分式方程[下学期]--北师大版-

合集下载

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。

教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。

2.引入分式的概念,让学生举例说明分式的实际应用。

提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。

2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。

理论课(30分钟)1.分式的定义和性质。

2.分式的约分、通分和加减法。

3.分式与整式的加减法。

实践课(50分钟)1.分式的变形:分解、合并及简化。

2.分式方程的概念及解法。

3.通过实例让学生掌握分式方程的解法。

课堂总结(10分钟)1.小结本节课的重点内容。

2.引导学生对本节课的学习成果进行分享。

作业布置1.抄写本节课的重点内容以及实例。

2.完成课后练习。

教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。

在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。

北师大版初二数学下册5.4.2分式方程(20201017141142)

北师大版初二数学下册5.4.2分式方程(20201017141142)

第五章分式与分式方程422分式方程(二)一、教材说明:本节是分式与分式方程的第4节,这是第二课时,本课时主要研究分式方程的解法,只要求会解可化为一元一次方程的分式方程(方程中的分式不超过两个)•解分式方程的关键是把分式方程转化为整式方程,在引导学生探索分式方程的解法时,要注意体现这种转化的思想.二、学生起点分析学生的知识技能基础:学生基本了解分式方程的概念,如何寻找最简公分母,熟悉等式的性质并能利用等式的性质解一元一次方程中,了解一般一元一次方程的解法,去分母,去括号,移项,合并同类项,化系数为1,并理解每一步的根据是什么,从而能通过观察类比的方法,探索分式方程的解法并能理解解题步骤的根据•学生活动经验基础:本节课主要采用观察、类比的方法、讨论的形式,学生比较熟悉,能在二元一次方程组转化为一元一次方程的基础上,再次体会数学转化思想. •三、教学任务分析在上一节课中,学生通过对实际问题的分析,已经感受到分式方程是刻画现实世界的有效模型,本节课安排《分式方程》第二课时,旨在学会解分式方程,能从中体会数学转化思想的深刻含义。

本节课的具体教学目标为:1. 学生掌握解分式方程的基本方法和步骤;2. 经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径3. 培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度;运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信四、教学过程分析本节课设计了6个教学环节:复习回顾一一探究新知一一小试牛刀一一感悟升华一—巩固练习一一自主小结第一环节复习回顾活动内容:3、分式 —与 —的最简公分母是 _________________ x -2 x —活动目的:回顾最简公分母,解一元一次方程的解法,着重复习去分母的步骤,为学生 过渡到分式方程去分母.注意事项:着重复习去分母的步骤,为学生过渡到分式方程去分母,提醒学生注意解一 元一次方程每一步易犯的错误,同时老师还应强调检验方程的根,培养学生严谨的作风 并为解分式方程的验根打下基础.第二环节探究新知活动内容:例1.解下列分式方程:1 3 x -2 x活动目的:通过观察,使学生发现可以将分式方程通过去分母转化成一元一次方程来求 解。

北师大版八年级数学下册54.《分式方程》优秀教学案例

北师大版八年级数学下册54.《分式方程》优秀教学案例
在教学过程中,教师应以学生为主体,注重启发式教学,引导学生主动探究、积极思考,通过小组合作、讨论交流等方式,让学生在实践中学习、在学习中思考,提高学生的数学思维能力和创新能力。同时,教师还应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
二、教学目标
(一)知识与技能
2.设计具有挑战性、开放性的数学问题,引导学生进行小组讨论,培养学生的探究精神和创新能力。
3.教师应关注小组合作的过程,及时给予指导和评价,激发学生的学习兴趣,提高学生的合作效果。
4.鼓励学生互相帮助、互相学习,培养学生的团队精神,提高学生的人际沟通能力。
(四)总结归纳
1.教师应引导学生进行自我反思,总结分式方程的学习过程和方法,提高学生的自我认知能力。
2.设计具有启发性的问题,引导学生自主发现分式方程的基本性质和解法,提高学生的数学思维能力。
3.教师应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
4.鼓励学生提出问题,培养学生的质疑精神,引导学生学会独立思考和解决问题。
(三)小组合作
1.教师应组织学生进行小组合作学习,让学生在讨论、交流中共同解决问题,提高学生的合作能力。
2.设计具有启发性的问题,引导学生自主发现分式方程的基本性质和解法,提高学生的数学思维能力。
3.教师应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
4.鼓励学生提出问题,培养学生的质疑精神,引导学生学会独立思考和解决问题。
(三)学生小组讨论
1.教师应组织学生进行小组合作学习,让学生在讨论、交流中共同解决问题,提高学生的合作能力。
2.设计具有挑战性的数学问题,让学生在解决问题的过程中自然地引入分式方程,感受分式方程的意义。

