段式电流保护的整定及计算

合集下载

段式电流保护的整定与接线

段式电流保护的整定与接线
在最大运行方式下发生三相短 路时,保护范围最大
灵敏度:lmin / l≥15%—20%
最大短路 电流曲线
0 lmin
lmax l
最小短路
电流曲线
l
4、单相原理接线图
QF
QF1
LT

+
+
KA I
KM

信号
+
KS
TA
动作分析:正常运行状态下
QF
QF1
LT

+
+
KA I
KM

信号
+
KS
TA
发生短路
动作分析:保护动作过程
13+0.4×80
Iact.1= 1.2 ×1.475=1.77(KA)
•灵敏度校验:(略)
二、即时电流速断保护
电流保护的第Ⅱ段
• 1、 要求
• ① 任何情况下能保护线路全长,并具有 足够的灵敏性
• ② 在满足要求①的前提下,力求动作时 限最小。
因动作带有延时,故称限时电流速断保护。
1
L1
2
L2
1
L1
2
L2
3
L3
A
B
C
D
IK
在最大运行方式下(XS.min),发生d(3),短路 电流最大.
最大短路 电流曲线
0
最小短路
电流曲线
l
在最小运行方式下(XS.max),发生d(2),短路 电流最小.
2、整定值计算 整定原则:为了保护的选择性,动作电流按躲过 本线路末端短路时的最大短路短路整定
第I段电流动作值=可靠系数
QF
QF1

2三段式电流保护的整定及计算

2三段式电流保护的整定及计算

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取1.2~1.3。

I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。

要求最小保护范围不得低于15%~20%线路全长,才允许使用。

2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。

灵敏度分别按近后备和远后备进行计算。

式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。

即:最小运行方式下,两相相间短路电流。

要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。

阶段式电流保护速断段的整定计算.pptx

阶段式电流保护速断段的整定计算.pptx
目录
1 电流速断保护整定原则 2 电流速断保护保护范围计算 3 电流速断保护评价
电流速断保护整定原则
反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护。 一、线路
整定原则:按躲过线路末端最大三相短路电流整定
I opⅠ
KK
I (3) D max
式中: KK ——可靠系数,取 KK 1.3
一、线路
灵敏度校验:应校核被保护线路出口短路有灵敏度,在常见运行方式下
,三相短路的灵敏系数不小于1即可投运。
式中:
Klm
I (3) D max
I opⅠ
1
I
(3) D max
——本线路出口故障最大三相短路电流的数值
时间:t=0秒
电流速断保护保护范围计算
二、变压器
整定原则1:按躲过变压器低压母线最大三相短路计算。
假设动作电流对应最小运行方式下两相相间短路:
式中:
3
E
IopⅠ 2 Z s max Z1lmin
Z1 ——线路正序阻抗 lmin ——速断保护保护范围 Zsmax ——线路背侧系统最大正序阻抗
电流速断保护保护范围计算
lmin
E
I opⅠ
2 3
Z s max
Z1
保护范围随运行方式、故障类型的变化而变化,最小保护范围在系统最小运行 方式下两相短路时出现。一般情况下,应按这种运行方式和故障类型来校核保护的 最小保护范围。
二、变压器 灵敏度校验:应校核被保护变压器高压侧出口短路有灵敏度,在最小运 行方式下,两相短路的灵敏系数不小于1.5,满足要求。
Klm
I (2) D min
I opⅠ
1.5
式中:
I

三段式电流保护整定计算实例

三段式电流保护整定计算实例

三段式电流保护整定计算实例假设有一台变压器,其额定容量为10MVA,额定电压为10kV/400V,接线形式为YNyn0,额定电流为1000A。

现在需要对该变压器进行三段式电流保护的整定计算。

第一步是计算额定电压下的一次电流。

根据变压器的额定容量和额定电压,可以得到一次电流的公式为:I1=S/(3×U1)其中,I1为一次电流,S为变压器的额定容量,U1为变压器的高压侧额定电压。

将数据代入计算,得到一次电流I1的数值:I1=10M/(3×10k)=333.33A第二步是计算三段式电流保护的整定值。

一般情况下,三段式电流保护根据阻抗保护和方向保护进行整定。

阻抗保护整定时,通常设置不同的电流整定值和时间延迟,将整定值和时间延迟作为参数进行计算。

根据实际情况,假设保护整定参数如下:-第一段电流整定值:300A,时间延迟:0.1s-第二段电流整定值:600A,时间延迟:0.2s-第三段电流整定值:900A,时间延迟:0.3s根据整定参数,将整定值乘以一次电流,即可得到实际整定值。

