非参的检验方法
非参数检验方法.
![非参数检验方法.](https://img.taocdn.com/s3/m/088acf12844769eae009ed7d.png)
统 计 量:有明确的理论依据(t分布、u分布) 有严格的适用条件,如:
•正态分布 •总体方差齐 •数据间相互独立 Normal Equal Variance Independent
条件不满足时——采用非参数统计的方法。
接受H1
2018/9/24
17
陈学芬
(3)确定P值并作出推断结论: 本例: n=9 , T+=15.5, T+ (5-40) T0.05(9)=5-40
所以 P>0.05,按α=0.05的检验水准,不拒绝H0 ; 尚不能认为治疗前后患者的白细胞总数差别有统 计学意义。
2018/9/24
18
陈学芬
第九章 非参数检验方法
(nonparametric test)
陈学芬
检验方法的选择及应用条件
t 检 验:
u 检 验:
方差分析:
2018/9/24
2Leabharlann 陈学芬参数检验:若样本所来自的总体分布已知(如 正态分布),对其总体参数进行假设检验,则 称为参数检验。
2018/9/24
3
陈学芬
参数检验的特点:
分析目的:对总体参数(μ π)进行估计或检验。 分 布:要求总体分布已知,如:
取较小的T作为检验的统计量T 本例取T=T+=15.5。
2018/9/24
16
陈学芬
(3)确定P值并作出推断结论: 根据T值( T+=15.5 或 T-=29.5 )查T界值表 ( P258附表8 )确定P值 原 则:如果T位于检验界值区间内,P>,不拒 绝H0;如果T位于检验界值区间外,P,拒绝H0,
非参数检验方法
![非参数检验方法](https://img.taocdn.com/s3/m/8a474af44b35eefdc9d3336d.png)
非参数检验方法
1、秩和检验法的主要思想是把原始数据转化成秩,利用秩构造统计量来比较不同样本的分布。
在这里每个样本的秩是指把原始数据按从大到小的顺序排列,该数据值在原始数据中的位置。
例如:
原始数据:A组(5,7),B组(3,2)
对应的秩:A组(3,4),B组(2,1)
A组的秩和为7,B组的秩和为3,每组的秩和被用来检验两组数据是否相同。
2、中位数评分检验法的主要思想是将原始数据转换成中位数评分,利用中位数评分构造统计量比较不同样本的分布。
当计算中位数评分时,如果数据值小于等于该组数据的中位数,则中位数评分为0,如果数据值大于该组数据的中位数,则中位数评分为1。
扩展资料
非参数检验的作用:
在以前的均值T检验中,我们分析的都是连续型随机变量,并且前提条件是样本满足正态性条件。
当分析不再是连续型或者不再是正态性条件时,则应当使用非参数的方法对均值和方差进行假设检验。
在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
非参数检验的检验方法
![非参数检验的检验方法](https://img.taocdn.com/s3/m/964c706d443610661ed9ad51f01dc281e53a56e0.png)
非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。
相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。
非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。
下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。
它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。
然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。
2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。
它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。
然后计算每个样本的秩次和,以及总体的秩次和。
根据这些秩次和的差异来进行推断。
3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。
这两种方法都是用来比较两个相关样本的总体中位数是否相等。
基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。
然后根据秩次和的大小来进行推断。
4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。
它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。
然后根据秩次和的差异来进行推断。
在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。
如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。
2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。
非参数检验方法
![非参数检验方法](https://img.taocdn.com/s3/m/035f19f877eeaeaad1f34693daef5ef7ba0d129f.png)
非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。
二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。
2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。
3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。
4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。
三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。
2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。
3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。
4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。
5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。
统计学中的非参数检验方法介绍
![统计学中的非参数检验方法介绍](https://img.taocdn.com/s3/m/55c1cb9577eeaeaad1f34693daef5ef7ba0d12d3.png)
统计学中的非参数检验方法介绍统计学是一门研究收集、分析和解释数据的科学。