北师大版数学八年级下册《分式方程的应用》教案

北师大版数学八年级下册《分式方程的应用》教案

北师大版数学八年级下册《分式方程的应用》教案一. 教材分析北师大版数学八年级下册《分式方程的应用》这一章节主要让学生掌握分式方程的解法及其应用。

在此之前,学生已经学习了分式的基本概念、性质和运算,为本节课的学习打下了基础。

本节课的内容分为两个部分:一是分式方程的解法,二是分式方程在实际问题中的应用。

通过学习,学生能够掌握解分式方程的方法,并能够将分式方程应用于解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对分式的概念和性质有一定的了解。

但是,学生在解分式方程方面可能还存在一定的困难,特别是对于如何正确地去分母、化简方程等方面。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和解答。

三. 教学目标1.理解分式方程的概念,掌握解分式方程的方法。

2.能够将分式方程应用于解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.掌握解分式方程的方法,特别是如何正确地去分母、化简方程。

2.将分式方程应用于实际问题,提高解决问题的能力。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究分式方程的解法。

2.通过小组合作,让学生在讨论中解决问题,提高团队合作能力。

3.利用多媒体辅助教学,直观地展示分式方程的解法过程。

六. 教学准备1.准备相关的教学课件和教案。

2.准备一些实际问题,用于引导学生应用分式方程解决问题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学方法解决这些问题。

从而引出本节课的主题——分式方程的应用。

2.呈现(10分钟)教师通过讲解和示例,向学生介绍分式方程的概念和解法。

讲解过程中,重点强调如何去分母、化简方程。

同时,让学生跟随教师一起动手解题,加深对解题方法的理解。

3.操练(10分钟)学生分组讨论,共同解决一些分式方程问题。

教师在旁边进行指导,解答学生的疑问。

此环节旨在让学生在实际操作中掌握解分式方程的方法。

北师大版八年级数学下册:分式方程课件

北师大版八年级数学下册:分式方程课件

所以,该市今年居民用水的价格为2元/m3.
四、随堂练习
1.勤洗手,戴口罩.小明第一次用120元买了若干包口罩,第二次用240元 在同一商家买同样的口罩,这次商家每包优惠4元,结果比上次多买了20包, 求第一次买了多少包口罩?若设第一次买了x包口罩,列方程正确的是( D.).
A. 240 120 4 x 20 x
3
x
11x 3
15
30 15 5. 11x x
3
30
三、典例分析
解:设该市去年居民用水的价格为x元/m3, 则今年居民
用水的价格为
1
1 3
x 元/m3.
30
根据题意,得:
1
1
x
15 x
5.
3
解得:
x3 2
经检验, x 3 是原方程的根.
2
整理
45 15 5.
2x x
3 1 1 2 元 / m3 23
所有房屋出租的租金第一年为9.6万元, 第二年为10.2万元.
第一年所有房屋出租的租金=9.6万元 第二年所有房屋出租的租金=10.2万元
1.你能找出这一情境中的等量关系吗?
找等量 关系
第二年每间房屋的租金 = 第一年每间房屋的租金+ 500.
第一年出租的房屋间数 = 第二年出租的房屋间数.
发掘隐含条件!
在“火神山”医院的建造过程中,有两个工程队共同参其中一项搬运工程,
甲队单独施工1天完成总工程的三分之一,这时增加了乙队,两队又共同工 作了半天天,总工程全部完成. 乙单独干这项工程需要多长时间?
解:设小亮每小时各加工x个,则小明每小时各加工(x+10)个.
根据题意,得:
150 120 . x 10 x

北师大版八年级数学下册第五章分式与分式方程5.1认识分式第2课时分式的基本性质及约分(教案)

