第五章 线性系统频率分析法
四、线性系统的频域分析法
![四、线性系统的频域分析法](https://img.taocdn.com/s3/m/1606a8b9700abb68a982fb4f.png)
其中: A()Ac (j) 幅频特性
A
() (j) 相频特性
RC网络频率特性的物理意义:
1 A()
0.707
频带宽度
b
01 2 3 4 5
TTTT T
() 0
相角迟后
90
01 2 3 4 5
TTTT T
对稳定的线性系统,其频率特性如下:
设: (s)C R ((s s))b a 0 0 ssm n b a 1 1 s sm n 1 1 .... a .b .m n 1 1 s s a b n m
微分环节: s 惯性环节: 1/(Ts1) 一阶微分环节: Ts1
振荡环节: 1 /s (2/ n 2 2s/ n 1 )0 , 1
二阶微分环节: s2/n22 s/n 1 ,01
例如:G(s)s(0.5s K 1()ss( 21 )2s5) 由上述的5个环节组成。
A()1/ ()900
db 60 40 20 0 900
[20]
0.1
1
j
0
幅相曲线
对数频率特性曲线
L()2l0g A()
20lg () 900
10
3)微分环节: s 由 G(s)s
A() ()900
db 60 40 20 0 90 0 00
uc
ur
ur Asi nt c u c
设初值为0, 对上式拉氏变换,设A=1,得:
Uc(s)RC 1s1Ur(s) s1/1T/Ts2 2
RC网络
TRC
s1x/Tsy2sz2 (xy)s2( s (z1 /T y)/T s(2) s x 2 )2z/T
线性系统的频域分析
![线性系统的频域分析](https://img.taocdn.com/s3/m/12f7f8681eb91a37f1115cbf.png)
第五章 线性系统的频域分析频域分析法是应用频率特性研究线性系统的一种经典方法。
它以控制系统的频率特性作为数学模型,以伯德图或其他图表作为分析工具,来研究、分析控制系统的动态性能与稳态性能。
频域分析法由于使用方便,对问题的分析明确,便于掌握,因此和时域分析法一样,在自动控制系统的分析与综合中,获得了广泛的应用。
本章研究频率特性的基本概念、典型环节和控制系统的频率特性曲线、奈奎斯特稳定判据以及开环频域性能分析等内容。
§5-1 频率特性的基本概念一、频率特性的基本概念频率特性又称频率响应,它是系统(或元件)对不同频率正弦输入信号的响应特性,对于线性系统,若其输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但其幅值和相位都不同与输入量。
下面以RC 电路为例,说明频率特性的基本概念。
图5-1所示的RC 电路,)(t u i 和)(0t u 分别为电路的输入电压和输出电压,电路的微分方程为:)()()(00t u t u dtt du Ti =+ 式中T=RC 为电路的时间常数。
RC 电路的传递函数为11)()(0+=Ts s U s U i (5-1) Rui )t图 5-1 RC 电路当输入电压为正弦函数t U t u i i ωsin )(=,则由式(5-1)可得22011)(11)(ωω+⋅+=+=s U Ts s U Ts s U i i 经拉氏反变换得电容两端的输出电压)sin(11)(122/220T tg t T U e T T U t u iT t i ωωωωω---+++=式中,第一项为输出电压的暂态分量,第二项为稳态分量,当∞→t 时,第一项趋于零,于是)sin(1|)(1220T tg t T U t u i t ωωω-∞→-+=)](sin[)(ωϕωω+=t A U i (5-2)式中:2211)(TA ωω+=,T tgωωϕ1)(--=,分别反映RC 网络在正弦信号作用下,输出稳态分量的幅值和相位的变化,二者皆是输入正弦信号频率ω的函数。
自动控制理论_哈尔滨工业大学_5 第5章线性系统的频率分析_(5.1.1) 5.1频率特性的概念
![自动控制理论_哈尔滨工业大学_5 第5章线性系统的频率分析_(5.1.1) 5.1频率特性的概念](https://img.taocdn.com/s3/m/b092f2b876a20029bd642d7b.png)
如果线性定常系统的输入r(t)和输出c(t)存在傅里叶变换, 频率特性也是输入信号的傅氏变换和输出信号的傅氏变换之比。
G(
j
)
C( R(
j) j)
其中 R( j) r(t)e jtdt C( j) c(t)e jtdt
经过傅氏反变换
c(t)
U1m
1
1 j
sin(t
1
1
j
)
上式表明: 对于正弦输入,其输入的稳态响应仍然是一个同 频率正弦信号。但幅值降低,相角滞后。
输入输出为正弦函数时,可以表示成复数形式,设输入为 Xej0,输出为Yejφ,则输出输入之复数比为:
Ye j Xe j0
Y X
e j
A()e j ()
后于输入的角
度为:
φ=
B A
360o
②该角度与ω有
关系 ,为φ(ω)
③该角度与初始
角度无关 。
二、频率特性的定义
例:如图所示电气网络的传递函数为
U2 (s) 1 Cs 1 1