在统计学中,我们经常需要进行假设检验,以确定样本数据是否代表了总体特征。
非参数检验方法是一种不依赖于总体分布假设的统计方法,它在现实世界中的应用非常广泛。
本文将介绍一些常见的非参数检验方法。
一、Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test)Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数检验方法。
它的原理是将两个相关样本的差值按绝对值大小进行排序,并为每个差值分配一个秩次。
然后,通过比较秩次总和与期望总和的差异来判断两个样本是否具有统计学上的显著差异。
二、Mann-Whitney U检验(Mann-Whitney U Test)Mann-Whitney U检验是一种用于比较两个独立样本的非参数检验方法。
它的原理是将两个样本的所有观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较两个样本的秩次总和来判断它们是否具有统计学上的显著差异。
三、Kruskal-Wallis检验(Kruskal-Wallis Test)Kruskal-Wallis检验是一种用于比较三个或更多独立样本的非参数检验方法。
它的原理是将所有样本的观测值按大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
四、Friedman检验(Friedman Test)Friedman检验是一种用于比较三个或更多相关样本的非参数检验方法。
它的原理类似于Kruskal-Wallis检验,但是对于相关样本,它将每个样本的观测值按照相对大小进行排序,并为每个观测值分配一个秩次。
然后,通过比较各组样本的秩次总和来判断它们是否具有统计学上的显著差异。
五、秩相关系数检验(Rank Correlation Test)秩相关系数检验是一种用于检验两个变量之间相关性的非参数检验方法。
假设检验——非参数检验
![假设检验——非参数检验](https://img.taocdn.com/s3/m/b323ff10d5bbfd0a785673bd.png)
假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。
上一节我们所介绍的Z 检验、t 检验,都是参数检验。
它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。
参数检验就是要通过样本统计量去推断或估计总体参数。
然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。
这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。
非参数检验是通过检验总体分布情况来实现对总体参数的推断。
非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。
非参数检验的方法很多,分别适用于各种特点的资料。
本节将介绍几种常用的非参数检验方法。
一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。
22检验的方法主要包括适合性检验和独立性检验。
(一)2检验概述2是实得数据与理论数据偏离程度的指标。
其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。
分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。
观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。
当 f 0 与 f e 完全相同时,2值为零。
际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。
常见的几种非参数检验方法
![常见的几种非参数检验方法](https://img.taocdn.com/s3/m/f8dfc93391c69ec3d5bbfd0a79563c1ec5dad7c9.png)
常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。
在本文中,我们将介绍常见的几种非参数检验方法。
一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。
二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。
六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。
它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。
八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。
九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。
它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。
r语言3组非参数检验
![r语言3组非参数检验](https://img.taocdn.com/s3/m/716f0ec0ed3a87c24028915f804d2b160b4e86f9.png)
r语言3组非参数检验非参数检验在统计学中是一种重要的方法,用于比较两组或多组数据是否具有显著性差异。
在R语言中,我们可以使用多种非参数检验方法来处理三组数据。
下面我们将介绍三种常用的非参数检验方法:卡方检验、配对卡方检验和Fisher确切概率法。
一、卡方检验卡方检验是一种用于比较两个或多个样本率或构成比是否显著的统计方法。
在R语言中,我们可以使用`chisq.test()`函数来进行卡方检验。
对于三组数据,我们可以将每两组的数据进行比较。
首先,我们需要将三组数据分别存储在三个向量中,例如:`group1`、`group2`和`group3`。
然后,我们可以使用以下代码进行卡方检验:```r#导入R语言自带的数据集data(mtcars)#将三组数据分别存储在向量中group1<-mtcars$mpggroup2<-mtcars$hpgroup3<-mtcars$drat#进行卡方检验chisq.test(cbind(group1,group2,group3))```上述代码将输出每组数据之间的卡方统计量和对应的p值。
如果p值小于预设的显著性水平(通常为0.05),则我们可以拒绝原假设,认为两组数据之间存在显著差异。
二、配对卡方检验配对卡方检验是一种用于比较两个配对样本是否具有相似性的统计方法。
在R语言中,我们可以使用`paired.test()`函数来进行配对卡方检验。
对于三组数据,我们可以将每两组的数据进行配对比较。
首先,我们需要将每两组的数据配对存储在一个矩阵或数据框中,例如:`df`。