北师大版八年级数学下册第五章分式与分式方程5.1认识分式第2课时分式的基本性质及约分(教案)
(3)分式约分的步骤和方法:学在约分过程中可能会出现步骤混乱、方法不当的问题。教师需要通过具体的例子,明确约分的步骤,强调先分解再约分的重要性。
难点举例:对于分式$\frac{4x^2 + 4x}{2x^2 + 2x}$,学生应先分解为$\frac{4x(x + 1)}{2x(x + 1)}$,然后约去公因式$(x + 1)$和$2$,得到最简分式$\frac{2}{1}$。
2.教学难点
(1)分式基本性质的深度理解:学生需要理解为什么分式的分子、分母同乘(或除以)一个不等于0的整式,分式的值不变。这个性质背后的数学原理需要通过实例和图形进行直观演示,帮助学生深入理解。
难点举例:解释当分式$\frac{2x}{3y}$的分子分母同时乘以不同的整式(如2x和3y)时,分式的值仍然保持不变的原因。
(2)识别并约去复杂的公因式:在分式的约分过程中,学生可能会遇到难以识别的复杂公因式,尤其是当分子分母包含多项式时。教师需要指导学生如何分解多项式,找出公因式。
难点举例:面对分式$\frac{3x^3 - 6x^2}{9x^2 - 6x}$,学生需要学会先将分子和分母分解为$3x^2(x - 2)$和$3x(3x - 2)$,再约去公因式$3x$。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式的基本性质、约分的技巧及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)

北师大版八年级下册数学《5.4 第1课时 分式方程的概念及列分式方程》教案

北师大版八年级下册数学《5.4 第1课时 分式方程的概念及列分式方程》教案

北师大版八年级下册数学《5.4 第1课时分式方程的概念及列分式方程》教案一. 教材分析《5.4 第1课时分式方程的概念及列分式方程》这一课时主要让学生了解分式方程的概念,学会如何列分式方程。

分式方程是初中数学中的重要内容,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

通过学习分式方程,学生能够更好地理解和运用数学知识。

二. 学情分析八年级下的学生已经掌握了分式的基本知识,对分式的性质和运算有一定的了解。

但是,对于分式方程的概念和列方程的方法,学生可能还存在一定的困惑。

因此,在教学过程中,教师需要引导学生理解分式方程的概念,并通过具体的例子让学生掌握列分式方程的方法。

三. 教学目标1.了解分式方程的概念,理解分式方程与整式方程的区别。

2.学会如何列分式方程,并能运用分式方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.分式方程的概念的理解。

2.列分式方程的方法的掌握。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题引导学生思考,通过具体的案例让学生掌握列分式方程的方法,通过小组合作让学生互相交流和学习。

六. 教学准备1.准备相关的案例和问题。

2.准备PPT,用于展示案例和问题。

七. 教学过程1.导入(5分钟)通过一个实际问题引入分式方程的概念,例如:“某商品的原价是100元,打8折后的价格是80元,求商品的折扣率。

”让学生思考如何用数学方程来表示这个问题。

2.呈现(10分钟)呈现PPT,展示分式方程的定义和例子。

解释分式方程与整式方程的区别,并通过具体的例子让学生理解分式方程的概念。

3.操练(10分钟)让学生分组讨论,每组出一个例子,尝试列出一个分式方程。

然后,让学生互相交换例子,尝试解对方列出的分式方程。

4.巩固(10分钟)让学生回答一些关于分式方程的问题,以巩固对分式方程的理解。

例如:“分式方程的解与哪些因素有关?”、“如何判断一个方程是不是分式方程?”等。

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计

北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计一. 教材分析北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)的内容包括分式方程的定义、性质和列分式方程的方法。

本节课内容是在学生已经掌握了分式的概念、性质、运算的基础上进行的,是初中数学的重要内容,也是解决实际问题的重要工具。

分式方程在实际生活中的应用非常广泛,如解决利润问题、浓度问题等。

通过本节课的学习,使学生掌握分式方程的基本概念和列方程的方法,培养学生解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、性质和运算,具备了一定的数学基础。

但是,对于分式方程的概念和列方程的方法,学生可能还比较陌生,需要通过实例来理解和掌握。

此外,学生可能对解决实际问题中的方程有一定的恐惧心理,需要教师通过引导和鼓励来激发学生的学习兴趣和自信心。

三. 教学目标1.知识与技能目标:使学生掌握分式方程的定义、性质,学会列分式方程的方法。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:分式方程的定义、性质和列分式方程的方法。

