初二数学三角形边角练习题

合集下载

边角边练习题

边角边练习题

边角边练习题一、选择题1. 在下列三角形中,哪一个三角形与给定三角形全等?(边角边)A. 三边分别为6cm、8cm、10cm的三角形B. 两边分别为6cm、8cm,夹角为60°的三角形C. 两边分别为6cm、10cm,夹角为90°的三角形D. 两边分别为8cm、10cm,夹角为45°的三角形A. ∠ABC=∠DEFB. ∠BCA=∠DFEC. BC=EFD. BE=CF二、填空题1. 在三角形ABC中,AB=AC,∠BAC=50°,若三角形DEF中,DE=DF,∠EDF=50°,则根据边角边全等条件,我们可以判断三角形______与三角形______全等。

2. 已知三角形ABC中,BC=8cm,AC=6cm,∠BAC=90°,若三角形DEF中,DF=8cm,EF=6cm,∠DFE=90°,则根据边角边全等条件,三角形______与三角形______全等。

三、判断题1. 若两个三角形的两边及夹角分别相等,则这两个三角形一定全等。

()2. 在边角边全等条件中,只要两个三角形的两边和夹角分别相等,就能判断它们全等,无需考虑其他条件。

()四、作图题1. 请作出一个等腰三角形,底边长为6cm,腰长为8cm,顶角为60°。

然后根据边角边全等条件,作出另一个与之全等的三角形。

2. 在平面直角坐标系中,已知点A(2,3),点B(6,3),点C(4,5)。

请作出三角形ABC,并作出另一个与三角形ABC全等的三角形,使其顶点位于点D(8,1)。

五、解答题1. 在三角形ABC中,AB=AC,∠BAC=120°,BC=10cm。

若三角形DEF中,DE=DF,∠EDF=120°,EF=10cm。

请证明:三角形ABC与三角形DEF全等。

2. 已知四边形ABCD是平行四边形,AB=CD=8cm,AD=BC=6cm,∠ABC=60°。

人教版苏科版初中数学—直角三角形的边角关系(经典例题 )

人教版苏科版初中数学—直角三角形的边角关系(经典例题 )

班级小组姓名成绩(满分120)一、锐角三角函数(一)正切、正弦、余弦的定义:(共4小题,每题3分,题组共计12分)例1.在Rt△ABC中,∠C=90°,AC=1,BC=2,则tanB的值是()A.55 B.12 C.2 D.13例1.变式1.在Rt△ABC中,∠C=90°,AB=13,BC=12,则sinB的值为()A.512 B.1213 C.513 D.135例1.变式2.如图,在Rt△ABC中,∠C=90°,三边分别为a,b,c,则cosA=()A.ac B.abC.ba D.bc例1.变式3.在Rt△ABC中,∠C=90°,cosB=513,BC=15,则AC=.(二)坡度(坡比)(共4小题,每题3分,题组共计12分)例2.某段公路每在水平方向上前进100米,就升高4米,则路面的坡度为.例2.变式1.如图,某人从山脚下的点A沿着斜坡走了1000米到达山顶B点,已知山顶到山脚的垂直距离为500米,则山坡的坡度为.例2.变式2.已知传送带与水平面所成斜坡的坡度为1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.例2.变式3.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.3B.5C.5D.24米二、30°,45°,60°角的三角函数值(共4小题,每题3分,题组共计12分)例3.在△ABC 2,则∠B 的度数是()A.30°B.45°C.60°D.90°例3.变式1.如图,在Rt△ABC 中,∠C=90°,AB=2BC,则sin B 的值为()A.12B.22C.32D.1例3.变式2.计算:22sin 60cos 453tan 30sin 45tan 30-︒︒+︒︒︒例3.变式3.计算:())2231360-+-︒三、解直角三角形(一)解直角三角形的方法(共4小题,每题3分,题组共计12分)例4.如图,在Rt△ABC 中,斜边AB 的长为m,∠B=40°,则直角边BC 的长是()A.sin 40m ︒B.cos 40m ︒C.tan 40m ︒D.tan 40m ︒例4.变式1.在Rt△ABC 中,∠C=90°,若∠A=45°,a=1,则∠B=,b=,c=.例4.变式2.如图,在△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a,b,c,且b=85,∠BAC的平分线16153.例4.变式3.如图所示,在△ABC中,∠C=90°,sin A=25,D为AC上一点,∠BDC=45°,CD=6,求AB的长.(二)解直角三角形综合(共4小题,每题3分,题组共计12分)例5.如图,在△ABC中,已知AB=32,AC=4,∠A=60°,求ABCS的值.例5.变式1.等腰三角形的底边长为10cm,周长为36cm,那么底角的余弦值是()A.513 B.1213 C.1013 D.512例5.变式2.如图,在△ABC中,∠C=90°,AC=5cm,∠BAC的平分线交BC于D,AD=1033cm,求∠B,AB,BC.例5.变式3.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D,B,C在同一水平地面上.改善后滑滑板会加长多少米?(结果精确到0.01236≈2.449)四、三角函数的应用(一)仰角和俯角(共4小题,每题3分,题组共计12分)例6.如图,某飞机于空中A处探测到地面目标B,此时从飞机上看目标B的俯角α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为()A.1200米B.2400米C.4003米D.12003米例6.变式1.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角为30°,在比例尺为1∶50000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为()A.1732米B.1982米C.3000米D.3250米例6.变式2.如图,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=米.例6.变式3.如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D处与C,B在同一条直线上,已知AC=32米,CD=16米,问荷塘宽BD为多少米?(取3 1.73,结果保留整数)(二)方向角(共4小题,每题3分,题组共计12分)例7.如图,上午9时,一条船从A处出发以20海里/时的速度向正北方向航行,11时到达B处,从A,B望灯塔C,测得∠NAC=36°,∠NBC=72°,那么从B处到灯塔C的距离是()A.20海里B.36海里C.72海里D.40海里例7.变式1.如图所示,一只船向东航行,上午9时到达一座灯塔P的西南方向60海里的N处,上午11时到达这座灯塔的正南的M处,则这只船航行的速度为海里/时.例7.变式2.如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A,B,C在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin 65°≈0.9063,cos65°≈0.4226,tan65°≈ 2.1445)例7.变式3.如图,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A.72海里B.142海里C.7海里D.14海里(三)运用三角函数的解决实际问题(共4小题,每题3分,题组共计12分)例8.在倾斜角为32°的山坡上种树,要求相邻两棵树间的水平距离为3米,那么相邻两棵树间的斜坡距离为()A.3sin32︒米B.3cos32︒米C.3tan32︒米D.3 cos32︒米例8.变式1.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为()A.20海里B.103海里C.202海里D.30海里例8.变式2.如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A,B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°,木瓜B的仰角为30°.求C处到树干DO的距离CO(结果精确到132≈1.41).例8.变式3.如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.(1)求海盗船所在C处距货轮航线AB的距离;(2)若货轮以45海里/时的速度向A处沿正东方向海警舰靠拢,海盗船以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗船之前去救货轮?(结果保留根号)五、利用三角函数测高(一)测量底部可以到达的物体的高度(共4小题,每题3分,题组共计12分)例9.如图,在离铁塔150m的A处,用测倾器测得塔顶的仰角为30°,已知测倾器高AD=1.52m,则塔高BE≈.(精确到2≈3≈ 1.732).例9.变式1.如图,已知楼AB高30m,从楼顶A处测得旗杆C的俯角为60°,又从离地面5m一窗口E处测旗杆顶C的仰角为45°,则旗杆CD的高是m.例9.变式2.某兴趣小组用仪器测量湛江海湾大桥主塔的高度.如图,在距主塔AE60米的D处,用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈ 2.48).例9.变式3.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(63+米B.12米+米 D.10米C.(423(二)测量底部不可以到达的物体的高度(共4小题,每题3分,题组共计12分)例10.如图,已知两测角α,β和两测点距离BC,则高AD 等于()A.tan tan tan tan BC αββα⋅⋅- B.11tan tan BC αβ⎛⎫- ⎪⎝⎭C.tan tan BC αβ- D.()tan tan BC αβ-例10.变式1.如图,河对岸有一座小山AB,在C 处测得山顶A 的仰角是30°,向小山前进16米到D 处,测得A 的仰角是45°,求小山AB 的高.例10.变式2.如图,两建筑物的水平距离为a,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高度为()A.aB.tan a αC.()sin cos a αα- D.()tan tan a βα-例10.变式3.如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角α为45°,点D 到AO 的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差.(参考数据:3≈ 1.732,2≈1.414,结果精确到0.1米)。

中考数学直角三角形的边角关系综合练习题附答案

中考数学直角三角形的边角关系综合练习题附答案

中考数学直角三角形的边角关系综合练习题附答案一、直角三角形的边角关系1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定4.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形5.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF 沿对角线BD 翻折得到△QDF ,QF 交AD 于点E .求证:△DEF 是等腰三角形;(2)如图2,将△PDF 绕点D 逆时针方向旋转得到△P'DF',连接P'C ,F'B .设旋转角为α(0°<α<180°).①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,求证:△DP'C ∽△DF'B . ②如图3,若点P 是CD 的中点,△DF'B 能否为直角三角形?如果能,试求出此时tan ∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33. 【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF ,所以△DEF 是等腰三角形;(2)①由于PF ∥BC ,所以△DPF ∽△DCB ,从而易证△DP′F′∽△DCB ;②由于△DF'B 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ , ∵PF ∥BC , ∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形;(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴''DC DP DB DF , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°,∴tan ∠DBF′=3.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.6.在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题:(1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=,AN=+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.7.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE ==. ∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD=, ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.8.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<;(3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.9.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或. 【解析】 【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OBBC B∴==8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭21220233S PQ OP t t ∴=⋅=-+22202502(5),033333St t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t tt t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)S 菱形ABCD =AB •OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.10.现有一个“Z “型的工件(工件厚度忽略不计),如图所示,其中AB 为20cm ,BC 为60cm ,∠ABC =90,∠BCD =60°,求该工件如图摆放时的高度(即A 到CD 的距离).(结果精确到0.1m ,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm . 【解析】 【分析】过点A 作AP ⊥CD 于点P ,交BC 于点Q ,由∠CQP =∠AQB 、∠CPQ =∠B =90°知∠A =∠C=60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ =BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.11.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.12.如图所示,小华在湖边看到湖中有一棵树AB,AB与水面AC垂直.此时,小华的眼睛所在位置D到湖面的距离DC为4米.她测得树梢B点的仰角为30°,测得树梢B点在水中的倒影B′点的俯角45°.求树高AB(结果保留根号)【答案】AB=(8+43)m . 【解析】【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BE DE 即可得出x 的值,进而得到答案,【详解】如图:过点D 作DE ⊥AB 于点E ,设BE=x ,则BA=x+4,B′E=x+8,∵∠ADB′=45°,∴D E=B′E=x+8,∵∠BDE=30°,∴tan30°=38BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键。

八年级数学-三角形的边角与全等三角形练习(填空题)

八年级数学-三角形的边角与全等三角形练习(填空题)

八年级数学-三角形的边角与全等三角形练习(填空题)二、填空题1、(遂宁)如图,已知△ABC 中,AB=5cm,BC=12cm,AC=13cm,那么AC 边上的中线BD 的长为 cm.【关键词】勾股定理、中线性质 【答案】2132、(遂宁)已知△ABC 中,AB=BC≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个. 【关键词】全等三角形 【答案】73.(济宁市)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个 .【关键词】三角形规律探索 【答案】1214. (四川省内江市)如图所示,将△ABC 沿着DE 翻折,若∠第1个第2个第3个A BG FE121+∠2=80O,则∠B=_____________。

【关键词】三角形的内角和、平角、整体运算思想.【答案】40°5、(厦门市)如图,在ΔABC中,∠C=90°∠ABC的平分线BD交AC于点D,若BD=10厘米,BC=8厘米,则点D到直线AB的距离是__________厘米。