计算结果如下:-第一段整定值:0.1×333.33=33.33A-第二段整定值:0.2×333.33=66.67A-第三段整定值:0.3×333.33=100A第三步是计算方向保护的整定值。

方向保护用于判断故障方向,需要根据实际情况进行整定。

一般情况下,方向保护整定值设置为一次电流的一定百分比。

假设方向保护整定值为20%。

根据方向保护的整定值,将整定值乘以一次电流,即可得到实际整定值。

-方向保护整定值:0.2×333.33=66.67A综上所述,该变压器的三段式电流保护整定值为:-第一段整定值:33.33A,时间延迟:0.1s-第二段整定值:66.67A,时间延迟:0.2s-第三段整定值:100A,时间延迟:0.3s-方向保护整定值:66.67A需要注意的是,这只是一个示例,实际的整定计算可能涉及更多的参数和考虑因素。

三段式电流保护的整定及计算

三段式电流保护的整定及计算

三段式电流保护的整定及计算————————————————————————————————作者:————————————————————————————————日期:2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取1.2~1.3。

I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。

要求最小保护范围不得低于15%~20%线路全长,才允许使用。

2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。

灵敏度分别按近后备和远后备进行计算。

式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。

即:最小运行方式下,两相相间短路电流。

要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

三段式电流保护的整定及计算

三段式电流保护的整定及计算

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取1.2~1.3。

I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。

要求最小保护范围不得低于15%~20%线路全长,才允许使用。

2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。

灵敏度分别按近后备和远后备进行计算。

式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。

即:最小运行方式下,两相相间短路电流。

要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。

三段式过流保护的原理及其整定值

三段式过流保护的原理及其整定值

无时限电流速断保护(电流I段)反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。

1.几个基本概念(1)系统最大运行方式与系统最小运行方式最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。

最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。

(2)最小短路电流与最大短路电流在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。

在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。

(3)保护装置的起动值对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。

(4)保护装置的整定所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。

2、整定计算(1)动作电流为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。

即Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3,结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。

(2) 保护范围(灵敏度KLm)计算(校验)《规程》规定,在最小运行方式下,速断保护范围的相对值 Lb%>(15%~20%)时,为合乎要求,即(3)动作时限无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。

一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。

t=0s3、对电流速断保护的评价优点:是简单可靠,动作迅速。

缺点:(1)不能保护线路全长;(2)运行方式变化较大时,可能无保护范围。

注意: (1) 在最大运行方式下整定后,在最小运行方式下无保护范围。

二、限时电流速断保护(电流II段)的电流速断保护限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。

三段式电流保护的整定与接线.

三段式电流保护的整定与接线.
I
Iact.1——I段保护的动作值
Krel——可靠系数 IK.B.max——线路末端的最大短路电流(用Xs.min)
•动作时间t =0s
注:保护装置的动作电流:能使该保护装置起动的最小电流 值,用电力系统一次测参数表示。
3.保护范围:
有选择性的电流速断保护不可能保护线路的 全长 • 灵敏性:用保护范围的大小来衡量 最小保护范围 一般用lmin来校验 要求: lmin
1
A L1 80km B
2
L2 80km C
3
L3 80km D
解:(1)第I段 1.2
• 动作电流:I act.1 • 动作时限: t=0
ES XS.min+X1l
课后作业:求L2线路L3的第 I段动作值和动作时限
K rel I K .B. max
IK.B.max=
(3)
=
ES 115/ 3KV
KM
+
KS

TA
动作分析:结果与返回
QF LT

QF1
I段电流保护动作
+
KA
+ I
KM
+
KS

TA
第I段保护的接线
动作过程
线路上发生短路 电流互感器一次侧电流增大
当电流大于或等于I段动作 值
电流互感器二次侧电流增大
KA起动, KA触点闭合
KM线圈加电,KM触点闭合 发信号 QF跳闸
KS触点闭合 KS线圈加电
例子:下图所示的单侧电源辐射网络,线路L1、L2上 均装设三段式电流保护。已知 ES 115/ 3KV ,最 大运行方式下系统的等值阻抗Xs.min =13Ω,最小 运 行方式下系统的等值阻抗Xs.max= 14Ω,线路单位长度 正序电抗X1=0.4 Ω/km, L1正常运行时最大负荷电流 为120A,线路L2的过电流保护的动作时限为2.0s.计算 线路L1三段式电流保护的动作电流、动作时限并校验 保护的灵敏系数。