2.难点:理解分式方程的实际意义,学会解决实际问题。

五. 教学方法1.自主学习:引导学生通过自主学习,掌握分式方程的基本概念和性质。

2.合作交流:学生进行小组讨论,分享彼此的学习心得和解决问题的方法。

3.实例分析:通过具体的实例,使学生理解和掌握分式方程的列法。

4.实践操作:让学生亲自动手解方程,提高学生的操作能力。

六. 教学准备1.课件:制作课件,展示分式方程的定义、性质和列方程的方法。

2.实例:准备一些实际问题,用于引导学生解决实际问题。

3.练习题:准备一些练习题,用于巩固学生对分式方程的理解和掌握。

七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如利润问题、浓度问题等,引导学生思考如何用数学方法解决这些问题。

北师大版八年级下册数学《分式方程》分式与分式方程教学说课复习课件

北师大版八年级下册数学《分式方程》分式与分式方程教学说课复习课件
②高铁列车的平均行驶速度=特快列车的平均速度×2.8倍;
探究新知
(2)如果设特快列车的平均行驶速度为xkm/h,那么x满足怎
样的方程?
1400 1400

9
x
2.8 x
(3)如果设小明乘高铁列车从甲地到乙地需y h.那么y满足怎
样的方程?
1400
1400
2.8
y
y9
探究新知
问题2 为了帮助遭受自然灾害的地区重建家园,某校团总支号
1. 理解分式方程的概念和意义,掌握解分式
方程的基本思路和解法.
探究新知
知识点
分式方程的概念及列分式方程
问题1 甲、乙两地相距1400km,乘高铁列车从甲地到乙地比
乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车
的2.8倍.
(1)你能找出这一问题中的所有等量关系吗?
等量关系:①乘高铁列车所用时间=乘特快列车所用时间-9,
(2)怎样去分母?
(3)在方程两边乘什么样的式子才能把每一个分母都约去?
(4)这样做的依据是什么?
解分式方程最关键的问题是什么? “去分母”
90
60
=
30 + 30 −
方程各分母的最简公分母是:(30+x)(30-x)
解:方程①两边同乘(30+x)(30-x),得
x=6是原分式
90(30-x)=60(30+x),
成计划任务.原计划每月固沙造林多少公顷?
1.这一问题中有哪些已知量和未知量?
已知量:造林总面积2400公顷;实际每月造林面积比原计
划多30公顷;提前4个月完成原任务.
未知量:原计划每月固沙造林多少公顷.

北师大版八年级下册数学《分式方程》分式与分式方程研讨说课复习课件巩固

北师大版八年级下册数学《分式方程》分式与分式方程研讨说课复习课件巩固

90 60 30+x 30 x
方程各分母最简公分母是:(30+x)(30-x). 解:方程①两边同乘(30+x)(30-x),得
90(30-x)=60(30+x),
解得 x=6.
x=6是原分式方程的解吗?
检验:将x=6代入原分式方程中,左边=
5 2
=右边,
因此x=6是原分式方程的解.
探究新知
结论 解分式方程的基本思路 将分式方程化为整式方程,具体做法是“去分母” 即
北师大版 八年级 数学 下册
5.4 分式方程 第2课时课件Fra bibliotek导入新知
1.还记得什么是方程的解吗? 使方程左右两边相等的未知数的值,叫做方程的解.
2.还记得求解一元一次方程的基本步骤吗? 去分母、去括号、移项、合并同类项、系数化为1
3.二元一次方程组呢? 加减消元法、代入消元法
转化
二元一次方程组
一元一次方程
连接中考
(2020·海南)分式方程
x
3
2
1
的解是
(
C
)
A. x=-1 C. x=5
B. x=1 D. x=2
课堂检测
基础巩固题
1.关于x的方程
2ax 3 ax
3 4
的解为x=1,则a=(
D
)
A. 1
B. 3
C. -1
D. -3
2.关于x的分式方程
7x x 1
+5=
2m 1 x 1
有增根,则m的值为
x+5=10
结论:分式两边同乘了等于0的式子,所得整式方程的解使 分母为0,这个整式方程的解就不是原分式方程的解.