答案:66、(恩施市)如图1,已知AB ED∥,58B∠=°,35C∠=°,则D∠的度数为________.【关键词】平行线性质、三角形外角【答案】23°7、(吉林省)将一个含有60°角的三角板,按图所示的方式摆放在半圆形纸片上,O为圆心,则ACO∠= 度.【关键词】三角形三角关系【答案】1208、(包头)如图,已知ACB△与DFE△是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点CCCEDEDC CCCB C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).【关键词】旋转、直角三角形答案:29、(长沙)如图,AB 是O ⊙的直径,C 是O ⊙上一点,44BOC ∠=°,则A ∠的度数为 .答案:22°【关键词】圆、角10、(甘肃白银)如图5,Rt △ACB 中,∠ACB =90°,DE ∥AB ,若∠BCE =30°,则∠A = . 【关键词】三角形三角关系 【答案】60o11、(河池)如图2,ABC △的顶点坐标分别为(36)(13)A B ,,,,(42)C ,.若将ABC △绕C 点顺时针旋转90,得到A B C '''△,则点A 的对应点A '的坐标为 .CC C CCCCC CCC (F ) D图(2)【关键词】三角形、旋转、坐标 【答案】(8,3)12、(河池)某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏, 则需要栅栏的长度为 m . 【关键词】三角形、面积【答案】20+40+40+13、(白银市).如图5,Rt △ACB 中,∠ACB =90°,DE ∥AB ,若∠BCE =30°,则∠A = .(缺图) 【关键词】三角形三角关系 【答案】60o14、 (宁夏)如图,ABC △的周长为32,且AB AC AD BC =⊥,于D ,ACD △的周长为24,那么AD 的长为 . 【关键词】三角形的周长 【答案】815、(郴州市)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,1与2的和总是保持不变,那么1与2的和是_______度.【关键词】三角形 【答案】9016、(常德市)已知△ABC 中,BC =6cm,E 、F 分别是AB 、AC 的中点,那么EF 长是 cm .【关键词】中位线 【答案】317、(广西梧州)如图,△ABC 中,∠A =60°,∠C =40°,延长CB 到D ,则∠ABD = ★度.ABCDB CD21【关键词】三角形外角 【答案】10018、(清远)如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .【关键词】全等三角形的性质与判定 【答案】30°19、(湖南邵阳)如图(四),点E 是菱形ABCD 的对角线BD 上的任意一点,连结AE CE 、.请找出图中一对全等三角形为___________.【关键词】全等三角形的性质与判定【答案】ABD CDB △≌△(或ADE CDE △≌△ 或ABE CBE △≌△)20、(湖南怀化)如图,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是 (写出一个即可).【关键词】全等三角形的性质与判定【答案】AE AC =(或填E C ∠=∠或D B ∠=∠)ABC C 1A 1B 1ACEB D21、(咸宁市)如图,在ABC △中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作EF BC ∥交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D .下列四个结论:1902BOC A ∠=∠①°+;②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切;③设OD m AE AF n =+=,,则AEF S mn =△; ④EF 不能成为ABC △的中位线.其中正确的结论是_____________.(把你认为正确结论的序号都填上) 【关键词】 【答案】22、(达州)如图5,△ABC 中,AB =AC,与∠BAC 相邻的外角为80°,则∠B =____________.【关键词】等膘三角形的外角, 【答案】40°23、(达州)长度为2㎝、3㎝、4㎝、5㎝的四条线段,从中任取三条线段能组成三角形的概率是______________. 【关键词】三角形三边关系,概率【答案】34AD FCBOECBDA24、(梅州市)如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460AB ACB =∠=,°时,ACD ∠= ______度, ABC △的面积等于_________(面积单位).【关键词】三角形 【答案】(1)90 (2)30 4325、(福建省泉州市)如图,△ABC 的中位线DE 长为10,则BC= . 【关键词】三角形的中位线 【答案】2026、(福建省泉州市)如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D,交边AB 于点E.若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为 . 【关键词】三角形的垂直平分线 【答案】627、(龙岩)如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的周长为12cm,则△DEF 的周长是 cm . 【关键词】三角形三边关系 【答案】628、(龙岩)如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE ,需要补充的一个条件是 (写出一个即A DA E CFD B可).【关键词】全等三角形【答案】AB = DC(填AF=DE或BF=CE或BE=CF也对)。

直角三角形的边角关系测试题(含A组答案)

直角三角形的边角关系测试题(含A组答案)

直角三角形的边角关系测试题一、选择题(每小题2分,共计24分):1.在△ABC 中,∠C =90°,下列式子一定能成立的是( ) A .sin a c B = B .cos a b B = C .tan c a B = D .tan a b A =2. 已知△ABC 中,∠A 、∠B 都是锐角,且(cosA-12 )2+|tanB-3 |=0,你认为最确切的判断是( )A.△ABC 是等腰三角形B.△ABC 是等腰直角三角形C.△ABC 是直角三角形D.△ABC 是等边三角形 3.已知在Rt △ABC 中,∠C=90°,若tanA=12,则sinB 等于( ) A 、15 B 、15 5 C 、25 5 D 、24. 当锐角A 的cosA >22时,∠A 的值为( )。

A. 小于45° B. 小于30° C. 大于45° D. 大于30°5.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于( ) A. 22 B.22C. 2D. 16.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( )A .53B .54C .34D .437.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD的值为( )A .34 B .43 C .54 D .538.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( )A .100 mB .350mC .250mD .50(13+)m9.如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( )5题 6题7题 8题A .500sin55°米B .500cos55°米C .500tan55°米D .500tan35°米10.如图,两条宽度均为40 m 的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( )。

初二边角边考试题及答案

初二边角边考试题及答案

初二边角边考试题及答案一、选择题(每题2分,共20分)1. 在三角形ABC中,若∠A=90°,AB=AC,则∠B的度数为:A. 30°B. 45°C. 60°D. 90°答案:C2. 已知一个等腰三角形的两边长分别为5cm和8cm,那么这个三角形的周长可能是:A. 18cmB. 21cmC. 26cmD. 30cm答案:C3. 在直角三角形中,若一个锐角为30°,则另一个锐角的度数为:A. 30°B. 45°C. 60°D. 90°答案:C4. 一个三角形的三个内角的度数之和为:A. 180°B. 360°C. 90°D. 270°答案:A5. 一个等边三角形的每个内角的度数为:A. 60°B. 90°C. 120°D. 150°答案:A6. 在一个三角形中,若两个角的度数之和为90°,则这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定答案:A7. 一个三角形的两边长分别为3cm和4cm,第三边的长度可能是:A. 1cmB. 2cmC. 5cmD. 7cm答案:C8. 已知一个三角形的两边长分别为6cm和8cm,且第三边的长度为10cm,则这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定答案:A9. 一个三角形的三个内角中,至少有一个角的度数不小于:A. 30°B. 45°C. 60°D. 90°答案:C10. 在一个三角形中,若最长边的长度为10cm,那么这个三角形的周长至少为:A. 20cmB. 21cmC. 30cmD. 40cm答案:B二、填空题(每题2分,共20分)1. 一个三角形的三个内角中,最大的角是钝角,则这个三角形是______三角形。

角边角练习题

角边角练习题

角边角练习题一、选择题1. 在三角形ABC中,已知∠A = ∠C,AB = 10,BC = 8,根据角边角(ASA)相似性准则,下列哪个选项是正确的?A. AC = 6B. AC = 8C. AC = 10D. 无法确定2. 如果两个三角形的两个角和一条边对应相等,那么这两个三角形是:A. 相似B. 全等C. 不相似D. 可能相似,也可能全等3. 在三角形DEF中,DE = 6,DF = 8,∠D = ∠F,根据角边角相似性准则,下列哪个选项是正确的?A. EF = 7B. EF = 8C. EF = 6D. 无法确定二、填空题4. 在三角形GHI中,已知∠G = ∠I,GH = 12,HI = 9,根据角边角相似性准则,三角形GHI与三角形JKL相似,若JK = 18,则IL的长度是________。

5. 如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形是________。

三、判断题6. 根据角边角相似性准则,如果两个三角形的两个角和一条边对应相等,那么这两个三角形的对应边成比例。

()7. 如果两个三角形的两个角和一条非夹边对应相等,那么这两个三角形是相似的。

()四、简答题8. 解释什么是角边角相似性准则,并给出一个实际应用的例子。

9. 如果两个三角形满足角边角相似性准则,它们是否一定满足角角角相似性准则?为什么?五、计算题10. 在三角形MNO中,已知∠M = ∠O,MN = 15,NO = 12,求MO的长度。

11. 已知三角形PQR与三角形STU相似,∠P = ∠S,∠Q = ∠T,PQ= 20,ST = 30,求PR的长度。

六、证明题12. 证明:如果两个三角形的两个角和一条边对应相等,那么这两个三角形的对应角也相等。

13. 证明:如果两个三角形的对应边成比例,并且它们的对应角相等,那么这两个三角形是相似的。

七、探索题14. 探索:如果两个三角形的两个角和一条边对应相等,那么它们的对应角的正弦值是否相等?为什么?15. 探索:如果两个三角形的两个角和一条边对应相等,那么它们的对应角的余弦值是否相等?为什么?八、应用题16. 在一个直角三角形中,已知一个锐角为30度,斜边长度为10,求另一条直角边的长度。

沪科版八年级数学上册试题 第13章 三角形中的边角关系、命题与证明 单元测试卷 (含解析)

沪科版八年级数学上册试题 第13章 三角形中的边角关系、命题与证明 单元测试卷 (含解析)