U1(s) R 1 Cs RCs 1 s 1
若输入为正弦信号: u1 U1m sin t
其拉氏变换为:
1
2
G( j)R( j)e jtd
系统的单位脉冲响应为:
g (t )
1
2
G( j)e jt d
本节小结
1. 控制系统频率特性的基本概念。 2. 频率特性与传递函数的关系。
频率特性有明确的物理意义,可以方便地用实验方法测定, 并用于系统的分析和建模。
频率特性主要适用于线性定常系统。
第五章线性系统的频域分析法
![第五章线性系统的频域分析法](https://img.taocdn.com/s3/m/610621daa58da0116c17492c.png)
对 A(ω ) 求导并令等于零,可解得 A(ω ) 的极值对应的频率 ω r 。
ω r = ω n 1 2ζ 2
该频率称为谐振峰值频率。可见,当 ζ = 当ζ
> 1 2
s = jω
G( jω) =| G( jω) | e
j∠G( jω)
= A(ω)e
j (ω)
G( jω) = G(s) |s= jω
G( jω) = G(s)|s= jω =| G( jω)| e j∠G( jω) = A(ω)e j(ω)
A A j (ω ) k1 = G( jω ) e k2 = G( jω ) e j (ω ) 2j 2j
可以作为系统模型
G( jω) = G(s) |s= jω = G( jω) e j(ω)
定义 幅频特性
A(ω ) =| G( jω ) |
(ω ) = ∠G ( jω )
它描述系统对不同频率输入信号在稳态时的放大特性; 它描述系统对不同频率输入信号在稳态时的放大特性; 相频特性
它描述系统的稳态响应对不同频率输入信号的相位移特性; 它描述系统的稳态响应对不同频率输入信号的相位移特性; 幅频特性和相频特性可在复平面上构成一个完整的向量 G ( jω ), 频率特性。 频率特性 G ( jω ) = A(ω )e j (ω ) ,它也是 ω 的函数。G( jω) 称为频率特性 还可将 G ( jω ) 写成复数形式,即
A(ω ) = 1 1 + T 2ω 2 ,
G (s) =
1 Ts + 1
G ( jω ) =
1 jT ω + 1
(ω ) = tg 1T ω
幅频特性 L(ω) = 20log A(ω) = 20log K 20log 1+ T 2ω2 低频段:当Tω << 1时,ω 高频段:当 Tω >> 1时, ω
频率分析法
![频率分析法](https://img.taocdn.com/s3/m/b35b77adfc4ffe473368abe6.png)
log
更详细的刻度如下图所示
1
2
3 4 5 6 7 8 910
20
一倍频程 一倍频程 一倍频程
一倍频程
30 40 50 60 80 100 一倍频程
十倍频程 十倍频程
十倍频程
一倍频程 十倍频程
lg
0
1
2
ω 1 2 3 4 5 6 7 8 9 10 lgω 0.000 0.301 0.477 0.602 0.699 0.778 0.845 0.903 0.954 1.000
纵坐标分度:幅频特性曲线的纵坐标是以
贝尔(Bl)和分贝(dB)。直接将
或
或 log表A示(。)其2单0位lo分g别A为() 值标注在纵坐标上。log A()
20log A()
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横坐标(频率轴)。
当幅制特性值用分贝值表示时,通常将它称为增益。幅值和增益的关系为:
增益 20 log(幅值) 20 lg A()
幅值 1
A( )
增益 0
1.26 1.56 2.00 2.51 3.16 5.62 10.0
2
4
6
8
10
15
20
幅值A() 1.00 1.26 1.56 2.00 2.51 3.16 5.62 10.0 100 1000 10000
对数幅值
0 2 4 6 8 10 15 20 40 60
80
20lgA()
幅值A() 1.00 0.79 0.63 0.50 0.39 0.32 0.18 0.10 0.01 0.001 0.0001
对数幅值 20lgA()
自动控制原理第5章_线性控制系统的频率特性分析法
![自动控制原理第5章_线性控制系统的频率特性分析法](https://img.taocdn.com/s3/m/cd6bb37ee87101f69e3195a2.png)
5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】
![第五章 线性系统的频域分析法-5-2——【南航 自动控制原理】](https://img.taocdn.com/s3/m/8673062b8e9951e79b892758.png)
)2
A(0) 1 (0) 0
G(jn )
A() 0 () 180
j
G(j0)
●
0
G(jn )
共振点
G( jn ) (n ) 0 G( jn ) (n ) 180
变化趋势 0 n () 0 , A() :1
n () 180 , A() : 0
零阻尼振荡环节在自然振荡频率处,相角突变180°。
A()