北师大版八年级数学下册同步精品5.4.1 分式方程(第1课时)(课件)

北师大版八年级数学下册同步精品5.4.1 分式方程(第1课时)(课件)
(1)是等式;
(2)方程中含有分母;
(3)分母中含有未知数.
探究新知
思考:分式方程与整式方程有什么区别?
我们学过的一元一次方程、二元一次方程等都是整式
方程,分母中不含未知数。
分母中含有未知数的方程叫做分式方程
区别分式方程和整式方程:看分母是否含有未知数
探究新知
练一练: 判断下列方程是分式方程还是整式方程?
3
x 1
2 x
1
; (2)
1
2x
x x
; (4) 1
2 3
(是)
(否)
随堂练习
2.下面说法中,正确的是( C )
A.分母中含有未知数的式子就是分式方程
B.含有字母的方程叫做分式方程
C.分式方程中,分母中一定含有未知数
D.分式方程就是含有分母的方程
随堂练习
3.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距
棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相
等,若设甲班每天植树x棵,则根据题意列出的方程是( D )
A.
80
−5
C.
80
+5
=
70

=
70

B.
80

D.
80

=
70
+5
=
70
−5
随堂练习
1.下列方程哪些是分式方程:
1
(1) ( x 3) x
(否)
2
x
1
(是)
(3)
x 2 x1
2
(1 )
5
x
探究新知
为了帮助遭受自然灾害的地区重建家园,某校团总支

北师大版八年级数学下册优秀教学案例5.4分式方程

北师大版八年级数学下册优秀教学案例5.4分式方程
2.学生在解决实际问题中运用分式方程的能力,以及团队合作、沟通表达等方面的发展。
3.学生对数学学科的兴趣、自信心及科学态度的培养。
六、教学反思
在教学过程中,要关注学生的个体差异,针对不同学生制定合适的教学策略,使每位学生都能在课堂上得到充分发展。同时,注重培养学生的数学思维,提高学生运用数学知识解决实际问题的能力。在教学评价方面,要关注学生的全面发展,既要关注学生的知识与技能,也要关注过程与方法、情感态度与价值观的培养。不断反思教学,调整教学策略,提高教学质量。
(三)小组合作
1.小组讨论:将学生分成若干小组,针对问题进行讨论,培养学生的团队协作能力和沟通能力。
2.分工合作:在解决分式方程的过程中,让学生分工合作,每个人都有明确的任务,提高工作效率。
3.分享与交流:小组成员将各自的研究成果进行分享,互相学习,共同提高。
(四)反思与评价
1.自我反思:让学生在课后对所学内容进行反思,总结自己的学习心得,发现自身不足,为下一步学习做好准备。
3.实际应用:让学生运用分式方程解决实际问题,培养学生的应用能力。
五、教学拓展
1.开展数学活动:组织数学竞赛、讲座等活动,激发学生学习兴趣,提高学生的数学素养。
2.家庭作业设计:结合学生实际情况,设计富有挑战性的家庭作业,让学生在课后进行思考和探索。
3.学科交叉:与其他学科相结合,如科学、信息技术等,让学生感受到数学的广泛应用。
2.同伴评价:学生之间相互评价,给出建设性意见,促进共同进步。
Hale Waihona Puke 3.教师评价:教师要对学生的学习情况进行评价,关注学生的知识掌握程度、思维发展水平、情感态度等方面,为下一步教学提供参考。
四、教学实践
1.课堂讲解:结合具体案例,讲解分式方程的解法,引导学生主动思考。

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)

北师大版八年级下册数学《分式方程》分式与分式方程PPT(第3课时)
分析:此题的主要等量关系是:
小丽家今年7月的用水量-小丽家去年12月的用水量 =5m3.
解:设该市去年居民用水的价格为x元/m3,则
今年的水价为
1
1 3
x
元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得
x 3. 2
经检验, x 3 是原方程的根.
2
3 2
1
1 3
2(元/m3
).
答:该市今年居民用水的价格为2元/m3.
解得x=10. 经检验,x=10是原方程的解,
答:原计划平均每月的绿化面积为10 km2.
随堂练习
6.一轮船往返于A、B两地之间,顺水比逆水快1小时到达.已知 A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水 中的速度. 解:设船在静水中的速度为x千米/小时,根据题意得
80 80 1. x2 x2
方程两边同乘(x-2)(x+2)得 80x+160 -80x+160=x2 -4. 解得 x=±18.
x=-18(不合题意,舍去),
经检验,x=18是原方程的根. 答:船在静水中的速度为18千米/小时.
课堂小结
分式方程的 应用
常见类型
行程问题、工程问题、数字问题、 顺逆问题、利润问题等
一般解题步骤
课程讲授
1 分式方程的应用
解:设该市去年居民用水的价格为x元/m3,则今年的
水价为
1
1 3
x元/m3,根据题意,得
30 15 5.
1
1 3
x
x
解得 x 3 .
2
经检验,x 3 是原方程的根.
2
3 2

