场 F 在限定该体积的闭合积分, 是矢量的散度的体积与该矢量的 闭合曲面积分之间的一个变换关系。

1.9 什么是矢量场的环流?环流的值为正,负,或 0 分别表示什么意 义? 矢量场F 沿场中的一条闭合回路 C 的曲线积分,称为矢量场F 沿的环流。

大于 0 或 小于 0,表示场中产生该矢量的源,常称为旋涡等于 0,表示场中没有产生该矢量场的源1.10 什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲 面吗? 称为散度定理。

意义:矢量场 F 的散度 在体积V 上的体积分等于 小于 等于 0,或闭合面内无通量在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系这就是是斯托克斯定理矢量场的旋度在曲面S 上的面积分等于矢量场F 在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。

能用于闭合曲面.1.11如果矢量场F 能够表示为一个矢量函数的旋度,这个矢量场具有什么特性?=0,即F 为无散场。

1.12如果矢量场F 能够表示为一个标量函数的旋度,这个矢量场具有什么特性?=0即为无旋场1.13只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么?不对。

电力线可弯,但无旋。

1.14无旋场与无散场的区别是什么?无旋场F 的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即=0二章:2.1 点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况, 可将它看做一个体积很小而电荷 密度很大的带电小球的极限。

电磁场与电磁波第四版谢处方版思考题目答案资料

电磁场与电磁波第四版谢处方版思考题目答案资料

一:1.7什么是矢量场的通量?通量的值为正,负或0分别表示什么意义?矢量场F穿出闭合曲面S的通量为:当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S内必有发出矢量线的源,称为正通量源。

当小于0时,小于有汇集矢量线的源,称为负通量源。

当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。

1.8什么是散度定理?它的意义是什么?矢量分析中的一个重要定理:称为散度定理。

意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。

1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义?矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿的环流。

大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。

等于0,表示场中没有产生该矢量场的源。

1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗?在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。

能用于闭合曲面.1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性?=0,即F为无散场。

1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性?=0即为无旋场1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么?不对。

电力线可弯,但无旋。

1.14 无旋场与无散场的区别是什么?无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即。

二章:2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很大的带电小球的极限。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案本文为电磁场与电磁波第四版的课后答案,包括章节练习和习题的详细解答。

第一章矢量分析章节练习1.什么是矢量?答:矢量是具有大小和方向的物理量。

矢量用箭头表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。

2.矢量的叉乘运算有什么特点?答:矢量的叉乘运算满足右手定则:将右手的食指指向第一个矢量的方向,中指指向第二个矢量的方向,那么拇指的方向就是叉乘结果的方向。

3.请推导出矢量叉乘的定义式。

答:矢量叉乘的定义式为:$\\mathbf{A} \\times \\mathbf{B} = |\\mathbf{A}| |\\mathbf{B}| \\sin \\theta \\mathbf{n}$,其中$\\mathbf{A}$ 和 $\\mathbf{B}$ 是两个矢量,$\\theta$ 是两个矢量之间的夹角,$\\mathbf{n}$ 是垂直于平面的单位矢量。

习题1.已知两个矢量 $\\mathbf{A} = 2\\mathbf{i} +3\\mathbf{j} - 4\\mathbf{k}$ 和 $\\mathbf{B} = -\\mathbf{i} + 2\\mathbf{j} + 5\\mathbf{k}$,求两个矢量的点积和叉积。

答:首先计算点积:$\\mathbf{A} \\cdot \\mathbf{B} = (2)(-1) + (3)(2) + (-4)(5) = -2 + 6 - 20 = -16$。

然后计算叉积:$\\mathbf{A} \\times \\mathbf{B} =(3)(5)\\mathbf{i} + (-4)(-1)\\mathbf{j} +(2)(2)\\mathbf{k} = 15\\mathbf{i} - 4\\mathbf{j} +4\\mathbf{k}$。

2.已知一个矢量 $\\mathbf{A} = 3\\mathbf{i} -2\\mathbf{j} + \\mathbf{k}$,求该矢量的模。

电磁场与电磁波第四版课后思考题答案之欧阳理创编

电磁场与电磁波第四版课后思考题答案之欧阳理创编

2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。

当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。

就可将带电体所带电荷看成集中在带电体的中心上。

即将带电体抽离为一个几何点模型,称为点电荷。

2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的?常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。

2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。

2.4简述 和 所表征的静电场特性ερ/=•∇E 0=⨯∇E表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。

表明静电场是无旋场。

2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。

高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,2.6简述和 所表征的静电场特性。

表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。

安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。

2.8简述电场与电介质相互作用后发生的现象。

ερ/=•∇E 0=⨯∇E 0=⋅∇B J B 0μ=⨯∇0=⋅∇B JB 0μ=⨯∇0μI l d B C 0μ⎰=⋅在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系?单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么电位移矢量定义为 其单位是库伦/平方米 (C/m 2)2.11 简述磁场与磁介质相互作用的物理现象?在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系? 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度:P•∇=-p ρn sp e •=P ρEP E D εε=+=0B B B 0'+= MJ M ⨯∇=磁化电流面密度与磁化强度:2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么?/米(A/m)2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么? 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档