谐振现象是振荡系统的 特性,谐振频率 r 与系 统固有频率 n 和阻尼比
有关。当谐振频率等于
频率响应峰值
Mr 1/ (2 1 2 )
阶跃响应超调
p exp( / 1 2 )
固有频率时,则发生共振。
共振的危害巨大。
当阻尼比较小,且系统谐振频率处于输入信号的
频率范围时,系统输出会出现很大的振荡,影响系
5.2 典型环节与开环系统的频率特性
环节是系统的基本组成单元。將环节进行分类形成 典型环节。典型环节的频率特性是开环系统频率特性 的分解,而开环系统频率特性是闭环系统分析与设计 的基础。
一、典型环节的频率特性
1.典型环节的分类
环节:系统增益、零点或极点对应的因式
分类:按照增益的正负性、零点或极点的位置(实数 或复数、位于左半平面或右半平面)进行划分,共分 为最小相位、非最小相位两大类、12种典型环节。
设互为倒数的典型环节频率特性为
G1(j)=A1()e j1() G2 (j) =A2 ()e j2 ()
则由 G1(s) 1/ G2 (s) 得
A1()e j1 ( ) =A21()e j2 ( )
L1() L2 ()
互为倒数典型环节的对数相频曲线关于0°线对称, 对数幅频曲线关于0dB线对称。
线性系统的频域分析法
![线性系统的频域分析法](https://img.taocdn.com/s3/m/28f5cdb4b0717fd5360cdc24.png)
第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。
图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。
稳定系统的频率特性可通过实验的方法确定。
5-2 频率特性与传递函数的关系是什么?试证明之。
证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。
证明如下。
假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。
5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。
答频率特性的几何表示一般有3种方法。
⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。
它以频率为参变量,以复平面上的矢量来表示的一种方法。
由于与对称于实轴,所以一般仅画出的频率特性即可。
⑵对数频率特性曲线(伯德图)。
此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。
横坐标为,但常用对数分度。
对数幅频特性的纵坐标为,单位为dB。
对数相频特性的纵坐标为,单位为“。
”(度)。
和都是线性分度。
横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。
⑶对数幅相频率特性曲线(尼柯尔斯曲线)。
这种方法以为参变量,为横坐标,为纵坐标。
5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。
①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。
典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。
自动控制原理 第五章(第一次课)
![自动控制原理 第五章(第一次课)](https://img.taocdn.com/s3/m/85fd1ae1524de518964b7d2f.png)
autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )
线性系统的频域分析方法教学课件PPT开环频率曲线的绘制
![线性系统的频域分析方法教学课件PPT开环频率曲线的绘制](https://img.taocdn.com/s3/m/2fdbf080524de518964b7d61.png)
h
7
二、开环幅相曲线的绘制(1)
绘制方法 (1)起点 0 和终点 ; (2)与实轴的交点 ( x , 0 ) ; 穿越频率: x
(3)变化范围(象限和单调性)。
Im [G (j x)H (j x)] 0 (x ) G ( jx ) H ( jx ) k ;k 0 , 1 , 2 ,
G( jx )H( jx ) K
25.11.2020
h
12
二、开环幅相曲线的绘制(5)
例5.设系统开环传递函数为
试绘制系统开环概G 略(s)幅H (相s)曲s 线(T s 。 1 )(K s2 n 2 1 ); K ,T0
解:
起点: G (j0 )H (j0 ) 9 0 终点: G (j )H (j )0 3 6 0
h
2
10
二、开环幅相曲线的绘制(4)
例3 已知单位反馈系统开环传递函数为
G (s ) K (s 1 ) ; s (T 1 s 1 )(T 2 s 1 )
K ,T 1 ,T 2 , 0
试绘制系统概略开环幅相曲线。
解:起点: Gj090
终点:
Gj0180
25.11.202曲线的绘制(5)
25.11.2020
h
3
一、典型环节及其频率特性(2)