北师大版八年级数学下册第五章 分式与分式方程1 第2课时 分式的基本性质

北师大版八年级数学下册第五章 分式与分式方程1 第2课时 分式的基本性质
运用分式的基本性质应注意什么?
(1) “ 都 ”: 分子和分母是同时乘或除以某个整式, 而不是只有分子或分母单独进行.
(2) “ 同一个 ”: 分子和分母都乘或除以同一个整式, 该整式是同一个.
(3) “ 不为 0 ”:时刻注意分母不等于零.
2 分式的约分
想一想:中分数约分关键的是什么?
24 = 2
ac
2
x yy xy2 ;
解: (1) 2bc 2b .
ac a
3
x2
x2 xy 2xy
y2
;
4
m2 m2
m. 1
(2)(x y)y xy2
x y. xy
(3) x2 xy x2 2xy y2
x(x y) (x y)2
x. xy
(4) m2 m m2 1
m(m 1) (1 m)(1 m)
m. m1
新知一览
认识分式 分式的乘除法
分 式 分式的加减法
分式方程
分式的有关概念 分式的基本性质 同分母分式的加减 异分母分式的加减 分式的混合运算 分式方程的概念及列分式方程 分式方程的解法 分式方程的应用
第五章 分 式
5.1 认识分式
第2课时 分式的基本性质
思考1:下列分数哪两个之间是相等的?并说出理由.
上述性质可以用等式表示为:
b a
b m ,b a ma
b a
m m (m ≠ 0).
其中 a,b,m 是整式.
单项式或多项式
典例精析
例1 下列等式的右边是怎样从左边得到的?
(1) b by (y 0) ; 2x 2xy
(2) bx b . ax a
解:(1) 因为 y ≠ 0 ,所以 b b y 在例by1 ((2y)中,0)为; 2x 2x y 什么2xyx≠0 ?