三段式过流保护的原理及其整定值

三段式过流保护的原理及其整定值

无时限电流速断保护(电流I段)反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。

1.几个基本概念(1)系统最大运行方式与系统最小运行方式最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。

最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。

(2)最小短路电流与最大短路电流在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。

在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。

(3)保护装置的起动值对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。

(4)保护装置的整定所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。

2、整定计算(1)动作电流为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。

即Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3,结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。

(2) 保护范围(灵敏度KLm)计算(校验)《规程》规定,在最小运行方式下,速断保护范围的相对值 Lb%>(15%~20%)时,为合乎要求,即(3)动作时限无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。

一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。

t=0s3、对电流速断保护的评价优点:是简单可靠,动作迅速。

缺点:(1)不能保护线路全长;(2)运行方式变化较大时,可能无保护范围。

注意: (1) 在最大运行方式下整定后,在最小运行方式下无保护范围。

二、限时电流速断保护(电流II段)的电流速断保护限时电流速断保护:按与相邻线路电流速断保护相配合且以较短时限获得选择性的电流保护。

继电保护教学 三段式电流保护整定计算

继电保护教学 三段式电流保护整定计算

继电保护教学三段式电流保护整定计算在电力系统的运行中,继电保护装置起着至关重要的作用,它能够迅速、准确地检测并切除故障,保障电力系统的安全稳定运行。

三段式电流保护作为一种常见的继电保护方式,其整定计算是继电保护教学中的一个重要环节。

一、三段式电流保护的基本原理三段式电流保护通常包括无时限电流速断保护(Ⅰ段)、限时电流速断保护(Ⅱ段)和定时限过电流保护(Ⅲ段)。

无时限电流速断保护的动作电流是按照躲开本线路末端的最大短路电流来整定的。

其优点是动作迅速,能够在最短的时间内切除故障,但它不能保护线路的全长。

限时电流速断保护则是为了弥补无时限电流速断保护不能保护线路全长的不足而设置的。

它的动作电流是按照躲开相邻线路无时限电流速断保护的动作电流来整定的,动作时限比相邻线路的无时限电流速断保护大一个时限级差。

定时限过电流保护的动作电流是按照躲开本线路的最大负荷电流来整定的,其动作时限按照阶梯原则整定,即从电网终端向电源侧逐级增大。

它不仅能够保护本线路的全长,还能够作为相邻线路的后备保护。

二、三段式电流保护的整定计算原则(一)无时限电流速断保护(Ⅰ段)1、动作电流的整定动作电流应躲过被保护线路末端可能出现的最大短路电流,即:\I_{op1} = K_{rel}I_{kmax}\其中,\(I_{op1}\)为无时限电流速断保护的动作电流;\(K_{rel}\)为可靠系数,一般取 12 13;\(I_{kmax}\)为被保护线路末端可能出现的最大短路电流。

2、动作时限无时限电流速断保护的动作时限为 0 秒,即瞬时动作。

(二)限时电流速断保护(Ⅱ段)1、动作电流的整定动作电流应躲过相邻线路无时限电流速断保护的动作电流,即:\I_{op2} = K_{rel}I_{op1}'\其中,\(I_{op2}\)为限时电流速断保护的动作电流;\(K_{rel}\)为可靠系数,一般取 11 12;\(I_{op1}'\)为相邻线路无时限电流速断保护的动作电流。

5阶段式电流保护整定计算及应用及评价

5阶段式电流保护整定计算及应用及评价

1)近后备 采用最小运行方式下本线路末端两相短路时的短路电流来校验。 即:
– 2)远后备: – 采用最小运行方式下相邻线路末端两相短路时的短路电流进行 校验。
即:
阶段式电流保护的整定计算

例题
– 如图所示网络和已知条件。试对保护 1 进行三段式电流保护计算。
设 Z1=0.4Ω/km,K’k=1.25, K”k=1.1, Kk=1.2, Kzq=1.5,Kh=0.85,t3.max=0.5s
阶段式电流保护的整定计算