非最小相位系统环节 1)比例环节 K (K0) 2)惯性环节 1/(1 T s) (T0 )
3)一阶微分环节 1Ts (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
5)二阶微分环节 s 2 /n 2 2 s /n 1(n 0 ,0 1 )
第五章 线性系统的频域分析法
5-1 引言 5-2 频率特性 5-3 开环频率特性曲线的绘制 5-4 频域稳定判据 5-5 稳定裕度 5-6 闭环系统的频域性能指标
自动控制原理第5章
![自动控制原理第5章](https://img.taocdn.com/s3/m/90f1860390c69ec3d5bb7557.png)
jY (ω )
ω =∞
X (ω )
ω
积分环节的Nyquist图 积分环节的Bode图
幅频特性与角频率ω成反比,相频特性恒为-90° 成反比, 90° 对数幅频特性为一条斜率为 - 20dB/dec的直线,此 线通过L(ω)=0,ω=1的点
三、微分环节 微分环节的频率特性为
G ( jω ) = jω = ωe
奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 奈奎斯特(N.Nyquist)在1932年基于极坐标图阐述 了反馈系统稳定性。 极坐标图(Polar 极坐标图(Polar plot) =幅相频率特性曲线=幅相曲线 幅相频率特性曲线=
G ( jω )
可用幅值 G( jω ) 和相角ϕ (ω ) 的向量表示。
当输入信号的频率 ω → 0 ~ ∞ 变化时,向量 G ( jω ) 的幅值和相位也随之作相应的变化,其端点在复平面 上移动的轨迹称为极坐标图。
jY (ω )
ω →∞
ϕ (ω ) A(ω )
ω = 0 X (ω )
ω
RC网络对数频率特性 RC网络频率特性
5.2 典型环节的频率特性
用频域分析法研究控制系统的稳定性和动态 响应时,是根据系统的开环频率特性进行的, 响应时,是根据系统的开环频率特性进行的, 而控制系统的开环频率特性通常是由若干典 型环节的频率特性组成的。 型环节的频率特性组成的。 本节介绍八种常用的典型环节。 本节介绍八种常用的典型环节。
频率响应: 正弦输入信号作用下, 系统输出的稳态分量。 频率响应 : 正弦输入信号作用下,系统输出的稳态分量。 (控制系统中的信号可以表示为不同频率正弦信号的合成) 控制系统中的信号可以表示为不同频率正弦信号的合成) 频率特性: 系统频率响应和正弦输入信号之间的关系, 频率特性 : 系统频率响应和正弦输入信号之间的关系,它 和传递函数一样表示了系统或环节的动态特性。 和传递函数一样表示了系统或环节的动态特性。 数学基础:控制系统的频率特性反映正弦输入下系统响应 数学基础:控制系统的频率特性反映正弦输入下系统响应 的性能。研究其的数学基础是Fourier变换。 的性能。研究其的数学基础是Fourier变换。 频域分析法:应用频率特性研究线性系统的经典方法。 频域分析法:应用频率特性研究线性系统的经典方法。
第五章线性系统的频率分析法
![第五章线性系统的频率分析法](https://img.taocdn.com/s3/m/e7caf883a0c7aa00b52acfc789eb172dec639953.png)
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解
第五章 频域分析法-自动控制原理(双语教材)(第2版)-摆玉龙-清华大学出版社
![第五章 频域分析法-自动控制原理(双语教材)(第2版)-摆玉龙-清华大学出版社](https://img.taocdn.com/s3/m/4b6a091c4028915f814dc22a.png)
Lecture 5 Frequency Responses (2)
Control Engineering 2006/2007
The frequency response is a representation of the system's response to sinusoidal [ˌsɪnə'sɔɪdəl] inputs at varying frequencies. The output of a linear system to a sinusoidal input is a sinusoid of the same frequency but with a different magnitude and phase. The frequency response is defined as the magnitude and phase differences between the input and output sinusoids.
自动控制原理
第5章 线性系统的频域分析法
1
第5章 线性系统的频域分析法
5.1 引言 5.2 频率特性的基本概念 5.3 典型环节的频率特性及特性曲线的绘制 5.4 频域稳定判据及稳定裕量 5.5 频率特性与控制系统性能的关系 5.6 MATLAB在本章中的应用
2
The overall purpose of the chapter.