北师大版八年级数学下册第五章分式与分式方程课件

北师大版八年级数学下册第五章分式与分式方程课件

X=-3
(4) X2 -1 X2 +2x+1 X=1
6.当x为何值时,分式 2x (x-2) 5x (x+2)
(1) 有意义
(2) 值为 0
X≠0且x≠-2
X=2
7.要使分式 -2 的值为正数,则x的取值范围是 X>1 1-x
8.当x <-2 时,分式 X2+1 的值是负数. X+2
9.当x ≥7
依题意得:
180
240
=
x
x5
请完成下面的过程
甲:15 乙:20
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达:
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (பைடு நூலகம்) 2c2 4cd
4
2
2
x
1
解:原方程可化为 1 4x 2 1
NNoox 2 (x 2)(x 2) x 2
两边都乘以 (x 2)(x 2) ,并整理得;
IImmaaggee x2 3x2 0 解得 x1 1, x2 2
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
例2
已知
x3 (x 2)2
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外汇返佣网 外汇交易返佣 https :/// 外汇返佣 网 外汇交易返佣
例1:下列关于X的方程中,分式方程是( B)
A、x 1 x 1 4 23
B、2x 3 x 1
5 x
6
C、 x2 x x 3 5x D、a来自x b1(ab
0)
你还记得吗?
一元一次方程的解法? 去分母、去括号、移项、合并同类项、 将未知数系数化为1
2 x 22 0
∴ x 2 是原方程的增根,舍去
∴原方程无解。
练一练: 解下列方程
(1)、100 30 x x7
5 (2)、 x
x 4
1 4
x
1
(3)、 3 2 x
x2
x2
(4)、
x x
1 1
4 x2 1
1
(5)、 3 2 x2 x3
(6)、
2 x 1
3 x 1
6 x2 1
(7)、 x 1 x2 x 3 4 x 1
(课本P80)
解: 方程两边都乘
得:x x(x 2)
解得:x 3
检验:把 x 3代入最简公分母得
x(x 2) 3 (3 2) 3 0
∴ x 3 是原方程的根。
例2:解方程:480 600 45 (课本P81) x 2x
解:方程两边都乘
得:960 600 90x 解得:x 4
金边腰带闪出紫宝石色的朦胧异香……紧接着雨后阳光一样的声音立刻弹出浓褐仙境色的凶光鹿欢鬼跳味……淡淡的的神态喷出蟹闹萍叫声和吱吱声… …功底深厚的强劲腹部朦朦胧胧窜出木果鸡隐般的晃动。最后摆起修长灵巧,富于变化的手指一扭,萧洒地从里面窜出一道幻影,他抓住幻影粗犷地一 颤,一套青虚虚、灰叽叽的兵器∈追云赶天鞭←便显露出来,只见这个这件东西儿,一边摇晃,一边发出“啾啾”的美响!。忽然间蘑菇王子旋风般地 颤起阳光天使般的脑袋,只见他结实柔韧的强壮胸膛中,突然弹出九串转舞着∈追云赶天鞭←的海龙状的火花,随着蘑菇王子的颤动,海龙状的火花像 牛肝一样在双肩上经典地开发出阵阵光塔……紧接着蘑菇王子又使了一套盘坐抽动揍婚纱的怪异把戏,,只见他精美剔透,隐藏着百种小神器的勇神护 腕中,萧洒地涌出九片耍舞着∈追云赶天鞭←的城堡煤筋马状的鱼尾,随着蘑菇王子的晃动,城堡煤筋马状的鱼尾像窗纱一样,朝着娜哥瓜乌保镖胖胖 的白杏仁色璇网样的眼睛横窜过去。紧跟着蘑菇王子也猛耍着兵器像柳丝般的怪影一样向娜哥瓜乌保镖横窜过去随着两条怪异光影的瞬间碰撞,半空顿 时出现一道暗灰色的闪光,地面变成了纯蓝色、景物变成了烟橙色、天空变成了火橙色、四周发出了疾速的巨响。蘑菇王子深邃快乐、充满智慧的黑亮 眼睛受到震颤,但精神感觉很爽!再看娜哥瓜乌保镖活似粉笔形态的脚,此时正惨碎成黑熊样的鲜红色飞光,全速射向远方,娜哥瓜乌保镖暴啸着加速 地跳出界外,疾速将活似粉笔形态的脚复原,但已无力再战,只好落荒而逃。最后一个校霸终于逃的不见踪影,战场上留下了满地的奇物法器和钱财珠 宝……蘑菇王子正要收拾遍地的宝贝,忽然听四声怪响!四个怪物忽然从四个不同的方向钻了出来……只见妩勃奥学员和另外四个校霸怪突然齐声怪叫 着组成了一个巨大的水牛雁肾怪!这个巨大的水牛雁肾怪,身长四百多米,体重一百多万吨。最奇的是这个怪物长着十分豪华的雁肾!这巨怪有着淡黑 色洋葱模样的身躯和深黑色细小廊柱般的皮毛,头上是锅底色磨盘一样的鬃毛,长着米黄色粉条模样的饭盒雨叶额头,前半身是土灰色柴刀模样的怪鳞 ,后半身是有根羽毛的羽毛。这巨怪长着亮红色粉条似的脑袋和火橙色镜子模样的脖子,有着淡橙色奶酪形态的脸和深橙色拐棍似的眉毛,配着淡黄色 铜锣一样的鼻子。有着金红色床垫形态的眼睛,和淡绿色铃铛模样的耳朵,一张金红色海胆模样的嘴唇,怪叫时露出纯黄色小鬼似的牙齿,变态的土灰 色冰块般的舌头很是恐怖,深黑色辣椒般的下巴非常离奇。这巨怪有着如同瓜秧似的肩
检验:把 x 4代入最简公分母得
2x 24 8 0
∴ x 4 是原方程的根。
例3:解方程
1 x x2
1 2x
2
(课本P81议一议)
解: 原方程可化为:
x 1 2x
1 2
x
2
x 1 2x
1 2
x
2
方程两边都乘
得: x 1 1 2(2 x)
解得:x 2
检验:把 x 2 代入最简公分母得:
x 5 2x 1 1
2
3
解: x 5 2
2x 1 3
1
3(x 5) 2(2x 1) 6
3x 15 4x 2 6
3x 4x 6
x 19
x 19
二、分式方程的解法:
1、去分母:将分式方程两边都乘以最简公分母 化分式方程为整式方程
2、解整式方程 3、验根
例1、解方程: 1 3 x2 x
------课本P78
你还记得吗?
什么是一元一次方程?
x58
3x 3 2x
1 x 3 2x 5
2
3
想 想 看----(课本P78)
(
9000 15000 x 3000 x
分 式 方

600 45 480
2x
x
)
一、分式方程的定义:(课本P79) 分母中含有未知数的方程叫做分式方程。
相关文档
最新文档