第13章《三角形中的边角关系、命题与证明》单元测试卷一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知一个三角形的两边长分别为6和3,则这个三角形的第三边长可能是()A .3B .6C .9D .102.下列图形中具有稳定性的是( )A .B .C .D .3.如图,CE 是的外角的平分线,若,,则的度数为( ).A .95°B .90°C .85°D .80°4.下列长度的三条线段能首尾相接构成三角形的是( )A .,,B .,,C .,,D .,,5.以下命题的逆命题中,属于真命题的是( ).A .如果a>0,b>0,则a+b>0B .直角都相等C .两直线平行,同位角相等D .若a=b ,则|a|=|b|6.具备下列条件的,不是直角三角形的是( )A .B .C .D .::::7.如图,直线CE ∥DF ,∠CAB =125°,∠ABD =85°,则∠1+∠2=( )ABC ACD ∠40B ∠=︒65ACE ∠=︒A ∠1cm 2cm 3cm 3cm 4cm 5cm4cm 5cm 10cm 6cm 9cm 2cmABC A B C ∠+∠=∠1123A B C∠=∠=∠23A B C ∠=∠=∠A ∠B ∠1C ∠=34A .30°B .35°C .36°D .40°8.已知中,,求证:,下面写出运用反证法证明这个命题的四个步骤:①∴,这与三角形内角和为矛盾②因此假设不成立.∴③假设在中,④由,得,即.这四个步骤正确的顺序应是( )A .④③①②B .③④②①C .①②③④D .③④①②9.用反证法证明命题“在三角形中,至少有一个内角大于或等于60°”时,第一步应先假设( )A .三角形中有一个内角小于B .三角形中有一个内角大于C .三角形的三个内角都小于D .三角形的三个内角都大于10.如图,中,、分别是高和角平分线,点在的延长线上,,交于点,交于点;下列结论中正确的结论有( )①;②;③;④.A .①②③B .①③④C .①②④D.①②③④ABC ∆AB AC =90B ∠<︒180A B C ∠+∠+∠>︒180︒90B ∠<︒ABC ∆90B ∠≥︒AB AC =90B C ∠=∠≥︒180B C ∠+∠≥︒60︒60︒60︒60︒ABC BD BE F CA FH BE ⊥BD G BC H DBE F ∠=∠()12F BAC C ∠=∠-∠2BEF BAF C ∠=∠+∠BGH ABE C ∠=∠+∠二、填空题(本大题共6个小题,每题3分,共18分)11.命题“平行四边形的对角线互相平分”,它的逆命题是__________,逆命题是__________命题(填“真”或“假”)12.现将一把直尺和的直角三角板按如图摆放,经测量得,则___________.13.BM 是ABC 中AC 边上的中线,AB=7cm ,BC=4cm ,那么ABM 与BCM 的周长之差为_________________cm .14.用一组整数a ,b ,c 的值说明命题“若a >b >c ,则a+b >c”是错误的,这组值可以是a =__,b =__,c =__.15.如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且△ABC 的面积为4.则△BEF 的面积为_________.16.如图,射线AB 与射线CD 平行,点F 为射线AB 上的一定点,连接CF ,点P 是射线CD 上的一个动点(不包括端点C ),将沿PF 折叠,使点C 落在点E 处.若,当点E 到点A 的距离最大时,_____.三、解答题(本大题共8小题,共72分;第17-18每小题6分,第19-21每小题8分,第22小题10分,第23小题12分,第24小题14分)17.如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E ,点F 为AC 延长线上的一点,连接DF.60︒1142∠=︒2∠= PFC △=62DCF ∠︒=CFP ∠(1)求∠CBE 的度数;(2)若∠F =25°,求证:.18.如图,有下列三个条件:①DE//BC ;②;③.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题?请你都写出来;(2)你所写出的命题都是真命题吗?若是,请你就其中的一个真命题给出推理过程;若不是,请你对其中的假命题举出一个反例(温馨提示:)BE DF ∥12∠=∠B C ∠=∠180B C BAC ∠+∠+∠=︒19.先阅读下面的内容,再解决问题,例题:若,求和的值.解:问题:(1)若,求的值.(2)已知是的三边长,满足,且是中最长的边,求的取值范围.20.如图,△ABC 中,∠ABC 与∠ACB 的外角的平分线相交于点E ,且∠A=60°.(1)①若∠ABC=40°,则∠E=________;②若∠ABC=100°,则∠E=________.(2)嘉嘉说∠E 的大小与∠B 的度数无关,你认为他说得对吗?请说明理由.2222690m mn n n ++-+=m n 2222222226902690()(3)0m mn n n m mn n n n m n n ++-+=∴+++-+=∴++-=Q 0,303,3m n n m n ∴+=-=∴=-=2222440x y xy y +-++=y x ,,a b c ABC 2210841a b a b +=+-c ABCc21.用反证法证明:两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.求证:l1 l2证明:假设l1 l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P 180° 所以∠1+∠2 180°,这与 矛盾,故 不成立.所以 .22.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE,AE交CD 于H.∠DCE的平分线交AE于G.(1)求证:AD∥BC;(2)若∠BAC=∠DAE,∠AGC=2∠CAE.求∠CAE的度数;(3)(2)中条件∠BAC=∠DAE仍然成立,若∠AGC=3∠CAE,直接写出∠CAE的度数 .23.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有_______个,以点O为交点的“8字型”有________个:②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAB=3∠CAP,∠CDB=3∠CDP”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.24.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC=α,则∠A= ;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC外角∠MBC、∠NCB的角平分线交于点Q,试探究∠Q与∠BPC之间的数量关系,并说明理由;(3)如图③,延长线段CP、QB交于点E,△CQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.答案一、选择题1.B【分析】组成三角形的三边的大小关系是:两边之和大于第三边,两边之差小于第三边,由此即可求出答案.【详解】解:设第三边长为x ,根据三角形的三边关系得,∴,即.故选:.2.C【分析】根据三角形具有稳定性,即可对图形进行判断.【详解】解:A 、中间竖线的两侧是四边形,不具有稳定性,故本选项错误;B 、对角线下方是四边形,不具有稳定性,故本选项错误;C 、对角线两侧是三角形,具有稳定性,故本选项正确;D 、对角线两侧是四边形,不具有稳定性,故本选项错误.故选C .3.B【分析】根据角平分线的定义,可求出∠ACD=2∠ACE ,再根据三角形的外角定理即可求出.【详解】∵CE 是的外角的平分线,,∴∠ACD=2∠ACE=130°,∵,∴∠A=130°-40°=90°,故选:B .4.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A 、1+2=3,不能组成三角形,故选项错误,不符合题意;B 、3+4>5,能够组成三角形,故选项正确,符合题意;6363x -<<+39x <<B A ∠ABC ACD ∠65ACE ∠=︒40B ∠=︒C 、5+4<10,不能组成三角形,故选项错误,不符合题意;D 、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B .5.C【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【详解】解:A.如果,则不一定是,,选项错误,不符合题意;B.如果角相等,但不一定是直角,选项错误,不符合题意;C.同位角相等,两直线平行,选项正确,符合题意;D.如果,可得或,选项错误,不符合题意.故选:C .6.C【分析】分别求出各个选项中,三角形的最大的内角,即可判断.【详解】解:根据三角形的内角和为180°,可知,据此逐项判断:A 、由,可以推出,本选项不符合题意;B 、由,可以推出,本选项不符合题意;C 、由,推出,是钝角三角形,本选项符合题意;D 、由,可以推出,本选项不符合题意;故选:C .7.A【分析】根据三角形的外角的性质可得,根据平行线的性质可得,进而即可求得.【详解】解:∵CE ∥DF ,∴∠CAB =125°,∠ABD =85°,0a b +>0a >0b >a b =a b =a b =-180A B C ∠+∠+∠=o A B C ∠+∠=∠90C ∠=︒1123A B C ∠=∠=∠90C ∠=︒23A B C ∠=∠=∠108011A ⎛⎫∠=︒ ⎪⎝⎭ABC ∆::1:3:4A B C ∠∠∠=90C ∠=︒1,2CAB CEA DBA DFB ∠=∠+∠∠=∠+∠180CEA DFB ∠+∠=︒12∠+∠180CEA DFB ∠+∠=︒1,2CAB CEA DBA DFB∠=∠+∠∠=∠+∠()12CAB ABD CEA DFB ∴∠+∠=∠+∠-∠+∠,故选A .8.D【分析】根据反证法的一般步骤判断即可.【详解】解:运用反证法证明这个命题的四个步骤1、假设在中,2、由,得,即3、,这与三角形内角和为矛盾4、因此假设不成立.综上所述,这四个步骤正确的顺序应是:③④①②故选:D9.C【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:用反证法证明命题“三角形中至少有一个角大于或等于60°”时,第一步应假设这个三角形中三个内角内角都小于60°,故选:C .10.D【分析】根据角平分线的性质、三角形的高线性质和三角形内角和定理判断即可;【详解】∵,∴,∵,∴,∵,∴,故①正确;,,∵,∴,12585180=︒+︒-︒=30︒ABC ∆90B ∠≥︒AB AC =90B C ∠=∠≥︒180B C ∠+∠≥︒180A B C ∴∠+∠+∠>︒180︒90B ∴∠<︒BD FD ⊥90FGD F ∠+∠=︒FH BE ⊥90BGO DBE ∠+∠=︒FGD BGH ∠=∠DBE F ∠=∠90ABD BAC ∠=︒-∠9090DBE ABE ABD ABE BAC CBD DBE BAC ∠=∠-∠=∠-︒+∠=∠-∠-︒+∠90CBD C ∠=︒-∠DBE BAC C DBE ∠=∠-∠-∠由①得,,∴,故②正确;∵BE 平分,∴,,∴,,∴,故③正确;∵,,∴,∵,,∴,∴,故④正确;∴正确的有①②③④;故选:D .二、填空题11. 对角线互相平分的四边形是平行四边形 真【分析】根据逆命题的要求写出逆命题,再判断即可.【详解】解:命题“平行四边形的对角线互相平分”,它的逆命题是对角线互相平分的四边形是平行四边形,此命题是真命题.故答案为:对角线互相平分的四边形是平行四边形;真.12.【分析】由直尺可得,由直角三角板可知,再利用三角形外角定理和平行线性质推角,即可得到答案.【详解】解:如图,由题可知∴∵,∴又∵∴故答案为:.DBE F ∠=∠()12F BAC C ∠=∠-∠ABC ∠ABE CBE ∠=∠BEF CBE C ∠=∠+∠22BEF ABC C ∠=∠+∠BAF ABC C ∠=∠+∠2BEF BAF C ∠=∠+∠AEB EBC C ∠=∠+∠ABE CBE ∠=∠AEB ABE C ∠=∠+∠BD FC ⊥FH BE ⊥FGD FEB ∠=∠BGH ABE C ∠=∠+∠52︒AB CD 490∠=︒AB CD 56∠=∠1142∠=︒490∠=︒5141429052∠=∠-∠=︒-︒=︒26∠=∠252∠=︒52︒13.3【分析】根据中线的定义可得,ABM 与BCM 的周长之差=AB BC ,据此即可求解.【详解】解:∵BM 是ABC 的中线,∴MA=MC ,∴=AB+BM+MA BC CM BM=AB BC=74=3(cm).答:ABM 与BCM 的周长是差是3 cm .故答案是:3.14. -2 -3 -4【分析】根据题意选择a 、b 、c 的值,即可得出答案,答案不唯一.【详解】解:当a =﹣2,b =﹣3,c =﹣4时,﹣2>﹣3>﹣4,则(﹣2)+(﹣3)<(﹣4),∴命题若a >b >c ,则a+b >c ”是错误的;故答案为:﹣2,﹣3,﹣4.15.1【分析】根据点D ,E ,F 分别是BC ,AD ,CE 的中点,可以推出,进而推出,即可得到答案.【详解】解:∵点D 是BC的中点- ΔΔABM BCM C C ------ 12S S =△BEC △ABC 14B E F A B C S S =∴∵点E 是AD 的中点∴∴又∵点F 是CE 的中点∴又∵∴故答案为:1.16.【分析】利用三角形三边关系可知:当E 落在AB 上时,AE 距离最大,利用且,得到,再根据折叠性质可知:,利用补角可知,进一步可求出.【详解】解:利用两边之和大于第三边可知:当E 落在AB 上时,AE 距离最大,如图:∵且,∴,∵折叠得到,∴,∵,∴.故答案为:三、解答题17.(1)解:∵∠ACB =90°,∠A =40°,∴∠CBD=∠A+∠ACB=130°,∵BE 平分∠CBD,ABD ADCS S = DEC S S S S ===△ABE △DBE △AEC △12S S =△BEC △ABC1124BEF BEC ABCS S S == 4ABC S = 1BEF S =△59︒AB CD =62DCF ∠︒=62CFA ∠︒EFP CFP ∠=∠118EFP CFP ∠+∠=︒59EFP CFP ∠=∠=︒AB CD =62DCF ∠︒=62CFA ∠︒PCF PEF EFP CFP ∠=∠118EFP CFP ∠+∠=︒59EFP CFP ∠=∠=︒59︒∴;(2)证明:∵∠ACB =90°,∴∠BCE=90°,∵∠CBE=65°,∴∠BEC=90°-65°=25°,∵∠F =25°,∴∠F=∠BEC ,∴.18.(1)解:一共能组成三个命题:①如果DE//BC ,,那么;②如果DE//BC ,,那么;③如果,,那么DE//BC ;(2)解:都是真命题,如果DE//BC ,,那么,理由如下:∵DE//BC ,∴,∵,∴.如果DE//BC ,,那么;理由如下:∵DE//BC ,∴,,∵,∴;如果,,那么DE//BC ;理由如下:∵,∴∠B+∠C=180°-∠BAC ,∵∠1+∠2+∠BAC=180°,∴∠1+∠2=180°-∠BAC ,1652CBE CBD ∠=∠=︒BE DF ∥12∠=∠B C ∠=∠B C ∠=∠12∠=∠12∠=∠B C ∠=∠12∠=∠B C ∠=∠1B ∠=∠2C∠=∠12∠=∠B C ∠=∠B C ∠=∠12∠=∠1B ∠=∠2C ∠=∠B C ∠=∠12∠=∠12∠=∠B C ∠=∠180B C BAC ∠+∠+∠=︒∴∠B+∠C=∠1+∠2,∵,,∴∠B=∠1,∴DE//BC .19.解:(1)∵,∴,∴,∴,∴,∴;(2)∵,∴,∴,∴,∴,∵是中最长的边,∴,即.20.(1)解:①∵BE ,CE 分别是△ABC 的内角和外角的平分线∴∠DBE=∠ABC=20°,∠DCE=∠ACD∵∠ACD=∠ABC+∠A=60°+40°=100°,∠DCE=∠DBE+∠E∴∠DCE=∠ACD=50°,∴∠E=∠DCE-∠DBE=50°-20°=30°;②∵BE ,CE 分别是△ABC 的内角和外角的平分线∴∠DBE=∠ABC=50°,∠DCE=∠ACD∵∠ACD=∠ABC+∠A=100°+60°=160°,∠DCE=∠DBE+∠E∴∠DCE=∠ACD=80°,12∠=∠B C ∠=∠2222440x y xy y +-++=2222440x xy y y y -++++=()()2220x y y -++=0,20x y y -=+=2,2x y =-=-()2124y x -=-=2210841a b a b +=+-2210258160a a b b -+++=-()()22450a b -+=-50,40a b -=-=5,4a b ==c ABC 545c ≤<+59c ≤<121212121212∴∠E=∠DCE-∠DBE=80°-50°=30°;故答案为:①30°;②30°;(2)解:嘉嘉说得对.理由如下:∵BE ,CE 分别是△ABC 的内角和外角的平分线∴∠DBE=∠ABC ,∠DCE=∠ACD∵∠DCE=∠DBE+∠E∴∠E=∠DCE -∠DBE=∠ACD -∠ABC=(∠ACD -∠ABC)又∵∠ACD=∠ABC+∠A∴∠E=(∠ABC+∠A-∠ABC )=∠A∴∠E 的大小与∠B 的度数无关.21.已知:如图,直线l 1,l 2被l 3所截,∠1+∠2=180°.求证:证明:假设l 1不平行l 2,即l 1与l 2交与相交于一点P .则∠1+∠2+∠P=180°(三角形内角和定理),所以∠1+∠2<180°,这与∠1+∠2=180°矛盾,故假设不成立.所以结论成立,l 1∥l 2.22.(1)证明:∵AB ∥CD ,∴∠B =∠DCE ,∵∠B =∠D ,∴∠D =∠DCE ,∴AD ∥BC ;1212121212121212l l //(2)解:设∠CAG =x ,∠DCG =z ,∠BAC =y ,则∠EAD =y ,∠D =∠DCE =2z ,∠AGC =2∠CAE =2x ,∵AB ∥CD ,∴∠AHD =∠BAH =x +y ,∠ACD =∠BAC =y ,△AHD 中,x +2y +2z =180°①,△ACG 中,x +2x +y +z =180°,即3x +y +z =180°,∴6x +2y +2z =360°②,②﹣①得:5x =180°,解得:x =36°,∴∠CAE =36°;(3)解:设∠CAE =x ,∠DCG =z ,∠BAC =y ,则∠EAD =y ,∠D =∠DCE =2z ,∠AGC =3∠CAE =3x ,∵AB ∥CD ,∴∠AHD =∠BAH =x +y ,∠ACD =∠BAC =y ,△AHD 中,x +2y +2z =180°①,△ACG 中,x +3x +y +z =180°,∴4x +y +z =180°,∴8x +2y +2z =360°②,②﹣①得:7x =180°,解得:x =,∴∠CAE =;故答案为:.23.(1)解:△AOC 中,∠A+∠C=180°-∠AOC ,△BOD 中,∠B+∠D=180°-∠BOD ,∵∠AOC=∠BOD ,∴∠A+∠C=∠B+∠D ;1807︒1807︒1807︒(2)解:①以线段AC 为边的“8字型”有:△ACM 和△PDM ,△ACO 和△BOD ,△ACO 和△DNO ,共3个;以点O 为交点的“8字型”有:△ACO 和△BDO ,△ACO 和△DNO ,△AMO 和△BDO ,△AMO 和△DNO ,共4个;②△AMC 和△DMP 中,∠C+∠CAM=∠P+∠PDM ,△BDN 和△PAN 中,∠B+∠BDN=∠P+∠PAN ,∴∠C+∠CAM+∠B+∠BDN =∠P+∠PDM+∠P+∠PAN ,∵PA 平分∠BAC ,PD 平分∠BDC ,∴∠CAM=∠PAN ,∠BDN=∠PDM ,∴∠C+∠B=2∠P ,∴120°+100°=2∠P ,∴∠P=110°;③∵∠CAB=3∠CAP ,∠CDB=3∠CDP ,∴∠CAM=∠CAB ,∠PAN=∠CAB ,∠BDN=∠BDC ,∠PDM=∠BDC ,△AMC 和△DMP 中,∠C+∠CAM=∠P+∠PDM ,∠C-∠P=∠PDM-∠CAM=∠BDC-∠CAB ,3(∠C-∠P )=∠BDC-∠CAB ,△BDN 和△PAN 中,∠B+∠BDN=∠P+∠PAN ,∠P-∠B=∠BDN-∠PAN=∠BDC-∠CAB ,(∠P-∠B )=∠BDC-∠CAB ,∴3(∠C-∠P )=(∠P-∠B ),2∠C-2∠P=∠P-∠B ,3∠P=∠B+2∠C ;24.(1)如图①中,13232313131323233232∵∠ABC 与∠ACB 的平分线相交于点P ,∴∠BPC=180°﹣(∠PBC+∠PCB )=180°(∠ABC+∠ACB )=180°(180°﹣∠A ),=90°∠A ,∵∠BPC=α,∴∠A=2α﹣180°.故答案为2α﹣180°.(2)结论:∠BPC+∠BQC=180°.理由:如图②中,∵外角∠MBC ,∠NCB 的角平分线交于点Q ,∴∠QBC+∠QCB (∠MBC+∠NCB )(360°﹣∠ABC ﹣∠ACB )(180°+∠A )12-12-12+12=12=12==90°∠A ,∴∠Q=180°﹣(90°∠A )=90°∠A ,∵∠BPC=90°∠A ,∴∠BPC+∠BQC=180°.(3)延长CB 至F ,∵BQ 为△ABC 的外角∠MBC 的角平分线,∴BE 是△ABC 的外角∠ABF 的角平分线,∴∠ABF=2∠EBF ,∵CE 平分∠ACB ,∴∠ACB=2∠ECB ,∵∠EBF=∠ECB+∠E ,∴2∠EBF=2∠ECB+2∠E ,即∠ABF=∠ACB+2∠E ,又∵∠ABF=∠ACB+∠A ,∴∠A=2∠E ,∵∠ECQ=∠ECB+∠BCQ∠ACB ∠NCB =90°,如果△CQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠ECQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠ECQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;12+12+12-12+12=12+③∠Q=2∠E,∵∠Q+∠E=90°,∴∠E=30°,则∠A=2∠E=60°;④∠E=2∠Q,∵∠Q+∠E=90°,∴∠E=60°,则∠A=2∠E=120°.综上所述,∠A的度数是90°或60°或120°.。