然后,我们可以使用以下代码进行配对卡方检验:```r#创建示例数据框df<-data.frame(group1=c(1,2,3,4),group2=c(5,6,7,8),group3=c(9,10,11,12))#进行配对卡方检验paired.test(df)```上述代码将输出每组数据的配对样本之间的卡方统计量和对应的p值。
统计学中的非参数检验方法
![统计学中的非参数检验方法](https://img.taocdn.com/s3/m/b8838d234531b90d6c85ec3a87c24028915f859a.png)
统计学中的非参数检验方法统计学是一门应用广泛的科学领域,它的应用范围涉及到社会、经济、医学、科学等各个领域。
非参数检验方法是统计学中的一种基于数据分布情况的假设检验方法,它不仅可以应用于各个领域的研究中,也是数据分析领域中不可或缺的一部分。
什么是非参数检验非参数检验是一种基于统计数据分布情况做出判断的方法,在对特定类别的数据进行假设检验的时候,不依赖于数据分布的形状,而且它可以处理许多小样本或者没有熟知的总体参数的数据。
非参数检验方法的应用范围广泛,可以用于数据汇总、逻辑推理、实验设计以及其他数据分析中的问题。
非参数检验的优势传统的统计假设检验方法是基于大样本数据的总体参数进行推断的,其可以直接获得总体参数值,但是对于小样本数据而言,则需要使用比较多的假设、术语和统计量、偏差的值来判断出研究问题的可行性,而非参数检验则可以用较少的假设来完成数据分析,避免了数据误判,降低了数据分析的难度。
非参数检验的应用非参数检验方法在实际生活中的应用,主要表现在以下几个方面:1. 样本分布非正态:如果样本数据分布不满足正态分布,这时是可以应用非参数检验方法的。
2. 样本数据较少:如果样本数据较少,传统假设检验方法会有较高的错误率,可以使用非参数检验方法来避免这种情况。
3. 样本数据有异常值:若样本数据存在严重的异常值,应用传统的假设检验方法可能会导致数据误判,此时可以应用非参数检验方法进行数据分析。
常见的非参数检验方法常见的非参数检验方法有:1. Wilcoxon符号秩检验:适合偏差没达到正态分布的样本。
2. Mann-Whitney U检验:主要用于2组样本数据非独立的情况。
3. Kruskal-Wallis检验:用于3组及以上的样本比较,判断样本总体是否有差别。
4. Friedman秩和检验:主要用于分析多组数据的内部联系。
5. Kolmogorov-Smirnov拟合检验:用于检验给定的样本是否符合特定分布。
常用非参数检验方法
![常用非参数检验方法](https://img.taocdn.com/s3/m/d14d8a034a35eefdc8d376eeaeaad1f346931193.png)
为0.05,n+=15, n-=3, n=n++n-=18, 查二项分 布临界值表,当n=18时,临界值为14。
(4)检验判断。由于正号个数15大于14,落入 拒绝域,所以拒绝原假设,接受备择假设,即 认为新兵总体身高中位数不等于165公分。
2. 配对样本的符号检验
给定显著水平0.1,用符号检验判定新兵总体 的身高中位数是否与165公分有显著差异。
解:(1)设立假设
H0:Me=165公分;H1: Me≠165公分
(2)将样本各个数据减去原假设成立时的假定 中位数165公分,并把正负号记录下来。其中相 减等于0就略去不计。这样我们就有:
+++++--+++-+++++++
假定n1 , n2是两个选自不同总体,样本 容量大小相同的随机样本,将两个样本的 数值一一配对,得到系列配对值。然后将 两个配对组相减并记录下其差数符号,计 算正号的个数总数n+和负号的个数总数n-。 如果两个样本所选自的总体在位置差异方 面不存在显著差别,则n+和n-出现的概率 应该一致各为0.5,反之则认为两个总体存 在本质差别。
解:假设H0:F(x)为均匀分布 H1:F(x)不是均匀分布
则统计量:
2 4 ( fi ei )2 (20 25)2
(35 25)2
10
i1
ei
25
25
查 2分布表得临界值
2 0.05
(3)
7.815
检验统计量10>7.815, 所以拒绝原假设。
说明顾客对四种品牌的空调偏好有差异。
统计学
二、符号检验
1. 单样本位置的符号检验
一个随机样本,有 n 个数据 x1,x2,…,xn,
非参数检验
![非参数检验](https://img.taocdn.com/s3/m/56258cb06429647d27284b73f242336c1eb93039.png)
非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。
相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。
本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。
首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。
秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。
非参数检验的应用领域广泛,包括但不限于以下几个方面。
一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。
常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。
在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。
二、相关性分析非参数检验可用于判断两个变量之间的关联性。
常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。
这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。
三、分组比较非参数检验可用于比较多个样本之间的差异。
常见的方法有Kruskal-Wallis检验、Friedman检验等。
这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。
在实际应用中,非参数检验需要注意以下几个问题。
一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。
然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。
二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。
但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。
三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。
但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。
常用非参数检验简介
![常用非参数检验简介](https://img.taocdn.com/s3/m/b1ec7bfbad51f01dc281f1a8.png)
1. 2. 3. 4. 5. 6.