二、限时电流速断保护的整定计算
– 1、动作电流

整定原则:保护装置的起动电流按躲过下一条线路电流速断 保护范围末端发生短路时最大短路电流(或躲过下一条线路 电流Ⅰ段的整定值)来整定。
即:

– 2、动作时限的选择 限时速断的动作时限应选择的比下一线路电流速断保护的动作 时限高出一个时间阶段。
阶段式电流保护的整定计算

1. 保护 1 电流Ⅰ段整定计算
– (1)求动作电流。按躲过最大运行方式下本线路末端(即B母
线处)三相短路时流过保护的最大电流整定,即:
' I dz.1 ' K K I d .max ' KK
Z S .min Z l AB
l
E
S
1.25
10.5 / 3 1.8(kA) 0.2 0.4 10
I d .B.min 3 E K lm " 2 Z s.max Z 1l AB I dz1
S
I dz1
"
3 10.5 / 3 2 0.3 0.4 10
0.82 1.49 1.3

段式电流保护的整定及计算

段式电流保护的整定及计算

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取~。

I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:式中:X1——线路的单位阻抗,一般Ω/KM;Xsmax——系统最大短路阻抗。

要求最小保护范围不得低于15%~20%线路全长,才允许使用。

2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:式中:KⅡrel——限时速断保护可靠系数,一般取~;△t——时限级差,一般取;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:KⅢrel——可靠系数,一般取~;Krel——电流继电器返回系数,一般取~;Kss——电动机自起动系数,一般取~;动作时间按阶梯原则递推。

灵敏度分别按近后备和远后备进行计算。

式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。

即:最小运行方式下,两相相间短路电流。

要求:作近后备使用时,Ksen≥~作远后备使用时,Ksen≥注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。

段式过流保护的原理及其整定值

段式过流保护的原理及其整定值

段式过流保护的原理及其整定值(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除无时限电流速断保护(电流I段)反应电流增大而能瞬时动作切除故障的电流保护,称为电流速断保护也称为无时限电流速断保护。

1.几个基本概念(1)系统最大运行方式与系统最小运行方式最大运行方式:就是在被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。

最小运行方式:就是在同样短路条件下,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。

(2)最小短路电流与最大短路电流在最大运行方式下三相短路时,通过保护装置的短路电流为最大,称之为最大短路电流。

在最小运行方式下两相短路时,通过保护装置的短路电流为最小,称之为最小短路电流。

(3)保护装置的起动值对应电流升高而动作的电流保护来讲,使保护装置起动的最小电流值称为保护装置的起动电流。

(4)保护装置的整定所谓整定就是根据对继电保护的基本要求,确定保护装置起动值,灵敏系数,动作时限等过程。

2、整定计算(1)动作电流为保证选择性,保护装置的起动电流应按躲开下一条线路出口处短路时,通过保护的最大短路电流来整定。

即Idz>Id.max=KK Id.Bmax 式中可靠系数KK =1.2~1.3,结论:电流速断保护只能保护本条线路的一部分,而不能保护全线路,其最大和最小保护范围Lmax和Lmin。

(2) 保护范围(灵敏度KLm)计算(校验)《规程》规定,在最小运行方式下,速断保护范围的相对值Lb%>(15%~20%)时,为合乎要求,即(3)动作时限无时限电流速断保护没有人为延时,在速断保护装置中加装一个保护出口中间继电器。

一方面扩大接点的容量和数量,另一方面躲过管型避雷器的放电时间,防止误动作。

t=0s3、对电流速断保护的评价优点:是简单可靠,动作迅速。

缺点:(1)不能保护线路全长;(2)运行方式变化较大时,可能无保护范围。

2三段式电流保护的整定及计算

2三段式电流保护的整定及计算

2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取1.2~1.3。

页脚内容1I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。

要求最小保护范围不得低于15%~20%线路全长,才允许使用。

2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作页脚内容2电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:KⅢrel——可靠系数,一般取1.15~1.25;页脚内容3Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。