初中数学三角形专题练习

初中数学三角形专题练习

初中数学三角形专题练习三角形中的边角关系一、单选题1.(3分)下列长度的三条线段能组成三角形的是()A.4、5、6B.1、2、3C.3、3、6D.10、4、4 2.(3分)在△ABC中,∠C=100°,∠B=40°,则∠A的度数为()A.30°B.40°C.50°D.60°3.(3分)若一条长为31cm细线能围成一边长等于7cm的等腰三角形,该等腰三角形的腰长为()A.7cm B.9cm C.12cm D.7cm或12cm 4.(3分)如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=34°,则∠ACB的度数是()A.28°B.30°C.31°D.32°5.(3分)等腰三角形的一边长等于3,一边长等于7,则它的周长是()A.13B.17C.13或17D.126.(3分)如图,△ABC中,AB=AC,腰AB的垂直平分线DE交AB于点E,交AC 于点D,且∠DBC=15°,则∠A的度数是()A.50°B.36°C.40°D.45°7.(3分)如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是()A .3B .4C .5D .68.(3分)如图,在△ABC 中,点D 是线段AB 的中点,DC ⊥BC ,作∠EAB =∠B ,DE ∥BC ,连接CE .若25BC AE =,设△BCD 的面积为S ,则用S 表示△ACE 的面积正确的是( )A .52SB .3SC .4SD .92S 9.(3分)如下图,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,,∠A n+1B n B n+1=θn ,则θ2016-θ2015的值为( )A .20161802α+B .20161802α-C .20151802α+D .20151802α- 10.(3分)设△ABC 的面积为1,如图①将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等份,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;……, 依此类推,则S 5的值为( )A .18B .19C .110D .111二、填空题11.(3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是______. 12.(3分)等腰三角形的周长为16cm ,底边长为xcm ,腰长为ycm ,则x 与y 之间的关系式为 ____________13.(3分)将一张等边三角形纸片沿着一边上的高剪开,可以拼成不同形状的四边形.试写出其中一种四边形的名称____________.14.(3分)如图,在Rt ABC △中,90C ∠=︒,边AB 的垂直平分线DE 交BC 于点D ,AD 平分BAC ∠,则B ∠=_______︒.15.(3分)如图,在Rt ABC 中,90ACB ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于E ,若3cm CD =,10cm AB =,则ABD △的面积为________.16.(3分)如图,D ,E 分别为ABC 两边AB ,AC 的中点,将ABC 沿线段DE 折叠,使点A 落在BC 上点F 处,若55B ∠=︒,则BDF ∠=________.17.(3分)如图,ABC 是钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE ,EF ,FG ,…,添加的这些钢管的长度与BD 的长度相等,如果10B ∠=︒,那么添加的这样钢管的根数最多是______.18.(3分)在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如:三个内角分别为120︒,40︒,20︒的三角形是“灵动三角形”.如图,60MON ∠=︒,在射线OM 上找一点A ,过点A 作AB OM ⊥交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (规定090OAC ︒<∠<︒)当OAC ∠=________时,ABC 为“灵动三角形”.19.(3分)我们定义三边长均为整数的三角形叫做整三角形.已知△ABC 是整三角形,其周长为偶数,若AC - BC = 3.则边长AB 的最小值是__________20.(3分)在□ABCD 中AC =6cm ,BD =8cm ,则AB 的取值范围是__________.21.(3分)如图,在∠ABC 中,∠A=m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013=____度.22.(3分)在等腰△ABC 中,AB=AC ,AC 腰上的中线BD 将三角形周长分为15和21两部分,则这个三角形的底边长为______.23.(3分)如图,在Rt ABC △中,90︒∠=C ,2BC =,30A ︒∠=,点D 是AB 的中点,P 是AC 边上一动点,连接DP ,将DPA 沿着DP 折叠,A 点落到F 处,DF 与AC 交于点E ,当DPF 的一边与BC 平行时,线段DE 的长为_____.24.(3分)如图,在正方形ABCD 中,E 是对角线BD 上一点,且满足BE =BC .连接CE 并延长交AD 于点F ,连接AE ,过B 点作BG ⊥AE 于点G ,延长BG 交AD 于点H .在下列结论中:∠AH =DF ; ∠∠AEF =45°; ∠AH =DE ;∠S 四边形EFHG =S △DEF +S △AGH ,其中正确的结论有_____.(填正确的序号)25.(3分)如图,在ABC ∆中,AB AC =,点D 在线段AC 上,现将ABC ∆沿着BD 翻折后得到A BD '∆,A B '交AC 于点E ,//A D BC '且A D BC '=,若BD =ABC ∆的面积为__________.三、解答题26.(4分)如图,在77⨯的网格中,A 、B 均在格点上,请只用无刻度的直尺作图.(保留作图痕迹,不写做法)(1)在图1中画格点C .使得ABC 为等腰三角形(请画出两个不同的C 点); (2)在图2中作出BAD ∠的角平分线.27.(5分)在ABC 中,,20A B C A B ∠+∠=∠∠-∠=︒,(1)求A ∠,B ,C ∠的度数;(2)ABC 按角分类,属于什么三角形ABC 按边分类,属于什么三角形?28.(4分)如图,在△ABC 中,∠B∠40°∠△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,求∠AEC 的度数.29.(6分)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题:∠1∠已知,如图1∠△ABC 中,P 点是∠ABC 和∠ACB 的角平分线的交点,求证:∠P=12∠A+90°∠ ∠2∠如图2,若P 点是∠ABC 和∠ACB 外角的角平分线的交点,∠A=80°,那么∠P=____°∠∠3∠如图3∠△ABC 中,若P 点是∠ABC 外角和∠ACB 外角的角平分线的交点,∠A=α,那么∠P=________(请用含α的代数式表示)30.(6分)如图,ABC ∆中,90BAC ︒∠=,40B ︒∠=,点D 在BC 边上,E 在BC 的延长上,且AB BD =,AC CE =.求DAE ∠的度数.参考答案1.A【分析】直接利用三角形的三边关系逐项判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A 、4+5>6,能组成三角形;B 、1+2=3,不能组成三角形;C 、3+3=6,不能组成三角形;D 、4+4=8<10,不能组成三角形.故选:A .【点睛】本题主要考查了组成三角形三边的条件,掌握两较短边长的和大于最长边的长就能够组成三角形是解答本题的关键.2.B【分析】直接根据三角形内角和定理解答即可.【详解】解:ABC ∆中,40B ∠=︒,100C ,1801804010040A B C .故选:B .【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180︒是解答此题的关键. 3.C【分析】根据题意可分当腰长为7cm 时和当底边长为7cm 时,然后利用三角形三边关系进行判断求解即可.【详解】解:由题意易得:①当腰长为7cm 时,则底边为17cm ,17>7+7,根据三角形三边关系可知不符合题意;②当底边长为7cm时,则腰长为:317122cm-=,由三角形三边关系可知符合题意;∴该等腰三角形的腰长为12cm;故选C.【点睛】本题主要考查等腰三角形的性质及三角形的三边关系,熟练掌握等腰三角形的性质及三角形的三边关系是解题的关键.4.A【分析】连接OB,根据切线的性质,得∠OBA=90°,又∠A=34°,所以∠AOB=56°,再用三角形的外角性质可以求出∠ACB的度数.【详解】解:如图:连接OB,∵AB切⊙O于点B,∴∠OBA=90°,∵∠A=34°,∴∠AOB=90°﹣34°=56°,∵OB=OC,∴∠C=∠OBC,∵∠AOB=∠C+∠OBC=2∠C,∴∠C=28°.故选:A.【点睛】本题考查的是切线的性质和三角形的外角和定理,能够连接OB是解题的关键.5.B【分析】本题已知了等腰三角形的两边的长,但没有明确这两边哪边是腰,哪边是底,因此要分类讨论.【详解】解:当三边是3,3,7时,3+3=6<7,不符合三角形的三边关系;当三边是7,7,3时,符合三角形的三边关系,此时周长是7+7+3=17.因此等腰三角形的周长为17.故选:B.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角可得∠A=∠ABD,∠ABC=∠C,然后根据三角形的内角和等于180°方程求解即可.【详解】解:∵AB的垂直平分线DE交AC于D,∴AD=BD,∴∠A=∠ABD,∵AB=AC,∴∠ABC=∠C,∵∠DBC=15°,∴∠ABC=∠C=∠A+15°,在△ABC中,∠A+∠ABC+∠C=180°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故选:A.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,熟记性质与定理并列出方程是解题的关键.7.B【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【详解】∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=13S△ACF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC=12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=4.故选:B.【点睛】此题主要考查根据三角形中线性质求解面积,熟练掌握,即可解题.8.C【分析】延长AE,BC交于点F,易得AE=DE,由DE∥BC,D为AB的中点,可知DE为中位线,所以BF=2DE,设BC=2x,AE=DE=5x,则BF=10x,CF=BF-BC=8x,在△ABF和△ACF中,分别利用同高的两个三角形面积之比等于底边之比,可推出面积关系.【详解】如图所示,延长AE,BC交于点F∵DE ∠BC ,∴∠ADE=∠B ,又∵∠EAB =∠B ,∴∠ADE=∠EAB ,∴AE=DE∵D 为AB 的中点,DE ∥BF ,∴DE 为△ABF 的中位线, ∴BF=2DE ,设BC=2x ,AE=DE=5x ,则BF=10x ,CF=BF -BC=8x , 在△ABC 中,∵D 是AB 的中点,∴S △ACD =S △BCD =S ∴S △ABC =2S , 在∠ABF 中,2184===ACFABC BC x CF x S S∠=8ACFSS在∠ACF 中,E 为AF 的中点, ∴1=42==ACECEFACFSSS S故选C. 【点睛】本题考查三角形的面积关系,根据同高的三角形面积比等于底边比,推出面积关系是关键. 9.B 【解析】∵OA 1=OB 1,∠AOB=α,∴∠A 1B 1O=12 (180°-α), ∴12(180°-α)+θ1=180, 整理得,θ1=1802α︒+ , ∵B 1B 2=B 1A 2,∠A 2B 1B 2=θ1,∴∠A 2B 2B 1=12(180°-θ1), ∴12(180°-θ1)+θ2=180°, 整理得,θ2=11802θ︒+=31804α⨯︒+, ∴θ2-θ1=31804α⨯︒+-1802α︒+=21802α︒-,同理可求θ3=21802θ︒+=71808α⨯︒+, ∴θ3-θ2=71808α⨯︒+-31804α⨯︒+=31802α︒-, …,依此类推,θ2016-θ2015 =20161802α︒-; 故选B . 10.D 【解析】如图1,连接OC,由1BE 、1AD 分别将边BC 、AC2等份,111122AD C BCE ABC S S S ∆∆∆===,所以111111AD C BCE CE OD CE OD S S S S ∆∆-=-四边形四边形,即11AOE BOD S S ∆∆=,根据等底同高的两个三角形的面积相等可得1111,,AOE COE BOD COD S S S S ∆∆∆∆== 所以11111122AOE COE COD AD C ABC S S S S S ∆∆∆∆∆++===,即可求得11116AOE COE COD S S S ∆∆∆===,所以111111114=63211ABC AOE COE COD BOD S S S S S S ∆∆∆∆∆=----=-⨯=⨯+;如图2,连接OC,OD 1,OE 2,由图(1)的方法可得 11222211215BOD D OD COD COE E OE AOE S S S S S S ∆∆∆∆∆∆======, 所以11222211221116=155221ABC BOD D OD COD COE E OE AOE S S S S S S S S ∆∆∆∆∆∆∆=------=-⨯=⨯+, 同样的方法可求得311=7231S =⨯+,以此类推可得511=25111S =⨯+.故选D.点睛:本题是规律探究题,主要考查等底同高的两个三角形的面积相等;能从图中观察,并能适当添加辅助线是解题的关键.. 11.钝角三角形 【分析】由一个三角形三个内角的度数之比为2:3:7,利用三角形的内角和定理,可求得这个三角形的最大角的度数,继而求得答案.【详解】解:∠一个三角形三个内角的度数之比为2:3:7,∠这个三角形的最大角为:180°×7237++=105°,∠这个三角形一定是钝角三角形.故答案为:钝角三角形.【点睛】此题考查了三角形的内角和定理.此题比较简单,注意求得三角形的最大角是关键.12.y=8-12x (0<x<8)【分析】根据等腰三角形周长公式可写出y与x的关系式.【详解】∵等腰三角形的周长为16cm,底边长为xcm,一腰长为ycm,∴x+2y=16,∴y=8-12 x,∵y-y<x<2y,x+2y=16,∴0<x<8,则y=8-12x (0<x<8).【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.13.平行四边形(或矩形或筝形)【解析】解:将一张等边三角形纸片沿着一边上的高剪开,按位置摆放的不同,可以拼成平行四边形、矩形.故答案为平行四边形或矩形.14.30【分析】根据垂直平分线的性质和角平分线的定义得出EAD B CAD∠=∠=∠,然后利用直角三角形两锐角互余即可求出答案. 【详解】DE 垂直平分AB ,∴AD BD = ,EAD B ∴∠=∠.∵AD 平分BAC ∠,EAD CAD ∴∠=∠,EAD B CAD ∴∠=∠=∠.90C ∠=︒,90BAC B ∴∠+∠=︒, 390B ∴∠=︒ ,30B ∴∠=︒.