符号检验; Wilcoxon符号秩检验; Wilcoxon两样本秩和检验; Mann-Whitney检验; Kruskal-Wallis检验; Friedman检验。
ቤተ መጻሕፍቲ ባይዱ 1. 符号检验
(1)适用场合 当“单组设计定量资料”不满足正态性要求时, 可用此方法。 (2)基本原理 各观测值与‘标准值’相减,用K-和K+分别代 表小于和大于标准值的个数,H0为该指标所对 应的中位数为‘标准值’,于是, K-和K+理 论上应相等,根据二项分布原理,可求出K-或 K+的分布规律(见《教程》P185)。
t | RA RB | N ( N 1)(N 1 H ) 1 1 12( N K ) n n B A
Df=N-K,K为因素的水平数,H为秩和检验的统计量, 分子为对比两组的平均秩之差,查t值表得到P值。
2. Wilcoxon符号秩检验
(1)适用场合 当‘单组设计定量资料’和‘配对设计定量 资料的差量’不服从正态分布要求时,可用 此方法。 (2)基本原理 根据各对数据差量之绝对值编秩,分别求出 ‘正秩和R+’与‘负秩和R-’,H0为R+= R-,于 是,根据一种特殊的二项分布原理,可求出 R+’或R-的分布规律。
(1)适用场合 不适合用配伍组设计或两因素无重复实 验设计定量资料的方差分析时,可用此 方法。 (2)基本原理 按各区组(横向)分别编秩,再按因素 的各水平(列向)求秩和,利用秩和构 造卡方统计量,从而实现假设检验。
多样本间两两比较的秩和检验
两个独立样本的非参数检验方法有哪四种
![两个独立样本的非参数检验方法有哪四种](https://img.taocdn.com/s3/m/3a3aff9f19e8b8f67d1cb935.png)
两个独立样本的非参数检验方法有哪四种两独立样本的非参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存在显著差异。
一般用来对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。
一、Mann-Whitney U检验ann-Whitney U检验(Wilcoxon秩和检验)主要通过对平均秩的研究来实现推断。
秩:将数据按照升序进行排序,每一个具体数据都会有一个在整个数据中的名次或排序序号,这个名次就是该数据的秩。
相同观察值(即相同秩,ties),取平均秩。
两独立样本的Mann-Whitney U检验的零假设H0:两个样本来自的独立总体均值没有显著差异。
将两组样本(X1 X2 …… Xm)(Y1 Y2 …… Yn)混合升序排序,每个数据将得到一个对应的秩。
计算两组样本数据的秩和Wx ,Wy 。
N=m+n Wx+Wy= N(N+1)/2如果H0成立,即两组分布位置相同,Wx应接近理论秩和 m(N+1)/2; Wy 应接近理论秩和n(N+1)/2)。
如果相差较大,超出了预定的界值,则可认为H0不成立。
二、两个独立样本的K-S检验K-S检验不仅能够检验单个总体的分布是否与某一理论分布差异显著,还能够检验两个总体的分布是否存在显著差异,其零假设是两组独立样本来自的两个总体的分布无显著差异。
两个独立样本K-S检验的基本思想与前面讨论的单样本K-S检验的基本思路大体一致。
这里是以变量值的秩作为分析对象,而非变量值本身。
其基本思路如下:首先,将这两组样本混合并按升序排序。
②然后分别计算两组样本秩的累计频数和累计频率。
③最后,计算累计频率之差,得到秩的差值序列并得到D统计量(同单样本K-S检验,但无需修正)。
三、游程检验(Wald-Wolfwitz Runs)零假设是H0:为样本来自的两独立总体分布没有显著差异。
样本的游程检验中,计算游程的方法与观察值的秩有关。
首先,将两组样本混合并按照升序排列。