(1)频率特性具有明确的物理意义,可以将系统参 数、系统结构变化和系统性能指标统一进行研究。
5
5.1 引言
(2)频率特性法的计算量较小,一般可采用近似的作图
方法,简单、直观,易于工程技术领域使用。
(3)可以采用实验的方法求出系统或元件的频率特性,
自动控制原理第五章 线性系统的频域分析法-5-1
![自动控制原理第五章 线性系统的频域分析法-5-1](https://img.taocdn.com/s3/m/106161235bcfa1c7aa00b52acfc789eb172d9eda.png)
如同收音机、电视机一样,任一系统的频率响应反映系统的频率特性,体现系统的控制性能。
系统频率特性物理意义明确。应用频率特性分析研究系统性能的方法称为频域分析法。
控制系统的频域分析法兼顾动态响应和噪声抑制的要求,可以拓展应用于非线性系统。
频率特性定义
分别称为系统的幅频特性和相频特性。
系统数学模型间的关系
控 制 系 统
傅氏变换
拉氏变换
g(t)
数学建模
例5.1-1
图示系统,设输入为r(t)=sin(5t),计算系统的频率响应和稳态误差。
当
1
2
3
4
5
6
7
8
9
10
20
100
1
2
3
4
5
6
7
8
9
10
0
0.301
0.477
0.602
0.699
0.788
0.845
0.903
0.954
1
十倍频程
两倍频程
0.1
0.2
200
十倍频程
十倍频程
对数坐标的单位长度
⑶ 对数频率特性曲线
对数幅频特性曲线 纵坐标: ,线性刻度,单位为分贝(dB) 横坐标:ω ,对数刻度,单位为弧度/秒(rad/s)
绘制一阶系统幅相频率特性曲线
解:系统频率特性为
且有
即
复平面上位于第Ⅳ象限圆心为(1/2,j0),半径为1的半圆。
箭头表示随ω增加,曲线的运动方向
2. 对数频率特性曲线(对数坐标图、伯德(Bode)图)
⑴ 频率特性的常用对数函数
第五章频率特性分析法
![第五章频率特性分析法](https://img.taocdn.com/s3/m/4d4cf6d38ad63186bceb19e8b8f67c1cfad6eef1.png)
146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。
如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。
然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。
而且,按照给定的时域指标设计高阶系统也不是容易实现事。
本章介绍的频域分析法,可以弥补时域分析法的不足。
频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。
频率法的优点较多。
首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。
其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。
因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。
此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。
这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。
因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。
5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。
设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。
若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。
自动控制原理 第五章-2
![自动控制原理 第五章-2](https://img.taocdn.com/s3/m/004e2e0dcc175527072208bc.png)
Determine the stability of the system for two cases (1)K is small(2) K is large
G ( j ) H ( j )
K (1 jT1 )(1 jT2 )( j ) (1 T12 2 )(1 T22 2 ) K ((T1 T2 ) j (1 T 1T2 2 ) (1 T12 2 )(1 T22 2 )
0 ~ 90
K ( j 3) G ( j ) H ( j ) j ( j 1) K [4 j (3 2 )] (1 2 )
Im[G( j ) H ( j )] 0
c 3
G ( j ) H ( j )
K ( j 3) j ( j 1)
越(-∞,-1)区间一次。 开环频率特性曲线逆时针穿越(-∞,-1)区间时,随ω增加,频 率特性的相角值增大,称为一次正穿越N’+。 反之,开环频率特性曲线顺时针穿越(-∞,-1)区间时,随ω增 加,频率特性的相角值减小,则称为一次负穿越N’-。 频率特性曲线包围(-1,j0)点的情况,就可以利用频率特性曲线 在负实轴(-∞,-1)区间的正、负穿越来表达。