故答案为:30. 【点睛】本题主要考查垂直平分线的性质,角平分线的定义和直角三角形两锐角互余,掌握垂直平分线的性质和角平分线的定义是解题的关键. 15.215cm 【分析】先根据角平分线的性质求得3DE cm =,再利用三角形面积公式即可求得答案. 【详解】解:∵BD 是ABC ∠的平分线,90ACB ∠=︒,DE AB ⊥ ∴3DE DC cm == ∵10AB cm = ∴21031522ABDAB DE Scm ⋅⨯===. 故答案是:215cm 【点睛】本题考查了角平分线的性质、三角形的面积公式,难度不大,能根据角平分线的性质求得3DE cm =是解决问题的关键. 16.70°利用折叠的性质求解. 【详解】解:由折叠的性质知,AD =DF , ∵点D 是AB 的中点,∴AD =BD ,由折叠可知AD =DF , ∴BD =DF ,∴∠DFB =∠B =55°,∠BDF =180°-2∠B =70°. 故答案为:70°. 【点睛】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②中点的性质,等边对等角,三角形内角和定理求解. 17.8 【分析】根据已知利用等腰三角形的性质、三角形外角的性质找到图中存在的规律,根据规律和三角形内角和定理不难求解. 【详解】解:∵添加的钢管的长度与BD 的长度相等,10B ∠=︒ ∴10DEB B ∠=∠=︒ ∴20EDF DEB B ∠=∠+∠=︒ ∵ED EF =∴20EFD EDF ∠=∠=︒ ∴30FEG EFD B ∠=∠+∠=︒ ⋯⋯∴由此思路可知:第一个等腰三角形的底角是10︒,第二个底角是20︒,第三个底角是30,第四个底角是40︒,第五个底角是50︒,第六个底角是60︒,第七个底角是70︒,第八个底角是80︒,第九个底角是90︒(这时与三角形内角和是180︒产生矛盾)就不存在了 ∴加的这样钢管的根数最多是8个. 故答案是:8本题考查了等腰三角形的性质、三角形内角和定理、三角形外角的性质等,发现并运用规律是正确的解答本题的关键.18.80°或52.5°或30°【分析】分点C在线段OB和线段OB的延长线上两种情况,根据“灵动三角形”的定义计算.【详解】解:设∠OAC=x则∠BAC=90°-x,∠ACB=60°+x,∠ABC=30°∵△ABC为“灵动三角形”,当∠ABC=3∠BAC时,∴30°=3(90°-x),∴x=80°;当∠ABC=3∠ACB时,∴30°=3(60°+x)∴x=-50°(舍去)∴此种情况不存在;当∠BCA=3∠BAC时,∴60°+x=3(90°-x),∴x=52.5°,当∠BCA=3∠ABC时,∴60°+x=90°,∴x=30°;当∠BAC=3∠ABC时,∴90°-x=90°,∴x=0°(舍去);当∠BAC=3∠ACB时,∴90°-x=3(60°+x),∴x=-22.5°(舍去),∴此种情况不存在,∴综上所述:∠OAC=80°或52.5°或30°.故答案为:80°或52.5°或30°.本题考查的是三角形内角和定理、“灵动三角形”的概念,用分类讨论的思想解决问题是解本题的关键. 19.5 【分析】根据AC - BC = 3可得AC=BC+3,故三角形的周长为2BC+AB+3,其为偶数,故AB 为奇数,又因为AB >3,故AB 的最小值为5. 【详解】 ∵AC - BC = 3 ∴AC=BC+3∴三角形的周长=2BC+AB+3 ∵其周长为偶数,三边长均为整数 ∴AB 为奇数又∵AB >AC - BC 即AB >3 ∴AB 的最小值为5. 故答案为:5 【点睛】本题考查的是三角形的三边关系,掌握“两边之和大于第三边,两边之差小于第三边”是关键. 20.17AB <<; 【解析】如图,∵在平行四边形ABCD 中,AC=6cm∠BD=8cm∠∴OA=12AC=3cm,OB=12BD=4cm∠∴在△AOB 中,OB −OA<AB<OA+OB ,即1cm<AB<7cm. 故答案是:1cm<AB<7cm. 21.2013m 2 【解析】试题分析:∠A 1B 、A 1C 分别平分∠ABC 和∠ACD ,∠∠ACD=2∠A 1CD ,∠ABC=2∠A 1BC , 又∠∠A 1CD=∠A 1+∠A 1BC ,∠ACD=∠ABC+∠A ,∠∠A=2∠A 1,∠∠A 1=m2度.同理可得∠A 1=2∠A 2,即∠A=22∠A 2,∠∠A 2=2m2度. …… ∠∠A 2013=2013m2度. 22.16或8 【分析】本题由题意可知有两种情况,AB+AD=15或AB+AD=21.从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16. 【详解】解:∵BD 是等腰△ABC 的中线,可设AD=CD=x ,则AB=AC=2x , 又知BD 将三角形周长分为15和21两部分, ∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC 的三边分别为14,14,8. 经验证,这两种情况都是成立的. ∴这个三角形的底边长为8或16. 故答案为:16或8.【点睛】本题主要考查来了等边三角形的性质以及三角形的三边关系(两边之和大于第三边,两边只差小于第三边),注意求出的结果燕验证三角形的三边关系,掌握分类讨论思想是解题的关键.23.1或2【解析】 【分析】当DPF 的一边与BC 平行时,会有三种情况,需分别讨论,①://DF BC ,②//DP BC ,③://PF BC ,分别计算出每种情况时线段DE 的长即可. 【详解】当DPF 的一边与BC 平行时,有三种情况,分别讨论: ①://DF BC 如下图所示,当//DF BC 时,90AED C ︒∠=∠=,则在Rt AED △中,30A ︒∠=,2AD =,则12ADDE ==; ②: 如下图所示,当//DP BC 时,点A 的对应点F 与点C 、E 重合,由折叠的性质可知2AD DE ==;③: 当//PF BC 时,如下图所示,90CPF APF C ︒∠=∠=∠=,因为折叠,30A F ︒∠=∠=,过点D 作AC 边上的垂线,垂足为H ,则60DEH ︒∠=,根据中位线定理可知12BC DH ==,继而可DE = 【点睛】本题考查折叠的性质,中位线定理,熟知折叠的性质和中位线定理的应用是解题关键,本题属于三角形综合题 . 24.∠∠∠. 【分析】先判断出∠DAE =∠ABH ,再判断△ADE ≌△CDE 得出∠DAE =∠DCE =22.5︒,∠ABH =∠DCF ,再判断出Rt △ABH ≌Rt △DCF 从而得到①正确;根据三角形的外角求出∠AEF =45︒,得出②正确;结合①②可得DF =DE ,根据AH =DF 即可得③正确;连接HE ,判断出S △EFH ≠S △EFD 得出④错误. 【详解】∵BD 是正方形ABCD 的对角线,∴∠ABE =∠ADE =∠CDE =45︒,AB =BC , ∵BE =BC , ∴AB =BE , ∵BG ⊥AE ,∴BH 是线段AE 的垂直平分线,∠ABH =∠DBH =22.5︒, 在Rt △ABH 中,9067.5AHB ABH ∠=︒-∠=︒, ∵∠AGH =90︒,∴∠DAE =∠ABH =22.5︒, 在△ADE 和△CDE 中,45DE DE ADE CDE AD CD =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ADE ≌△CDE (SAS ), ∴∠DAE =∠DCE =22.5︒, ∴∠ABH =∠DCF , 在Rt △ABH 和Rt △DCF 中,BAH CDF AB CD ABH DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △ABH ≌Rt △DCF (ASA ),∴AH=DF,∠CFD=∠AHB=67.5︒,∵∠CFD=∠EAF+∠AEF,∴67.5︒=22.5︒+∠AEF,∴∠AEF=45︒,故∠∠正确;︒+︒=67.5︒,∵∠FDE=45︒,∠DFE=∠F AE+∠AEF=22.545︒-︒-︒=︒,∴∠DEF=1804567.567.5∴DF=DE,∵AH=DF,∴AH=DE,故∠正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5︒,∴∠DHE=45︒,∵∠ADE=45︒,∴∠DEH=90︒,∠DHE=∠HDE=90︒,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故∠错误,∴正确的是∠∠∠,故答案为:∠∠∠.【点睛】本题考查正方形的性质,全等三角形的判定和性质以及三角形的内角和与外角和的应用,推断△ADE ≌△CDE 和作出辅助线是本题的关键,综合性较强.25.【分析】根据翻折的性质得到==ABD A BD A ED EBD S S S S ''+,由//A D BC '且A D BC '=,依据平行线的性质及ASA ,可得A DE '≌BCE ,通过等量代换得到BCD ABD S S =,从而得到CD AD =设为4a ,依据等量代换得到=4=CD a BC ,依据三角形外角的性质、翻折的性质、三角形内角和定理得到=4BE BC a =,连接B 与EC 的中点F ,依据三线合一求出两个有公共直角边的直角三角形,依据勾股定理列出关于a 的方程,解出可求得ABC 的底和高,再运用三角形面积公式即可.【详解】解:设=4AD a ,∵AB AC =,∴=C ABC ∠∠,∵将ABC 沿着BD 翻折后得到A BD ',∴==ABD A BD A ED EBD S S S S ''+,=4A D AD a '=,DBE DBA ∠=∠,∵//A D BC ',∴'=A DE C ∠∠,'=A CBE ∠∠,又∵=4A D BC a '=,∴A DE '≌BCE (ASA ), ∴12DE EC DC ==,A DE BCE S S '=, 又∵BCD BCE EBD SS S =+,=ABD A ED EBD S S S '+ ∴BCD ABD S S =,∴=4CD AD a =, ∴122DE EC DC a ===, ∵=4=CD a BC ,∴CBD CDB ∠=∠,又∵+CBD CBE DBE ∠=∠∠,+CDB A DBA ∠=∠∠,DBE DBA ∠=∠,∴=CBE A ∠∠,又∵=180BEC C EBC ∠︒-∠-∠,=180ABC C A ∠︒-∠-∠,=C ABC ∠∠∴=BEC ABC C ∠∠=∠,∴=4BE BC a =,如下图,连接B 与EC 的中点F ,则12FC FE EC a ===,3DF DE FE a =+=,∴BF AC ⊥,∴22222BD DF BF BC FC -==-,即22222(3)(4)a BF a a -==-(0a >),解得1a =,∴BF =88AC AD DC a +==,∴2ABC AC BF S ⋅==故答案为:【点睛】本题考查了翻折的性质、等腰三角形的等边对等角的性质、三线合一的性质、三角形等角对等边的性质、全等三角形的判定和性质、三角形的内角和定理和外角性质、勾股定理,解题的关键是发现D 是AC 的中点,三角形BCD 、三角形BCE 是等腰三角形,依据勾股定理列出关于a 的方程.26.(1)见解析;(2)见解析【分析】(1)根据等腰三角形的性质,构造边长为5的线段即可找出点C ;(2)利用等腰三角形的三线合一的思想解决问题即可.【详解】解:(1)如图,点C 即为所作;(2)如图,AE 即为所作.【点睛】本题考查作图-应用与设计,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.(1)∠A=55°,∠B=35°,∠C=90°;(2)ABC 按角分类属于直角三角形,按边分类属于不等边三角形【分析】(1)根据三角形内角和定理根据方程组即可解决问题.(2)根据三角形的分类解决问题即可.【详解】(1)由题意得:20180A B C A B A B C ∠+∠=∠⎧⎪∠-∠=︒⎨⎪∠+∠+∠=︒⎩,解得:553590A B C ∠=︒⎧⎪∠=︒⎨⎪∠=︒⎩,∴∠A=55°,∠B=35°,∠C=90°;(2)∵∠C=90°,∠A=55°,∠B=35°,∴按角分类,属于直角三角形,按边分类,属于不等边三角形.【点睛】本题考查了三角形内角和定理,三角形的分类等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.28.70°【详解】试题分析:先根据三角形内角和定理计算出∠BAC+∠BCA=180°-∠B=140°∠则利邻补角定义计算出∠DAC+∠FCA=180°-∠BAC+180°-∠BCA=220°,再根据角平分线定义得到∠EAC=12∠DAC∠∠ECA=12∠FCA ,所以∠EAC+∠ECA=12∠∠DAC+∠FCA∠=110°,然后再利用三角形内角和计算∠AEC 的度数.试题解析:在△ABC 中,∵∠B∠40°∠∴∠BAC∠∠BCA∠180°∠40°∠140°∠∵∠DAC∠∠BAC∠180°∠∠ACF∠∠ACB∠180°∠∴∠DAC∠∠ACF∠360°∠140°∠220°∠∵AE 平分∠DAC∠CE 平分∠ACF∠∴∠EAC∠∠ECA∠12(∠DAC∠∠ACF)∠110°∠∴∠AEC∠180°∠110°∠70°.29.(1)见解析(2)40°(3)90°-12α 【分析】根据角平分线的定义和三角形的外角等于不相邻的两个内角之和,推理出两角的关系.【详解】(1)证明∠由三角形内角和定理得, A ABC ACB 180∠∠∠++=︒∠P PBC PCB 180∠∠∠++=︒∠点P 是ABC ∠和ACB ∠的角平分线的交点 ∠11PBC ABC PCB ACB 22∠∠∠∠==, ∠11P ABC ACB 18022∠∠∠++=︒ 又∠A ABC ACB 180∠∠∠++=︒∴ABC ACB 180A ∠∠∠+=︒- ∠()1P 180A 1802∠∠+︒-=︒ ∠1P A 902∠∠=+︒ (2)由三角形的外角性质得ACD A ABC ∠∠∠=+∵点P 是ABC ∠和ACB ∠外角的角平分线的交点∴ABC 2PBC ∠∠= ACD 2PCD ∠∠=∴2PCD A 2PBC 802PBC ∠∠∠∠=+=︒+∴PCD 40PBC ∠∠=︒+∵PCD ∠是ABC 的外角∴PCD P PBC ∠∠∠=+∠40PBC P PBC ∠∠∠︒+=+∠P 40∠=︒(3)由三角形内角和定理得ABC ACB 180A ∠∠∠+=︒-∠点P 是ABC ∠外角和ACB ∠外角的角平分线的交点∴DBC 2PBC ∠∠= ECB 2PCB ∠∠=∴DBC ECB A ABC A ACB ∠∠∠∠∠∠+=+++=180A ∠︒+∠2PBC 2PCB 180A ∠∠∠+=︒+1PBC PCB 90A 2∠∠∠+=︒+∵PBC PCB 180P ∠∠∠+=︒- ∴1180P 90A 2∠∠︒-=︒+ 1P 90A 2∠∠=︒-∠A ∠α=∠1P 902∠∠α=︒- 【点睛】本题是一道探究问题∠考查的知识点是三角形的外角的性质以及角平分线的定义.认真阅读材料中提供的方法,是解决此类问题的关键.30.45DAE ︒∠=【分析】在ABD ∆中,根据等边对等角以及三角形内角和定理求出1(180)702BDA BAD B ∠=∠=︒-∠=︒,在ABC ∆中利用三角形内角和定理求出50∠=°ACB ,根据等边对等角以及三角形外角的性质得出1252CAE E ACB ∠=∠=∠=︒,根据三角形内角和,即可求出DAE ∠的度数.【详解】解:40B ︒∠=,AB BD =1(180)702BDA BAD B ∴∠=∠=︒-∠=︒ ,90,40ABC BAC B ∆∠=︒∠=︒中50ACB ∴∠=︒AC CE =1252CAE E ACB ︒∴∠=∠=∠= 180B BAD DAE E ∠+∠+∠+∠=︒180********DAE ∴∠=︒-︒-︒-︒=︒【点睛】本题考点涉及等腰三角形性质、直角三角形、三角形内角和定理以及三角形外角定理等知识点,属综合题,熟练掌握相关性质定理是解题关键.。