灵敏度分别按近后备和远后备进行计算。

式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。

即:最小运行方式下,两相相间短路电流。

要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

阶段式电流保护配合原理、构成和整定计算-继电保护考点复习讲义和题库

阶段式电流保护配合原理、构成和整定计算-继电保护考点复习讲义和题库

考点 2:阶段式电流保护配合原理、构成和整定计算2.1、阶段式电流保护配合原理、构成 保护功能由各段电流保护相互配合完成,通常为三段式电流。

三段分别为: ①第 I 段:瞬时电流速断保护; ②第 II 段:限时电流速断保护; ③第 III 段:定时限过电流保护。

在实施时,也可以根据需要配置为两段式电流保护,两段式电流保护即只配置第 II 段和第 III 段。

①瞬时电流速断保护即第I段保护: 1、为实现快速性,同时又要保证选择性,所以抬高整定值, 牺牲了保护范围。

2、第I段的整定值, 是按大于被保护线路末端最大的短路电流的原则来整定。

3、保护范围受系统运行方式、 故障类型影响大。

第I段保护范围通常比较小,为线路全长的 15~50%。

4、由于灵敏度不够, 所以第I段保护通常不能单独使用,要有带时限的电流速断保护配合。

②限时电流速断保护即第 II 段,目的是为了弥补第I段保护的缺陷。

1、只有降低整定值,保护范围才能延长,保护范围不可避免地延伸到了相邻下一线路,需要与 相邻下一线路的保护相配合,整定值大于相邻下一线路第 I 段的定值。

2、为保证选择性,通常要延时,为了缩短延时时间,要求保护范围不能延伸太长,不能超出下 一线路第 I 段的保护范围。

3、时限级差一般为 0.5 秒。

③定时限过电流保护即第 III 段。

1、保护范围较大,通常作为本线路的近后备保护以及作为相邻下一线路的远后备保护 。

2、整定值是按大于最大的负荷电流来确,即在最大负荷电流作用下不能起动,且在装置动作以 后故障切除后在最大负荷电流作用下能可靠返回。

3、动作延时按阶梯形时限配合原则来确定。

2.2、三段式电流保护的整定计算 1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流 整定计算公式:式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端 B 母线处三相相间短路时,流经保护的短路电流。

35kV线路三段式电流保护整定计算

35kV线路三段式电流保护整定计算

35kV 高压进线线三段式电流保护和整定计算对 35~63kV 线路,可按下列要求装设相间短路保护装置:1) 对单侧电源线路可采用一段或两段电流速断或电流闭锁电压速断作主保护,并应以带时限过电流保护作后备保护。

当线路发生短路,使发电厂厂用母线电压或重要用户母线电压 低于额定电压的 60%时,应能快速切除故障。

2)35kV 线路相间短路的电流保护35kV 线路继电保护的主体。

电流保护多采用三段式,即由电流速断保护、限时电流速断保护和过电流保护组成。

电流速断保护(也称为Ⅰ段)动作时间短,速动性好,但其动作电流较大,某些情况下不能保护线路全长;限时电流速断保护(也称为Ⅱ段)有较短的动作时限,而且能保护线路全长,却不能作为相邻线路的后备保护;定时限过电流保护(也称为Ⅲ段)的动作电流较前两段小,保护范围大,既能保护本线路全长又能作为相邻线路的后备保护。

7.3.1 第一段 无时限电流速断保护1) 'act.1I 应躲过进线末端K2点的最大三相短路电流整定。

'(3)1 2.max 1.2536594574 set rel k I K I A =⨯=⨯=其中: I act 保护装置的动作电流,又叫做一次动作电流(3)2,max k I ——K2点的最大三相短路电流K rel ——可靠系数,一般取1.25~1. 52) 继电器的动作电流为:``.1 LH 14574 38.12 6005CO set set K I I A K ⨯⨯=== (7.2) 其中:K co ——接线系数,本设计中取1K LH ——电流互感器TA 的变流比考虑到系统发展时仍能适应,选用DL-11/50型电流继电器,其动作电流的整定范围为12.5~50A ,故动作电流整定值为40A 。

3) 第一段的灵敏性通常用保护范围的大小来衡量,根据本设计的数据,按线路首端(d1点)短路时的最小短路电流校验灵敏系数。

.1min '.1 5196 2 0.98 1.5 4574sc d sen act I K I ===<(7.3) 其中:K sen ——灵敏系数不满足要求,因此必须进一步延伸电流速短的保护范围,使之与下一条线路的限时电流速断相配合,这样其动作时限就应该选择得比下一条线路限时速断的时限再高一个t ∆所以动作时限整定为:2t =1t +2t ∆=1.0 s (7.4)故应装设带时限电流速断保护。