非参数统计检验及其运用毕业论文
![非参数统计检验及其运用毕业论文](https://img.taocdn.com/s3/m/b7323ee2294ac850ad02de80d4d8d15abf230069.png)
非参数统计检验及其运用毕业论文非参数统计检验是统计学中的一种方法,它与参数检验有所不同。
参数检验通常假设数据符合某种特定的分布,如正态分布或泊松分布,然后使用参数估计和假设检验来分析数据。
而非参数检验不依赖于数据符合特定的分布,而是通过描述数据的分布情况来进行统计推断。
这种方法对于数据不符合特定分布,或者分布不确定的情况特别有用。
在毕业论文中,非参数统计检验可以应用于以下方面:1.独立样本检验:独立样本检验用于比较两组独立的样本数据,判断它们是否来自同一分布。
这种方法不需要假设数据符合特定的分布,而是通过计算两组数据的秩(即数据在排序中的位置)来进行比较。
独立样本检验可以用于解决诸如“这两组数据的平均值是否有显著差异”之类的问题。
2.配对样本检验:配对样本检验用于比较同一组数据中的两个相关变量。
这种方法也不需要假设数据符合特定的分布,而是通过计算两个变量之间的Spearman或Kendall等级相关系数来进行相关性检验。
配对样本检验可以用于解决诸如“这两个变量是否有显著相关性”之类的问题。
3.游程检验:游程检验用于检验一个随机过程是否符合平稳性。
这种方法通过计算一系列观察值的差异(即游程),然后根据这些差异的分布来判断过程是否平稳。
游程检验可以用于解决诸如“这个随机过程是否稳定”之类的问题。
4.核密度估计:核密度估计用于估计一个随机变量的概率密度函数。
这种方法通过使用核函数来平滑数据,并根据核函数的形状来估计概率密度函数的形状。
核密度估计可以用于解决诸如“这个随机变量的概率密度函数是什么形状”之类的问题。
在应用非参数统计检验时,需要注意以下几点:1.非参数统计检验通常比参数检验更加灵活和强大,但它们也需要更多的数据来进行推断。
因此,在数据量较小的情况下,参数检验可能是更好的选择。
2.非参数统计检验通常对数据的异常值更加敏感。
因此,在应用非参数统计检验之前,应该对数据进行清理和预处理,以减少异常值对结果的影响。
常用的非参数检验方法
![常用的非参数检验方法](https://img.taocdn.com/s3/m/1f02a87f182e453610661ed9ad51f01dc28157d3.png)
常用的非参数检验方法
嘿,你知道非参数检验不?那可是超厉害的统计工具呢!常用的非参数检验方法有很多,比如秩和检验。
咱就拿它来说吧,步骤嘛,先把数据整理好,然后计算秩次,再进行统计分析。
这听起来是不是挺简单?可别小瞧它哦!注意事项也不少呢,数据得符合一定的条件才行,不然结果可就不靠谱啦。
那非参数检验安全不?稳定不?当然啦!它不像一些参数检验那么挑数据,对异常值也不那么敏感,安全性和稳定性杠杠的。
非参数检验的应用场景那可广啦!当数据不满足正态分布的时候,它就大显身手了。
优势也很明显啊,操作简单,不需要对数据做太多假设。
比如说在医学研究中,有时候数据就是不那么听话,不呈正态分布,这时候非参数检验就能派上大用场。
咱举个实际案例哈,有个研究想看看两种治疗方法的效果。
收集的数据不太符合正态分布,用非参数检验一分析,哇塞,结果一目了然。
这效果,简直绝了!
非参数检验就是这么牛,它能在很多情况下帮我们解决问题,让我们的研究更靠谱。
咱可得好好利用它。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作态度
勇于探索20分
能够务实17分
中规中矩14分
华而不实8分
态度不端正0分
总分
有抄袭剽窃行为则实验成绩记为零分,并且严重警告!!