直角三角形边角关系练习题及测试题

直角三角形边角关系练习题及测试题

FED 60°AABC┐ 直角三角形的边角关系综合练习(1)一、选择题1. 60cos 的值等于( ) A .21 B .22 C .23 D .12.如图所示,Rt △ABC ∽Rt △DEF ,则cosE 的值等于( ) A.123.已知α为锐角,且2 cos (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75°4.已知在Rt ABC △中,90C ∠=,1sin 2A =,AC =BC 的值为( ) A .2B .4C.D .65.在Rt ABC △中,90C ∠=,BC=,AC =A ∠=() A .90B .60C .45D .306. 在Rt ABC △中,ACB ∠为90,CD AB ⊥,2cos 3BCD ∠=,1BD =,则边AB 的长是( ) A .910B .109C .2D .957.在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A 的值是( ) A .215 B .25 C .212 D .52 8.在ABC △中,90C ∠=°,2B A ∠=∠,则cos A 等于( ) AB .12C D9.如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .4310.在△ABC 中,∠C =90°,tan A =31,则sin B = ( ) A .1010B .32C .43D .1010311.正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( )C.12D.212.如图,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )C AB DA B CA .6sin 52︒米 B .6tan 52︒米 C . 6·cos52°米 D .6cos52︒米二、填空题13.若等腰梯形下底长为4cm ,高是2cm ,下底角的正弦值是45, 则上底长为 cm ,腰长是 cm .14.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处 测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示).15.如图,小明在楼顶A 处测得对面大楼楼顶点C 处的仰角为52°,楼底点D 处的俯角为13°.若两座楼AB 与CD 相距60米,则楼CD 的高度约为 米.(结果保留三个有效数字)(sin130.2250︒≈,cos130.9744≈,tan130.2309≈,sin520.7880≈,cos520.6157≈,tan 52 1.2799≈三.解答题16.计算:0)151(30sin 2273--︒+17.计算: 201()2sin 3032--+︒+-18.已知:如图,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6. 求BC 的长(结果保留根号).19.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m ). 1.73≈) 解:1320.如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?21.某大草原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙两个医疗站,如图,在A地北偏东45°、B地北偏西60°方向上有一牧民区C.一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I:从A地开车沿公路到离牧民区C最近的D处,再开车穿越草地沿DC方向到牧民区C.方案II:从A 地开车穿越草地沿AC方向到牧民区C.已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD.(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.11.731.41)BP北东A D B北东直角三角形边角关系练习题(2)一.选择题1.正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) ABC .12D .22.在Rt ABC △中,90C ∠=,若2AC BC =,则tan A 的值是( )A .12B .2 CD3.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B.2CD4.已知ABC ∆中,AC =4,BC =3,AB =5,则sin A =( )A.35 B. 45 C. 53 D. 345. 如图,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的 倾斜程度之间,叙述正确的是( )A .sin A 的值越大,梯子越陡B .cos A 的值越大,梯子越陡C .tan A 的值越小,梯子越陡D .陡缓程度与A ∠的函数值无关6. 把Rt ABC △各边的长度都扩大3倍得Rt A B C '''△,那么锐角A ,A '的余弦值的关系为( ) A.cos cos A A '= B.cos 3cos A A '= C.3cos cos A A '= D.不能确定7.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =, 则下列结论正确的有( ) ①6cm DE =②2cm BE = ③菱形面积为260cm④BD = A.1个B.2个C.3个D.4个 8. 2cos 45的值等于( )A.2BC.4D.9.如图,在ABC △中,90ACB ∠=,CD AB ⊥于D,若AC =AB = 则 tan BCD ∠的值为( )ABCD10.如图,AD CD ⊥,13AB =,12BC =,3CD =,4AD =,则s i n B =( )A .513B .1213C .35D .45ABODCBEAAC BD D ABC11.已知α为锐角,且23)10sin(=︒-α,则α等于( )A.︒50 B.︒60 C.︒70 D.︒80 12. 直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A .247BC .724D .13二.填空题13.已知在Rt ABC △中,90C ∠=,直角边AC 是直角边BC 的2倍,则sin A ∠的值是 .14. 在Rt ABC △中,90C =∠,3sin 5B =,则BC AB = . 15. 在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .16.计算:1sin 60cos302-=.17.计算:102(1cos60-+-= . 三.解答题18.在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.19.计算:01(π4)sin 302---;20.32cos458-+21.计算:22012(tan 601)()22-⎛⎫-+--+-π- ⎪⎝⎭6 8CEAB D22.如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.23.如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠, (1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长. (1)证:(2)解:24.如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′ 点的坐标;(2)求折痕CE 所在直线的解析式.CBAAACB 直角三角形的边角关系测试题一、选择题1.在△ABC 中,AC =3,BC =4,AB =5,则tan B 的值是( ) A 、43 B 、34 C 、53 D 、542.如图,已知一坡面的坡度i =α为 ( )A.15B.20C.30D.453.计算2sin30°cos60°的结果为( ) A .B .32C .12D .14.在ABC △中,︒=∠90C ,AB =15,sin A =13,则BC 等于( ) A .45 B .5 C .15 D .1455.如图,CD 是ABC Rt △斜边上的高,43AC BC ==,,则cos BCD ∠的值是( )(A)35 (B)34 (C)43 (D)456.如图,电线杆AB C 的中点处有一标志物,在地面D 点处测得标志物的仰角为45, 若点D 到电线杆底部点B a 的距离为,则电线杆AB 的长可表示为A.a B.2a C.32a D.52a 二、填空题7. 求值:sin 230°+cos 230°= .8. 计算:sin 45cos60sin 30+= .9. 如图,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD AB ∥.则α∠的余弦值为 . 10.等腰直角三角形的斜边长为,则此三角形的腰长为 .11.如图,一艘轮船向正东方向航行,上午9时测得它在灯塔P 的南偏西30°方向,距离灯塔120海里的M 处,上午11时到达这座灯塔的正南方向的N 处,则这艘轮船在这段时间内航行的平均速度是 海里/时. 三、解答题13.计算:1sin3021)5-+-+-14.tan 60.- 15.计算:1cos 602-+. ABO30东16. 下图为某小区的两幢10层住宅楼,由地面向上依次为第1层、第2层、…、第10层,每层的高度为3m ,两楼间的距离30AC =m .现需了解在某一时段内,甲楼对乙楼的采光的影响情况.假设某一时刻甲楼楼顶B 落在乙楼的影子长EC h =,太阳光线与水平线的夹角为α. (1)用含α的式子表示h ;(2)当30α=︒时,甲楼楼顶B 的影子落在乙楼的第几层?从此时算起,若α每小时增加10︒,几小时后,甲楼的影子刚好不影响乙楼采光.17. 如图8,大楼AD 的高为10m ,远处有一塔BC .某人在楼底A 处测得塔顶B 点处的仰角为60︒, 爬到楼顶D 点处测得塔顶B 点的仰角为30︒.求塔BC 的高度.解:18. 如图,在平面直角坐标系中, Rt △ABC 的斜边AB 在x 轴上,顶点C 在y 轴的负半轴上,3tan 4ABC ∠=,点P 在线段OC 上,且PO 、PC 的长(PO <PC )是方程212270x x -+=的两根. (1)求P 点坐标; (2)求AP 的长;(3)在x 轴上是否存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形是梯形?若存在,请直接写出直线PQ 的解析式;若不存在,请说明理由.AB C D Eα 太阳光 甲楼乙楼图8。