除劳斯判据外,分析系统稳定性的另一种常用判据 为奈奎斯特(Nyquist)判据。Nyquist稳定判据是奈奎斯 特于1932年提出的,是频率法的重要内容,简称奈氏判 据。奈氏判据的主要特点有
1.根据系统的开环频率特性,来研究闭环系统稳定性,而 不必求闭环特征根;
2.能够确定系统的稳定程度(相对稳定性)。 3.可分析系统的瞬态性能,利于对系统的分析与设计; 4.基于系统的开环奈氏图,是一种图解法。
N(s)=0 的根为开环传递函数的极点。
第五章 线性系统的频域分析法
![第五章 线性系统的频域分析法](https://img.taocdn.com/s3/m/e88c0f609b6648d7c1c74665.png)
4.还可以推广到研究某些非线性系统。
时域分析法与频域分析法比较:
时域分析法是分析控制系统的直接方法,比较直观、 精确。当往往需要求解复杂的微分方程。 频域分析法是一种图解分析法。它依据系统的又一种 数学模型——频率特性,利用频域指标和时域指标之间的 对应关系,间接地揭示系统的暂态特性和稳态特性,简单 迅速地判断某些环节或者参数对系统的暂态特性和稳态特 性的影响,并能指明改进系统的方向。也是一种工程上常 用的方法。
2 0.707 2
时,谐振峰值 M r 1 。
2 , (0, r ), 0 2 0 2 , ( , ), r 2
4.无谐振时
2 1, (0, ), 2
A( )
1
2 2 2 1 2 4 2 n n 2
参见《信号与系统》
频域分析法的基本介绍 •控制系统的频率特性反映正弦信号作用下系统响应的性能, 是系统的一种数学模型。 •应用频率特性来研究线性系统的经典方法称为频域分析法。 频域分析法具有以下特点:
1.控制系统及其元部件的频率特性可以运用分析法或者实验 法获得,并可用多种形式的曲线来表示,因而系统分析和控 制器设计可以应用图解法进行。
4.系统的开环幅相曲线(Nyquist图)
5.系统的开环对数频率特性曲线(bode图) 6.传递函数的频域实验确定
7.延迟环节和延迟系统
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。
1.典型环节
2.最小相位环节的频率特性
第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的
![第5章线性系统的频域分析法重点与难点一、基本概念1.频率特性的](https://img.taocdn.com/s3/m/4347b00c3c1ec5da50e270ad.png)
·145·第5章 线性系统的频域分析法重点与难点一、基本概念 1. 频率特性的定义设某稳定的线性定常系统,在正弦信号作用下,系统输出的稳态分量为同频率的正弦函数,其振幅与输入正弦信号的振幅之比)(ωA 称为幅频特性,其相位与输入正弦信号的相位之差)(ωϕ称为相频特性。
系统频率特性与传递函数之间有着以下重要关系:ωωj s s G j G ==|)()(2. 频率特性的几何表示用曲线来表示系统的频率特性,常使用以下几种方法:(1)幅相频率特性曲线:又称奈奎斯特(Nyquist )曲线或极坐标图。
它是以ω为参变量,以复平面上的矢量表示)(ωj G 的一种方法。
(2)对数频率特性曲线:又称伯德(Bode )图。
这种方法用两条曲线分别表示幅频特性和相频特性。
横坐标为ω,按常用对数lg ω分度。
对数相频特性的纵坐标表示)(ωϕ,单位为“°”(度)。
而对数幅频特性的纵坐标为)(lg 20)(ωωA L =,单位为dB 。
(3)对数幅相频率特性曲线:又称尼柯尔斯曲线。
该方法以ω为参变量,)(ωϕ为横坐标,)(ωL 为纵坐标。
3. 典型环节的频率特性及最小相位系统 (1)惯性环节:惯性环节的传递函数为11)(+=Ts s G 其频率特性 11)()(+===j T s G j G j s ωωω·146·对数幅频特性 2211lg20)(ωωT L +=(5.1)其渐近线为⎩⎨⎧≥-<=1 )lg(2010)(ωωωωT T T L a (5.2) 在ωT =1处,渐近线与实际幅频特性曲线相差最大,为3dB 。
对数相频特性)(arctg )(ωωϕT -= (5.3)其渐近线为⎪⎩⎪⎨⎧≥︒-<≤+<=10 90101.0 )lg(1.0 0)(ωωωωωϕT T T b a T a (5.4)当ωT =0.1时,有b a b a -=+=1.0lg 0 (5.5)当ωT =10时,有b a b a +=+=︒-10lg 90 (5.6)由式(5.5)、式(5.6)得︒=︒-=45 45b a因此:⎪⎩⎪⎨⎧≥︒-<≤︒-<=10 90101.0 )10lg(451.0 0)(ωωωωωϕT T T T a (5.7)(2)振荡环节:振荡环节的传递函数为10 121)(22<<++=ξξTs S T s G·147·其频率特性)1(21|)()(22ωωξωωT j Ts s G j G j s -+=== 对数幅频特性2222224)1(lg 20)(ωξωωT T L +--= (5.8)其渐近线为⎩⎨⎧≥-<=1)lg(4010)(ωωωωT T T L a (5.9) 当707.0<ξ时,在221ξω-=T 处渐近线与实际幅频特性曲线相差最大,为2121lg20ξξ-。
第5章线性系统的频域分析方法
![第5章线性系统的频域分析方法](https://img.taocdn.com/s3/m/d1c58f0b16fc700aba68fc0c.png)