三段电流保护整定计算

三段电流保护整定计算

三段电流保护整定计算电流保护整定是电力系统保护中的一个重要环节,它能够对电流异常情况进行检测和保护。

本文将分三段来介绍三段电流保护整定计算的基础知识、原理和方法。

第一段:电流保护整定的基础知识电流保护的主要目的是在电力系统中发生故障或异常情况时及时切断故障电流,以保护设备和系统的安全运行。

电流保护可以分为过流保护、欠流保护和差动保护等。

其中,过流保护是最常用的一种电流保护方式。

过流保护主要根据电流的大小和时间进行判断和动作。

当电流超过一定值且持续时间超过一定时间,则保护动作。

电流保护整定就是确定电流保护动作的触发值。

电流保护整定通常分为三段,即长延时段、短延时段和瞬时动作段。

三段的整定计算旨在保证过电流保护对各种类型电流异常情况的响应速度和动作准确性,以实现系统的可靠保护。

第二段:电流保护整定的原理和方法电流保护整定的基本原理是根据电流的变化规律来确定动作阈值。

一般而言,电流保护对不同类型的电流异常情况有不同的保护动作要求,如对极短暂的短路电流故障要求快速触发和切除,对过电流保护要求延时触发并且有较大的容限。

因此,电流保护整定需要根据系统的特点和保护要求来确定不同段的动作阈值和延时时间。

电流保护整定的方法主要基于经验和试验,常见的方法有二次开入量法、准动特性法和时限特性法等。

二次开入量法是最常用的一种方法,它根据系统的额定电流和故障电流的比值来确定动作式样和延时时间。

准动特性法是根据电流的变化速率和持续时间来确定动作阈值和延时时间,它能够更好地区分短时故障和长时故障。

时限特性法是根据故障的距离和保护物理量来确定动作时间,它适用于差动保护的整定。

第三段:电流保护整定计算实例为了更好地理解电流保护整定的计算过程,我们以一台变压器的过电流保护为例进行说明。

假设变压器的额定电流为100A,瞬时动作电流为2倍额定电流,长延时动作电流为1.5倍额定电流,短延时动作电流为1.2倍额定电流。

根据经验,长延时时间通常为10s,短延时时间为0.5s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

段式电流保护的整定及
计算
TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:
式中:
Iact——继电器动作电流
Kc——保护的接线系数
IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。

K1rel——可靠系数,一般取~。

I1op1——保护动作电流的一次侧数值。

nTA——保护安装处电流互感器的变比。

灵敏系数校验:
式中:
X1——线路的单位阻抗,一般Ω/KM;
Xsmax
——
系统
最大
短路

抗。

要求
最小
保护
范围
不得
低于
15%~20%线路全长,才允许使用。

2、限时电流速断保护
整定计算原则:不超出相邻下一元件的瞬时速断保护范围。

所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。

故:
式中:
KⅡrel——限时速断保护可靠系数,一般取~;
△t——时限级差,一般取;灵敏度校验:
规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。

要求作为本线路主保护的后备以及相邻线路或元件的远后备。

动作电流按躲过最大负荷电流整定。

式中:
KⅢrel——可靠系数,一般取~;
Krel——电流继电器返回系数,一般取~;
Kss——电动机自起动系
数,一般取~;动作时间
按阶梯原则递推。

灵敏度分别按近后备和远
后备进行计算。

式中:
Ikmin——保护区末端短路时,流经保护的最小短
路电流。

即:最小运行方式下,两相相间短路电
流。

要求:作近后备使用时,Ksen≥~
作远后备使用时,Ksen≥注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;
4、三段式电流保护整定计算实例
如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。

已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。

试对AB线路的保护进行整定计算并校验其灵敏度。

解:(1)短路电流计算注意:短路电流计算值要注意归算至保护安装处电压等级,否则会出现错误;双侧甚至多侧电源网络中,应取流经保护的短路电流值;在有限系统中,短路电流数值会随时间衰减,整定计算及灵敏度校验时,精确计算应取相应时间处的短路电流数值。

B母线短路三相、两相最大和最小短路电流为:
=1590(A)
=1160(A) C母线短路电流为:
E母线短路电流为:
整定计算
①保护1的Ⅰ段定值计算
工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。