直角三角形边角关系10套题

直角三角形边角关系10套题

三角形边角关系11.已知Α为锐角,3cos 5A =,则tan Α= .2.在周长12的Rt A B C ∆中, sin B =0.5,则b= ,c= .3.在Rt A B C ∆中,05090,10,33A B C C a S ∆∠===, 则b= ,c= .4.已知在Rt A B C ∆中,090,,,sin C AC b AB c A ∠====那么 ,sin B = .5.在A B C ∆中,090,65,615C a b ∠===,则c= ,B ∠= .6.在Rt ∆MNP 中,若NP 是斜边,MN=15,NP=17,那么tanN + cotP= .7. √2×sin45°+√3×cos30°-3/2= .8.已知某大坝横截面为梯形,坝顶宽10米,坝高160米,且大坝迎水面坡度i 1=1:3,背水面坡度i 2=2:3,求大坝截面积.三角形边角关系21.在Rt A B C ∆中,0090,10,55C AC B ∠==∠=,则AB 上的高CD 的长可表示为 .2.在A B C ∆中,若cosB=0,b=21,c:a=5:3则BC 边上的中线AD 的长为 .3. 点Α在O 点北偏西035方位上,点B 在O 点北偏东055的方位上且O Α长80m,OB 长60m,那么ΑB 间的距离是 .4. 在Rt A B C ∆中,斜边上的高CD 把ΑB 分成ΑD 和BD,若ΑD:BD=34,则sin B = .5.在A B C ∆中,0490,sin ,8,5C B A B B C A C ∠==+==则 .6.在梯形ΑBCD 中,ΑD//BC,ΑB=CD,ΑD=4,BC=6,1cos ,4B S =梯则= .7. 已知tan α=3.则1/(sin²α+sinαcosα+cos²α) 的值为?8.从高24米的甲楼顶部Α处测得乙楼顶部B 的仰角α=300,测得乙楼底部C 的俯角β=600,求乙楼的高.三角形边角关系31.如图9-8,在A B C ∆中,D 是ΑB 的中点, DC ⊥ΑC,B C D ∠的正切值是13,则A ∠的正弦值是 .2.在A B C ∆中,1,2,12tgA tgC AC ===,那么BC 的值是 .3.在A B C ∆中,090,2,4,cos ABC C AC S A ∆∠===则= .4.如图9-9,在电视塔ΑD 的正东方向有两个地面观测点B 、C,在B 、C,两点测得塔顶Α的仰角分别为αβ,B 、C 两地相距α米,则ΑD 的高为 .5.飞机在离地面1200m 上空测得地面目标的俯角为060,那么此时飞机距目标 m.6.已知在A B C ∆中,ΑB=ΑC=10,BC=12,那么c o s B = ,tgC = ,sin A = .7. 3/5cosβ-4/5sinβ=5/13,求sinβ?8.在Rt ΔΑBC 中,∠ΑCB=900,sinB=35,D 是BC 边上的一点,DE ⊥ΑB ,垂足为E ,CD=DE ,ΑC+CD=9,求(1)BC 的长;(2)CE 的长.三角形边角关系41.A B C ∆中,05120,21,,3A B C c B b S a ∆∠===且则= .2.如图9-10,在四边形ΑBCD 中,ΑD=CD,ΑB=7,tg Α=2,090B D ∠=∠=,那么BC 的长为 .3.在ΔΑBC 中,∠C=900,CD ⊥ΑB ,垂足为D ,则比值B CC D B D A CA B A C B C B C、、、中等sin Α的个数有( ).(Α)4个 (B )3个 (C )2个 (D )1个4.如图9-11,在ΔΑBC 中,∠Α=300,E 为ΑC 上一点,且ΑE :EC=3:1,EF ⊥ΑB ,F 为垂足,连结FC ,则cot ∠CFB 的值等于( ).(Α)36(B )32(C )433 (D )1345.在ΑBC 中,∠Α=750,∠C=450,ΑB=2,则ΑC 的长等于( ).(Α)22 (B )23 (C )6 (D )2636.在Rt ΔΑBC 中,∠C=900,CD ⊥ΑB 于D ,若14B D A D=,则tan ∠BCD 的值是( ).(Α)14(B )13(C )12(D )27.在ΔΑBC 中,已知∠B=2倍等于其他两角的和,最长边与最短边的和是8,积是15,求这个三角形的面积及∠B 所对边的长.三角形边角关系51.在ΔΑBC 中,∠B=600,ΑB=6,BC=8,则ΑBC 的面积是( ). (Α)123 (B )12 (C )243 (D )1222.如图9-12,在矩形ΑBCD 中,BC=2,ΑE ⊥BD ,垂足为E ,∠B ΑE=300,则ΔECD 的面积是( ).(Α)23 (B )3 (C )32(D )333.如图9-13,∠ΑOP=∠BOP=150,PC ∥ΑO ,PD ⊥O Α,若PC=4,则PD 等于( ). (Α)4 (B )3 (C )2 (D )14.在ΔΑBC 中,∠Α=300,tgB=13,BC=10,那么ΑB 的长为( ).【2】(Α)3 (B )3 (C )33-(D )33+5.如图9-14,在ΑBC 中,点D 在ΑC 上,DE ⊥BC ,垂足为E ,若ΑD=2CD ,ΑB=4DE ,则sinB=( ). (Α)12(B )73(C )377(D )346.如图9-15,x=( ).(Α)sin cos a b a β- (B )cos cos a b a β- (C )cos sin b b aβ- (D )sin sin a b aβ-7.如图9-28,∠ΑCB=900,ΑB=13,ΑC=12,∠BCM=∠B ΑC ,求sin ∠B ΑC 和点B 到直线MC 的距离.三角形边角关系61.如图1所示的Rt△ABC中,cosA=___; 2.在Rt△ABC中,∠C=90°,BC=4,sinA=23,则AB=___;3.已知α为锐角,下列结论:○1sinα+cosα=1;○2如果α>45°,那么sinα>cosα;○3如果cosα>12,那么α<60°;○4()2sin 11sin αα-=-.正确的有( )A.1个;B.2个;C.3个;D.4个. 4.△ABC中,∠C=90°,如果sinA=35,那么tanB的值等于( )5.如图2,在高度为10米的平台CD上测得一高层建筑物AB的顶端A的仰角为60°,底端B的俯角为30°,则高层建筑物的高AB=____米;6.如图3,小明想测量电线杆AB的高度,发现电线杆的影子恰好在落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成 30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为___米(结果保留两位有效数字).7.如图7,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A,D到OP的距离.B C A135图1D B CA图230°AE BD C F 图3P E B F OAD G CQ图7三角形边角关系71.已知△ABC中,∠C=90°,sinA=35,则BC∶AC等于()A.3∶4;B.4∶3;C.3∶5;D.4∶5.2.∠A为锐角,且sinA=35,那么()A.0°<∠A<30°;B.30°<∠A<45°;C.45°<∠A<60°;D.60°<∠A<90°;3.计算:2cos45︒+tan60°cos30°=___;4.如果一个角的补角是这个角余角的4倍,则这个角的正弦值是___;5.在△ABC中,∠C=90°,若3AC=3BC,则∠A的度数是___,cosB的值是___;6.在△ABC中,∠C=90°,若tanA=12,则sinA=___;7.若tan9°·tanα=1,则锐角α=___度;8.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的边,则33sin sina Bb A+=___;9.如图6,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=12,求AD的长.BDCA图6三角形边角关系81.在Rt△ABC中,各边长都扩大2倍,则锐角A的正弦和余弦值()A.都不变;B.都扩大2倍;C,都缩小2倍;D.不能确定.2.在Rt△ABC中,∠C=90°,AB=c,BC=a,且a,c满足2234a ac c-+=0,则sinA=();A.1;B.13;C.1或13;D.1或3.3.三角函数sin23°,cos15°,cos41°的大小关系是()CA.cos41°>sin23°>cos15°;B.cos15°>sin23°>cos41°;C.cos15°>cos41°>sin23°;D.cos41°>cos15°>sin23°.4.在△ABC中,∠A,∠B均为锐角,且|tanB-3|+()22sin3A-=0,则△ABC是()A,等腰三角形;B.等边三角形;C.直角三角形;D.等腰直角三角形.5.河堤的横断面如图4所示,堤高BC是5米,迎水斜坡AB的长是10米,那么斜坡AB的坡度i是()A.1∶2;B.1∶3;C.1∶1.5;D.1∶3.6.若α为锐角,且sinα是方程22x+3x-2=0的一个根,则cosα=()A.12;B.32;C.22;D.12或327.如图5,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC=35,求:(1)DC的长;(2)A CB C的值.BDCA图5BCA图4三角形边角关系91、等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为( ) A 030 B 060 C 090 D 01202、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( )A 090 B 060 C75D 01053、如图,在矩形ABCD 中,DE⊥AC 于E ,设∠ADE=α,且53cos =α, AB= 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )5164、在课外活动上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为4502cm ,则对角线所用的竹条至少需( ). (A )cm 230 (B )30cm (C )60cm (D )cm 260 5、如果α是锐角,且135cos sin 22=︒+α,那么=αº.6、如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米.7.如图9,登山队员在山脚A点测得山顶B点的仰角为∠CAB=45°,当沿倾斜角为30°的斜坡前进100m到达D点以后,又在D点测得山顶B点的仰角为60°,求山的高度BC.(精确到1米)A E CB FD图9A BCD E三角形边角关系101、如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =______.2、支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米.那么旗杆的有为 米(用含α的三角比表示).3、在Rt ABC ∆中∠A<∠B,CM 是斜边AB 上的中线,将ACM ∆沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.4、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为 10米,坡角为︒55,路基高度为5.8米,求路基下底宽5.如图11,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A-B-C上的某点E处.已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点( )(A)在线段AB上;(B)在线段BC上;(C)可以在线段AB上,也可以在线段BC上; (2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)6、如图,客轮沿折线A―B―C 从A 出发经B 再到C 匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A―B―C 上的某点E 处.已知AB = BC =200海里,∠ABC =︒90,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C .可以在线段AB 上,也可以在线段BC 上(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)C F EBA D.图11αPoy x34︒555.8m10mABC D.。

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)

人教版八年级数学上册全等三角形的判定角边角判定三角形全等专项小练习(附答案)1.如图,已知∠CAB=∠DAB,则下列:①∠C=∠D;②AC=AD;③∠CBA=∠DBA;④BC=BD条件中,不能判定△ABC≌△ABD的是()A.①B.②C.③D.④2.如图,AB=AC,E,F分别是AB,AC的中点,BF,CE交于点D,连接AD.则此图中全等三角形有( )A.2对B.3对C.4对D.5对3.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A,B,E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)4.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ABO=∠DCO.能判定△ABC≌△DCB的是.(填正确答案的序号)5.(易错警示题)如图,在平面直角坐标系xOy中,点A的坐标是(2,0),点B 的坐标是(0,4),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当点C的坐标为时,以点C,O,D为顶点的三角形与△AOB 全等.6.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.7.(素养提升题)如图所示,已知DE=AE,点E在BC上,AE⊥DE,AB⊥BC,DC ⊥BC,请问,线段AB,DC和线段BC有何大小关系.并说明理由解题模型 发散思维模型 利用“ASA”或“AAS”证明三角形全等的书写模式如图:点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥BF ,CE ∥DF .求证:△AEC ≌△BFD .【证明】∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ,∵AE ∥BF ,CE ∥DF ,∴∠A =∠FBC ,∠D =∠ECA .在△AEC 和△BFD 中,A FBC AC BD ECA D ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△AEC ≌△BFD (ASA ).1.角边角(ASA )书写模式:如图,在△ABC 与△'''A B C 中,''''A A AB A B B B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△ABC ≌△A'B'C'(ASA ).2.角角边(AAS )书写模式:如图,在△ABC 与△'''A B C 中,'''A A B B BC B C ∠=∠⎧⎪∠=∠⎨⎪='⎩,,,∴△ABC ≌△A'B'C'(AAS )参考答案1.答案:D2.答案:C3.答案:AD=AC(∠D=∠C或∠ABD=∠ABC等)4.答案:①③④5.答案:(-4,0),(-2,0),(4,0)6.答案:见解析解析:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,A DB C AE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)∵△ABE≌△DCF∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°,∵AB=CF,∴CF=CD,∴∠D=∠CFD=1(18040)70 2︒︒︒⨯-=.7.答案:见解析解析:线段AB,DC和线段BC的关系是:BC=AB+DC.理由如下:∵AB⊥BC,DC⊥BC,∴∠ABE=∠ECD=90°,∵AE⊥DE,∴∠AED=90°,在△ABE中,∠BAE+∠AEB=90°,在△DCE中,∠EDC+∠DEC=90°. ∵∠BEA+∠DEC=90°,∴∠BEA=∠EDC,在△ABE和△ECD中,BEA CDEABE ECD DE AE∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE≌△ECD(AAS),∴AB=EC,BE=CD,∴BC=BE+EC=DC+AB.。

人教版八年级数学上册三角形边角边判定三角形全等专项小练习(附答案)

人教版八年级数学上册三角形边角边判定三角形全等专项小练习(附答案)

《12.2 三角形全等的判定课时2》基础练易错诊断(打“√”或“×”)1.两边和任一角分别相等的两个三角形全等.()2.有两边及其一边的对角分别相等的两个三角形全等.()3.在△ABC和△DEF中,若AB=DE,∠B=∠E,BC=EF,则△ABC≌△DEF.()对点达标知识点一用“SAS”证明三角形全等1.(2021·昆明质检)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CBB.AB=ABC.AD=ACD.∠D=∠C2.根据如图所给信息,可得x的长是()A.16B.18C.20D.16或183.(2021·宿州质检)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE4.(2020·柳州中考)如图,已知OC平分∠MON,点A,B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.5.(2020·兰州中考)如图,在△ABC中,AB=AC,点D,E分别是AC和AB的中点求证:BD=CE.知识点二“SAS”的实际应用6.(2021·武汉期中)如图,将两根钢条AA',BB的中点O连在一起,使AA',BB'可以绕着点O自由旋转,就做成了一个测量工件,则A'B′的长等于内槽宽AB,那么判定△OAB≌△OA'B′的理由是.7.如图,一块三角形玻璃碎成了Ⅰ,Ⅱ两块,现需购买同样大小的一块三角形玻璃,为方便起见,只需带上第块玻璃碎片.8.(2021·济南期中)如图,AD,BC表示两根长度相同的木条,若O是AD,BC的中点,经测量AB=9cm,则容器的内径CD为cm.参考答案易错诊断1.×2.×3.√对点达标1.C2.C3.B4.答案:见解析解析:∵OC平分∠MON,∴∠AOC=∠BOC,在△AOC和△BOC中,OA OBAOC BOC OC OC=⎧⎪∠=∠⎨⎪=⎩,,,∴△AOC≌△BOC(SAS).5. 答案:见解析解析:∵AB=AC,D,E分别为AC,AB的中点,∴AD=AE,在△ABD和△ACE中,AB ACA A AD AE=⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD≌△ACE(SAS),∴BD=CE.6.SAS7.I8.9。

11道三角形的边角关系+19道面积问题和等积变换(30道,含详细解答)

11道三角形的边角关系+19道面积问题和等积变换(30道,含详细解答)