最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts
和
1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
自动控制原理第五章 线性系统的频域分析法-5-6
![自动控制原理第五章 线性系统的频域分析法-5-6](https://img.taocdn.com/s3/m/6a1e69452379168884868762caaedd3382c4b572.png)
5.6 控制系统的频域校正方法
控
结合校正装置,简要介绍串联校正的设计方法。常
制 原
用校正装置分为无源和有源两大类。
理 1. 串联无源校正 包括无源超前、无源滞后和无源滞
后-超前校正三种。无源校正网络由电阻、电容构成。
⑴ 串联无源超前校正
超前校正网络实现形式
Gc
(s)
U U
c r
( (
s s
) )
a4
制 校验相角裕度
原 理
m
arctan
a 21 a=源自arctan3 4
=36.9
=180 +(c)+m 180 167.2 36.9 49.7
达到相角裕度的要求。由于选择超前校正,校正后开
环幅相曲线与负实轴仍无交点,故幅值裕度无穷大,
自然满足要求。
再由
m
T
1 a
=4.4
T 0.114 s
串联超前校正设计步骤
R(s)
K C(s)
例5.6-1 图示反馈系统
-
s(s 1)
要求系统在 r(t)=t 1(t) 时,
稳态误差 e ss 0 .1 ra d ,截止频率 c 4 .4 ra d / s 相角
裕度 4 5 幅值裕度 h d B 1 0 d B ,试设计串联无
源超前网络。
5
Page: 5
自 解:① 设计开环增益,满足稳态要求
动
控 未校正系统为Ⅰ型系统。在单位斜坡输入下,由
制
1
原 理
ess K 0.1
K 10
T 为a的减函数 m 为a的增函数
② 校验待校正系统频域指标 由 L(m) 为a的增函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢尽管频率特性是一种稳态响应,但包含了系统或元部件的 全部动态结构参数,系统动态过程的规律性也全寓于其中。
➢应用频率特性分析系统性能的基本思路:根据控制系统对 于正弦谐波函数这类典型信号的响应可以推算出它在任意周 期信号或非周期信号作用下的运动情况。
扬州大学水利与能源动力工程学院
自动控制原理
Part 5.2 频率特性图
2
t
一、频率特性
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
一、频率特性
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
一、频率特性
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
一、频率特性
第五章 频率特性
m
设稳定线性定常系统的传递函数为 系统输入为谐波信号
第五章 频率特性
除了比例环节外,非最小相位环节和与之相对应 的最小相位环节的区别在于开环零极点的位置。
扬州大学水利与能源动力工程学院
自动控制原理
二、开环频率特性曲线的绘制
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
二、开环频率特性曲线的绘制
第五章 频率特性
系统开环幅频特性和开环相频特性
1
10
扬州大学水利与能源动力工程学院
自动控制原理
(3)纯微分环节
幅相频率特性
G( j) j | G( j) | G( j) tg1 90
0
对数频率特性
L() 20lg () 90
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
(4)惯性环节
幅相频率特性
G(s) 1 Ts 1
L() 20lg () 90
传递函数:G1 ( s)
K S
图???
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
n阶积分环节
G( j)=(1/ j)n
第五章 频率特性
L() 20log 1 20n log (dB) ( j)n
() 90 n
幅频特性曲线?
扬州大学水利与能源动力工程学院
对数频率特性
L() 20lg A() 20lg K
() 0
K>1时,分贝数为正; K<1时,分贝数为负。
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
(2)积分环节
幅相频 率特性
传递函数:G(s)
1 S
频率特性:G( j)
1 j
| G( j) | 1
对数频 率特性
( ) 90
G( j)
b0 ( j)m b1( j)m1 ... bm1( j) a0 ( j)n a1( j)n1 ... an1( j)
bm an
扬州大学水利与能源动力工程学院
自动控制原理
矢量表示
G( j)
第五章 频率特性
G( j) Xc ( j) Xr ( j)
G( j) Xc ( j) Xr ( j)
G( j) | G( j) | ejG(j) G( j) | G( j) | e jG( j) | G( j) | e jG( j)
xc (t) ae jt ae jt A | G( j) | e j(tG( j)) e j(tG( j))