教师签字:日期:年月日
注:验证性实验仅上交电子文档,设计性试验需要同时上交电子与纸质文档进行备份存档。
(3)对例题3.3的数据进行Wilcoxon-Mann-Whitned检验及结果分析。
Wilcoxon-Mann-Whitned程序代码及运行结果如下:
,没有显著性差异。
(4)对例题3.5的数据进行Mood方差检验及结果分析。
Mood程序代码及运行结果如下:
,没有显著性差异。
(5)对例题3.6的数据进行Moses方差检验及结果分析。
2..(1)案例4.8使用Kruskal-Wallis进行方差分析。
(2)对课后题第一题进行Kruskal-Wallis检验及并对结果分析。
Kruskal-Wallis程序代码及运行结果如下:
结果分析:
chi-squared
7.8229
df
2
p-value
0.02001
由上表我们得到:p-value=0.02<0.05,并且检验统计的值1.9217也比chi-square的查表值低,所以我们接受原假设:三种品牌灯泡的寿命不相等。
(3)例题4.7进行Friedman秩方差分析。
Friedman程序代码及运行结果如下:
Friedman chi-squared
4.6923
df
3
p-value
0.1958
结果分析:由运行结果知,Friedman chi-squared = 4.6923, df = 3, p-value =
0.1958>0.05,故接受原假设,认为四个地区水煮鱼品质不同。
1.(1)对例题3.2的数据进行四分之一分位数Brown-Mood检验及结果分析。
Brown-Mood程序代码及运行结果如下:
P值为0.3923,结论与精确分布检验一致。
(2)对例题3.2的数据进行四分之三分位数Brown-Mood检验及结果分析。
Brown-Mood程序代码及运行结果如下:
P值为0.0192,结论与精确分布检验一致。
Friedman检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法,其原假设是:多个配对样本来自的多个总体分布无显著差异。
两独立样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布等是否存在显著差异的方法。独立样本是指在一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本。
实验二非参数检验方法
姓名:王倩
学号:2014962011
年级:2014级
专业:统计学
课程名称:非参数统计
指导教师:范英兵
完成日期:2017-04-19
1.实验目的:
掌握Brown-Mood检验的原理及函数调用,掌握Brown-Mood检验检验步骤及结果分析,灵活运用不同的分位数对数据进行分析。掌握方差分析(Kruskal-Wallis、Friedman秩方差分析)的检验原理、检验步骤及结果分析。
2.实验内容
1.(1)对例题3.2的数据进行四分之一分位数Brown-Mood检验及结果分析。
(2)对例题3.2的数据进行四分之三分位数Brown-Mood检验及结果分析。
(3)对例题3.3的数据进行Wilcoxon-Mann-Whitned检验及结果分析。
(4)对例题3.5的数据进行Mood方差检验及结果分析。
(4)自行查找数据,进行Friedman秩方差分析。
4.实验结果(或心得体会)ห้องสมุดไป่ตู้
根据非参数检验方法,我能够掌握如何检验非参数模型,了解到了一下非参数的检验方法:Kruskal-Wallis检验实质是两独立样本的曼-惠特尼U检验在多个样本下的推广,也用于检验多个总体的分布是否存在显著差异。其原假设是:多个独立样本来自的多个总体的分布无显著差异。
(5)对例题3.6的数据进行Moses方差检验及结果分析。
2.(1)案例4.8使用Kruskal-Wallis进行方差分析。
(2)对课后题第一题进行Kruskal-Wallis检验及并对结果分析。
(3)例题4.7进行Friedman秩方差分析。
(4)自行查找数据,进行Friedman秩方差分析。
3.实验步骤
5.指导教师点评(总分100分,所列分值仅供参考,以下部分打印时不可以断页)
实验内容
出色完成30分
良好完成25分
基本完成20分
部分完成15分
初步完成5分
实验步骤
精益求精30分
比较完善25分
合乎要求20分
缺少步骤15分
少重要步骤5分
实验结论
(心得体会)
分析透彻20分
分析合理17分
合乎要求14分
结论单薄8分