八年级数学上册全册全套试卷专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册全册全套试卷专题练习(

word 版

一、八年级数学三角形填空题(难)

1.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______.

【答案】

1722

m << 【解析】

【分析】 作出草图,延长AD 到E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全等,然后根据全等三角形对应边相等可得CE=AB ,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,便不难得出m 的取值范围.

【详解】

解:如图,延长AD 到E ,使DE=AD ,连接CE ,

∵AD 是△ABC 的中线,

∴BD=CD ,

在△ABD 和△ECD 中,

AD DE ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩

, ∴△ABD ≌△ECD (SAS ),

∴CE=AB ,

∵AB=3,AC=4,

∴4-3<AE <4+3, 即1<AE <7,

∴1722

m <<. 故答案为:

1722m <<. 【点睛】

本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.

2.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.

【答案】115°.

【解析】

【分析】

根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出

∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.

【详解】

解;∵∠A=50°,

∴∠ABC+∠ACB=180°﹣50°=130°,

∵∠B和∠C的平分线交于点O,

∴∠OBC=1

2

∠ABC,∠OCB=

1

2

∠ACB,

∴∠OBC+∠OCB=1

2

×(∠ABC+∠ACB)=

1

2

×130°=65°,

∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,

故答案为:115°.

【点睛】

本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.

3.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.

【答案】360 °

【解析】

如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.

点睛:本题考查的知识点:

(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和; (2)四边形内角和定理:四边形内角和为360°.

4.等腰三角形的三边长分别为:x +1,2x +3,9,则x =________.

【答案】3

【解析】

①当x+1=2x+3时,解得x=−2(不合题意,舍去);

②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;

③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。

所以x 的值是3.

故填3.

5.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.

【答案】40°

【解析】

试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知

∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,

然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.

故答案为:40°.

6.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .

【答案】22

【解析】

【分析】

底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.

【详解】

试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .

故填22.

【点睛】

本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.

二、八年级数学三角形选择题(难)

7.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )

A .15 cm 2

B .20 cm 2

C .30 cm 2

D .35 cm 2

【答案】D

【解析】

【分析】 连接AD ,BE ,CF .根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC 的面积,故△DEF 的面积等于7倍的△ABC 面积,即可得出结果.

【详解】

连接AD ,BE ,CF .

∵BC =CD ,∴S △ACD =S △ABC =5,S △FCD =S △BCF .同理S △AEB =S △ABC =5,S △AED =S △ACD =5;

S △AEB =S △BEF =5,S △BFC =S △ABC =5;∴S △FCD =S △BCF =5,∴S △EFD =7 S △ABC =35(cm 2).

故选D .

相关文档
最新文档