2j
A() | X c ( j) || G( j) | X r ( j)
()=G( j)
频率比 dec
t
拓宽图形所能表示的频率范围
扬州大学水利与能源动力工程学院
自动控制原理
Bode图
第五章 频率特性
➢ω =0不可能在横坐标上表示出来;
➢横坐标上表示的最低频率由所感兴趣的频率范
围确定;
➢只标注ω的自然对数值。
L(ω) 对数幅频特性 (ω) 对数相频特性。
扬州大学水利与能源动力工程学院
G(j ) 图
尼奎斯特图 Nyquist
扬州大学水利与能源动力工程学院
自动控制原理
jv
OO
u
O
O O
第五章 频率特性
扬州大学水利与能源动力工程学院
自动控制原理
2. 对数频率特性图-Bode图
G( j) A()e j()
第五章 频率特性
波德图 (Bode)
L() 20lg A() 20lg | G( j) | (dB)
第五章 频率特性
5.2.1 频率特性图的定义
➢
5.2.2 典型环节的频率特性图 Nyquist/Bod➢e
➢放大环节 ➢纯微分环节
➢ 积分环节 ➢ 惯性环节
➢一阶微分环节 ➢ 振荡环节
➢二阶微分环节 ➢ 延滞环节
扬州大学水利与能源动力工程学院
自动控制原理
5.2.1 频率特性图
第五章 频率特性
➢幅相频率特性 极坐标图 (Nyquist) G(j )图
Xc
(s)
G(s)
s
A 2 2
p(s) A q(s) s2 2
0
a a b1 b2 ... bn
s j s j s s1 s s2
s sn
x c (t) ae jt ae jt b1es1t b2es2t ... b1esnt (t 0) 对于稳定的系统, -s1,-s2,…,-sn 其有负实部
A(
)
()
N
Ai ( )
i 1
N
i ( )
i 1
系统开环频率特性表现为组成开环系统的诸典型环 节频率特性的合成;而系统开环对数频率特性,则 表现为诸典型环节对数频率特性的叠加这一更为简 单的形式
扬州大学水利与能源动力工程学院
自动控制原理
(1)放大环节
幅相频率特性
传递函数:G(s) K 频率特性:G(j) K A() G(j) K ( ) G( j) 0
xc (t) ae jt ae jt
a
G(s) (s
A j)(s
j)
(s
j) |s j
AG( j)
2j
a
G(s) (s
A j)(s
(s
j)
j) |s j
AG( j)
2j
扬州大学水利与能源动力工程学院
自动控制原理
第五章 频率特性
a AG( j) 2j
a AG( j) 2j
| G( j) || Xc ( j) | Xr ( j)
G( j) A()ej() U() jV()
幅频特性 相频特性 实频特性 虚频特性
A() | G( j) | U2 () V2 () () G( j) tg1 V()
U () U() A() cos()
V() A()sin ()
对于高频信号 (T 1) A() 1 0
T
() 90
!频率特性反映了系统(电路)的内在性质,与外界因素无关。
扬州大学水利与能源动力工程学院
自动控制原理
第五章 频率特性
频率特性与传递函数的关系: G(jω)=G(s)|s=jω
➢频率特性是传递函数的特例,是定义在复平面虚轴上的传 递函数,因此频率特性与系统的微分方程、传递函数一样反 映了系统的固有特性。
扬州大学水利与能源动力工程学院
自动控制原理
第五章 频率特性
应用频率特性研究线性系统的方法称为频率 分析法。 特点如下: 为什么用频率分析法分析系统?
1、控制系统及其元部件的频率特性可通 过分析法和实验法获得;
2、频率特性物理意义明确; 3、控制系统的频域设计可以兼顾动态响 应和噪声抑制两方面的要求; 4、频率分析法还可以推广应用于某些非 线性控制系统。
自动控制原理
第五章 频率特性
扬州大学精品课程系列
扬州大学水利与能源动力工程学院
自动控制原理
第五章 频率特性
第五章 线性系统频率分析法
什么是频率特性?
xrm
0
G(S)
xom
0
x r (t) xrm sin(t)
A() xom
xrm
x c (t) xcm sin(t ()) 幅频特性
() o ()-r () 相频特性
G( j) 1 jT 1
U()
1 T 2 2
1
G( j) tg1(T)
| G( j) | 1 T22 1
V()
T
T 22
1
第五章 频率特性
(U 1)2 V2 (1)2
2
2
扬州大学水利与能源动力工程学院
惯性环节G(jω)
G(s)
=
1 0.5s+1
φ(ω) = -tg-10.5 ω A(ω)=
A | G( j) | sin(t G( j))
xr (t) A sin t
() Xc ( j) G( j) X r ( j)
扬州大学水利与能源动力工程学院
自动控制原理
第五章 频率特性
xr(t) Asin t
xc (t) A | G( j) | sin(t G( j))
频率特性与传递函数的关系: G(jω)=G(s)|s=jω
扬州大学水利与能源动力工程学院
自动控制原理
5.1.3 频率特性的物理意义
第五章 频率特性
频率特性与传递函数的关系: G(jω)=G(s)|s=jω
频率特性表征了系统或元件对不同频率正弦输 入的响应特性。
(ω)大于零时称为 相角超前,小于零 时称为相角滞后。
扬州大学水利与能源动力工程学院
自动控制原理
2.根椐传递函数来求取; 3.通过实验测得。
一般用这两种方法
扬州大学水利与能源动力工程学院