最小保护范围的校验:
=3.49KM
满足要求
②保护1限时电流速断保护按躲过变压器低压侧母线短路电流整定:
与相邻线路瞬时电流速断保护配合
=××840
=1210A
选上述计算较大值为动作电流计算值,动作时间。

灵敏系数校验:
可见,如与相邻线路配合,将不满足要求,改为与变压器配合。

③保护1定限时过电流保护按躲过AB线路最大负荷电流整定:
=501.8A
动作时限按阶梯原则推。

此处假定BC段保护最大时限为,T1上保护动作最大时限为,则该保护的动作时限为+=。

灵敏度校验:近后备时:
远后备时:
注意:不能作T1
的远后备。

四、距离保护的整定计算相间距离保护多采用阶段式保护,三段式距离保护整定计算原则与三段式电流保护基本相同.
1、相间距离Ⅰ段保护的整定
相间距离保护第Ⅰ段动作阻抗为:
可靠系数取~。

若被保护对象为线路变压器组,则动作阻抗为:
如果整定阻抗角与线路阻抗角相等,则保护区为被保护线路全长的80%~85%。

2、相间距离Ⅱ段保护的整定
相间距离Ⅱ段应与相邻线路相间距离第Ⅰ段或与相邻元件速动保护配合。

①与相邻线路第Ⅰ段配合动作阻抗为:
式中:
Kbmin——最小分支系数。

KⅡrel——可靠系数,一般取。

关于分支系数:助增分支(保护安装处至故障点有电源注入,保护测量阻抗将增大)
B、汲出分支(保护安装处至故障点有负荷引出,保护测量阻抗将减小。


Znp1——引出负荷线路全长阻抗
Znp2——被影响线路全长阻抗
Zset——被影响线路距离Ⅰ段保护整定阻抗
汲出系数是小于1的数值。

C、助增分支、汲出分支同时存在时
总分支系数为助增系数与汲出系数相乘。

例题:分支系数计算
已知,线路正序阻抗Ω/KM ,平行线路70km、MN线路为40km,距离Ⅰ段保护可靠系数取。

M侧电源最大阻抗=25Ω、最小等值阻抗为=20Ω;N侧电源最大=25Ω、最小等值阻抗分别为=15Ω,试求MN线路M侧距离保护的最大、最小分支系数。

解:(1)求最大分支系数最大助增系数:
最大汲出系数:最大汲出系数为1。

总的最大分支系数为:
(2)求最小分支系数最小助增系数:
=最小汲出系数:
总分支系数:
②与相邻元件的速动保护配合灵敏度校验:
要求:≥~
若灵敏系数不满足要求,可与相邻Ⅱ段配合,动作阻抗为
动作时间:
3、相间距离Ⅲ段保护的整定
整定计算原则:按躲过最小负荷阻抗整定
①按躲过最小负荷阻抗整定
可靠系数取~;全阻抗继电器返回系数取~。

若测量元件采用方向阻抗继电器:
Ψlm——方向阻抗继电器灵敏角
Ψld——负荷阻抗角
②灵敏度校验
近后备时:
要求≥~
远后备时:
要求≥注意:以上动作阻抗为一次侧计算值,工程实践中还应换算成继电器的整定值:
五、阶段式零序电流保护的整定三段式零序电流保护原理接线图
1、零序电流速断保护与反应相间短路故障的电流保护相似,零序电流保护只反应电流中的零序分量。

躲过被保护线路末端接地短路时,保护安装处测量到的最大零序电流整定。

由于是保护动作速度很快,动作值还应与“断路器三相触头不同时闭合”、“非全相运行伴随振荡”等现象产生的零序电流配合,以保证选择性。

按非全相且振荡条件整定定值可能过高,灵敏度将不满足要求。

措施:通常设置两个速断保护,灵敏Ⅰ段按条件①和②整定;不灵敏Ⅰ段按条件
③整定。

在出现非全相运行时闭锁灵敏Ⅰ段。

2、限时零序电流速断保护
基本原理与相间短路时阶段式电流保护相同,不再赘述。

当灵敏度不满足要求时:可采用与相邻线路的零序Ⅱ段配合,其动作电流、动作时间均要配合。

3、零序过电流保护
动作电流整定条件:
①躲过下级线路相间短路时最大不平衡电流
②零序Ⅲ段保护之间在灵敏度上要逐级配合。

相关文档
最新文档