11道三角形的边角关系+19道面积问题和等积变换11道三角形的边角关系+19道面积问题和等积变换一.解答题(共30小题)1.如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD>BC.2.将长度为2n(n为自然数,且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边的长分别为a,b,c,且满足a≤b≤c的一个三角形.(1)就n=4,5,6的情况,分别写出所有满足题意的(a,b,c).(2)有人根据(1)中的结论,便猜想:当铅丝的长度为2n(n为自然数,且n≥4)时,对应(a,b,c)的个数一定是n﹣3,事实上这是一个不正确的猜想.请写出n=12时所有的(a,b,c),并回答(a,b,c)的个数.(3)试将n=12时所有满足题意的(a,b,c),按照至少两种不同的标准进行分类.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD与CD﹣CB的大小关系,并证明你的结论.解:结论:_________证明:4.已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.5.如图所示,六边形ABCDEF中,AB=BC=CD=DE=EF=FA,并且∠A+∠C+∠E=∠B+∠D+∠F,求证:∠A=∠D,∠B=∠E,∠C=∠F.6.如图,△ABC中,∠C为锐角,AD,BE分别是BC和AC边上的高线,设CD=BC,CE=AC,当m,n为正整数时,试判断△ABC的形状,并说明理由.7.如图,是由9个等边三角形(三条边都相等的三角形)组成的装饰图案,已知中间最小的等边三角形(阴影部分)边长为1cm,现欲将此图案的周边镶上一根彩线,问彩线至少需要多长?8.如图,在△ABC中,AP=QP=QB=BC,AB=AC.求∠A的度数.9.将长为2n(n为自然数且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边长分别是a,b,c且满足a<b<c的一个三角形,就n=6的情况,分别写出所有满足题意的(a,b,c).10.一个直角三角形的边长都是整数,它的面积和周长的数值相等.试确定这个直角三角形三边的长.11.设整数a,b,c(a≥b≥c)为三角形的三边长,满足a2+b2+c2﹣ab﹣ac﹣bc=13,求符合条件且周长不超过30的三角形的个数.12.(2012•贵阳)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有_________条面积等分线,平行四边形有_________条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.13.点E在凸四边形ABCD内部.每个三角形EAB,EBC,ECD的边长都是整数,周长与面积数值上相等,这三个面积互不相同.△EDA的最大面积是什么?14.如图是一张“3×5”(表示边长分别为3和5)的长方形,现要把它分成若干张边长为整数的长方形(包括正方形)纸片,并要求分得的任何两张纸片都不完全相同.(1)能否分成5张满足上述条件的纸片?(2)能否分成6张满足上述条件的纸片?若能分,用“a×b”的形式分别表示出各张纸片的边长,并画出分割的示意图;若不能分,请说明理由.15.如图中,△ABC,△BCD,△CDE,△DEF,△EFA,△FAB的面积之和等于六边形ABCDEF的面积.又图中的6个阴影三角形面积之和等于六边形ABCDEF的面积的.求六边形A1B1C1D1E1F1的面积与六边形ABCDEF的面积之比.16.(1)试设计一种方法,把一个正方形不重复不遗漏地分割成8个正方形(分得的正方形大小可以不相同);又问如何把正方形按上述要求分成31个正方形?(2)试设计一种方法,把一个立方体分割成55个立方体(要求:不重复不遗漏,分得的立方体大小可以不相同).17.用面积方法证明:三角形两边中点连线平行于第三边.18.设点E、F、G、H分别在面积为1的四边形ABCD的边AB、BC、CD、DA上,且====k(k是正数),求四边形EFGH的面积.19.如图1,在一个7×7的正方形ABCD网格中,实线将它分割成5块,再把这5块拼成如图2,中间会出现一个小孔,如果正方形ABCD的边长为a,试计算图2中小孔的面积.20.如图,已知M、E分别是AB、CD中点,MN⊥CD,EF⊥AB,若MN=AB,EF=CD求证:AD∥BC.21.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.22.已知四边形ABCD中,AD+DB+BC=16,求四边形ABCD的面积的最大值.23.长边与短边之比为2:1的长方形为“标准长方形”.约定用短边分别为a1、a2、a3、a4、a5(其中a1<a2<a3<a4<a5)的5个不同“标准长方形”拼成的大长方形记为(a1、a2、a3、a4、a5),如图,短边长分别为1,2,2.5,4.5,7的“标准长方形”拼成的大长方形记为(1,2,2.5,4.5,7),解答下列问题:(1)写出长方形(1,2,5,a4,a5)中a4和a5可取的值及相应的面积不同的长方形(用上述长方形的记法表示出来),并画出其中两个符合要求的长方形示意图.(2)所有这些长方形(1,2,5,a4,a5)的面积的最大值是多少?24.设△ABC是等腰直角三角形,它的腰长是1,P是斜边AB上一点,由P到其它两边的垂线足是Q和R,考虑三角形APQ和PBR的面积,以及矩形QCRP的面积,证明无论P怎样选取,这三个面积中最大的至少是.25.在边长为a的正△ABC,点P,Q,R分别在边BC,CA,AB上运动,并保持BP+CQ+AR=a.设BP=x,CQ=y,AR=z,△PQR的面积为S(1)用x,y,z表示S;(2)求S的最大值;(3)求PQ,QR,RP在S取得最大值时的值.26.如图,已知△ABC和平行于BC的直线DE,且△BDE的面积等于定值k2,那么当k2与△BDE之间满足什么关系时,存在直线DE,有几条?27.已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.(1)这样的四边形有几个?(2)求这样的四边形边长的平方和的最小值.28.在面积为1的△ABC中,P为边BC上的中点,点Q在边AC上,且AQ=2QC,连接AP,BQ相交于点R,求:△ABR的面积?29.线段BD、DE、EC的长分别为2厘米,4厘米和2厘米.点F是线段AE的中点,△ABC的边BC上的高为4厘米,求△DEF的面积.30.规律:如图1,直线m∥n,A、B为直线n上的点,C、P为直线m上的点.如果A、B、C为三个定点,点P在m上移动,那么无论点P移动到何位置,△ABP与△ABC的面积总相等,其理由是_________.应用:(1)如图2,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是_________.(2)如图3,四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,求△ACF的面积.(3)如图4,五边形ABCDE和五边形BFGHP都是正五边形,若正五边形ABCDE的边长为a,求△ACH的面积(结果不求近似值).11道三角形的边角关系+19道面积问题和等积变换参考答案与试题解析一.解答题(共30小题)1.如图,四边形ABCD中,BC>CD>DA,O为AB中点,且∠AOD=∠COB=60°,求证:CD+AD>BC.中,,2.将长度为2n(n为自然数,且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边的长分别为a,b,c,且满足a≤b≤c的一个三角形.(1)就n=4,5,6的情况,分别写出所有满足题意的(a,b,c).(2)有人根据(1)中的结论,便猜想:当铅丝的长度为2n(n为自然数,且n≥4)时,对应(a,b,c)的个数一定是n﹣3,事实上这是一个不正确的猜想.请写出n=12时所有的(a,b,c),并回答(a,b,c)的个数.(3)试将n=12时所有满足题意的(a,b,c),按照至少两种不同的标准进行分类.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD与CD﹣CB的大小关系,并证明你的结论.解:结论:AB﹣AD>CD﹣CB证明:4.已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积.只可能是或或,三角形的外接圆的面积为5.如图所示,六边形ABCDEF中,AB=BC=CD=DE=EF=FA,并且∠A+∠C+∠E=∠B+∠D+∠F,求证:∠A=∠D,∠B=∠E,∠C=∠F.6.如图,△ABC中,∠C为锐角,AD,BE分别是BC和AC边上的高线,设CD=BC,CE=AC,当m,n为正整数时,试判断△ABC的形状,并说明理由.CD=CE=∴7.如图,是由9个等边三角形(三条边都相等的三角形)组成的装饰图案,已知中间最小的等边三角形(阴影部分)边长为1cm,现欲将此图案的周边镶上一根彩线,问彩线至少需要多长?8.如图,在△ABC中,AP=QP=QB=BC,AB=AC.求∠A的度数.=909.将长为2n(n为自然数且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边长分别是a,b,c且满足a<b<c的一个三角形,就n=6的情况,分别写出所有满足题意的(a,b,c).∴10.一个直角三角形的边长都是整数,它的面积和周长的数值相等.试确定这个直角三角形三边的长.,于是将存在性问a+b+c=a+b+11.设整数a,b,c(a≥b≥c)为三角形的三边长,满足a2+b2+c2﹣ab﹣ac﹣bc=13,求符合条件且周长不超过30的三角形的个数.,因此,,解得.,12.(2012•贵阳)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有无数条面积等分线,平行四边形有无数条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.13.点E在凸四边形ABCD内部.每个三角形EAB,EBC,ECD的边长都是整数,周长与面积数值上相等,这三个面积互不相同.△EDA的最大面积是什么?=,∠==,∠AED=×14.如图是一张“3×5”(表示边长分别为3和5)的长方形,现要把它分成若干张边长为整数的长方形(包括正方形)纸片,并要求分得的任何两张纸片都不完全相同.(1)能否分成5张满足上述条件的纸片?(2)能否分成6张满足上述条件的纸片?若能分,用“a×b”的形式分别表示出各张纸片的边长,并画出分割的示意图;若不能分,请说明理由.①②15.如图中,△ABC,△BCD,△CDE,△DEF,△EFA,△FAB的面积之和等于六边形ABCDEF的面积.又图中的6个阴影三角形面积之和等于六边形ABCDEF的面积的.求六边形A1B1C1D1E1F1的面积与六边形ABCDEF的面积之比.S,16.(1)试设计一种方法,把一个正方形不重复不遗漏地分割成8个正方形(分得的正方形大小可以不相同);又问如何把正方形按上述要求分成31个正方形?(2)试设计一种方法,把一个立方体分割成55个立方体(要求:不重复不遗漏,分得的立方体大小可以不相同).17.用面积方法证明:三角形两边中点连线平行于第三边.=18.设点E、F、G、H分别在面积为1的四边形ABCD的边AB、BC、CD、DA上,且====k(k是正数),求四边形EFGH的面积.∵AE=BE=﹣19.如图1,在一个7×7的正方形ABCD网格中,实线将它分割成5块,再把这5块拼成如图2,中间会出现一个小孔,如果正方形ABCD的边长为a,试计算图2中小孔的面积.,则GE=,=20.如图,已知M、E分别是AB、CD中点,MN⊥CD,EF⊥AB,若MN=AB,EF=CD求证:AD∥BC.MN= CDDE=ABDE MN=AM EF=ABMN=EF=CD21.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,A V与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.(+,=,[]==.22.已知四边形ABCD中,AD+DB+BC=16,求四边形ABCD的面积的最大值.﹣ADBDAD BDBD﹣<=8=23.长边与短边之比为2:1的长方形为“标准长方形”.约定用短边分别为a1、a2、a3、a4、a5(其中a1<a2<a3<a4<a5)的5个不同“标准长方形”拼成的大长方形记为(a1、a2、a3、a4、a5),如图,短边长分别为1,2,2.5,4.5,7的“标准长方形”拼成的大长方形记为(1,2,2.5,4.5,7),解答下列问题:(1)写出长方形(1,2,5,a4,a5)中a4和a5可取的值及相应的面积不同的长方形(用上述长方形的记法表示出来),并画出其中两个符合要求的长方形示意图.(2)所有这些长方形(1,2,5,a4,a5)的面积的最大值是多少?24.设△ABC是等腰直角三角形,它的腰长是1,P是斜边AB上一点,由P到其它两边的垂线足是Q和R,考虑三角形APQ和PBR的面积,以及矩形QCRP的面积,证明无论P怎样选取,这三个面积中最大的至少是.、<,=.且=x,.怎样选取,这三个面积中最大的至少是、x25.在边长为a的正△ABC,点P,Q,R分别在边BC,CA,AB上运动,并保持BP+CQ+AR=a.设BP=x,CQ=y,AR=z,△PQR的面积为S(1)用x,y,z表示S;(2)求S的最大值;(3)求PQ,QR,RP在S取得最大值时的值.=AD=BC a=,RE=BP RE=•yS=xy+xz+x x y≤S=(×ax=y=z=ax=y=z=aPQ=QR=RP=a26.如图,已知△ABC和平行于BC的直线DE,且△BDE的面积等于定值k2,那么当k2与△BDE之间满足什么关系时,存在直线DE,有几条?==x,27.已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.(1)这样的四边形有几个?(2)求这样的四边形边长的平方和的最小值.(28.在面积为1的△ABC中,P为边BC上的中点,点Q在边AC上,且AQ=2QC,连接AP,BQ相交于点R,求:△ABR的面积?面积的=,面积==:×=29.线段BD、DE、EC的长分别为2厘米,4厘米和2厘米.点F是线段AE的中点,△ABC的边BC上的高为4厘米,求△DEF的面积.SDE×S30.规律:如图1,直线m∥n,A、B为直线n上的点,C、P为直线m上的点.如果A、B、C为三个定点,点P在m上移动,那么无论点P移动到何位置,△ABP与△ABC的面积总相等,其理由是同底等高的两个三角形面积相等.应用:(1)如图2,△ABC和△DCE都是等边三角形,若△ABC的边长为1,则△BAE的面积是.(2)如图3,四边形ABCD和四边形BEFG都是正方形,若正方形ABCD的边长为4,求△ACF的面积.(3)如图4,五边形ABCDE和五边形BFGHP都是正五边形,若正五边形ABCDE的边长为a,求△ACH的面积(结果不求近似值).=×。

八年级上《第13章三角形中的边角关系》达标检测卷含答案

八年级上《第13章三角形中的边角关系》达标检测卷含答案

第13章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题4分,共40分)1.下列语句中,不是命题的是()A.所有的平角都相等B.锐角小于90°C.两点确定一条直线D.过一点作已知直线的平行线2.(·大连改编)下列长度的三条线段能组成三角形的是()A.1,2,3 B.1,1.5,3 C.3,4,8 D.4,5,63.若三角形三个内角的度数的比为1∶2∶3,则这个三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰直角三角形4.下列命题:①三角形的三个内角中最多有一个钝角;②三角形的三个内角中至少有两个锐角;③有两个内角分别为50°和20°的三角形一定是钝角三角形;④直角三角形中两锐角之和为90°.其中是真命题的有()A.1个B.2个C.3个D.4个5.(·广西)如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为()A.40°B.60°C.80°D.100°(第5题)(第7题)(第8题)6.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为()A.7 cm B.3 cm C.7 cm或3 cm D.8 cm7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°8.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A.AB=2BF B.∠ACE=12∠ACBC.AE=BE D.CD⊥BE9.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC,BE⊥AC,AD与BE 交于F,则∠AFB的度数是()A.126°B.120°C.116°D.110°(第9题)(第10题)10.如图,在△ABC中,点D,E,F分别在三边上,点E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=8,S△AGE=3,则△ABC的面积是() A.25 B.30 C.35 D.40二、填空题(每题5分,共20分)11.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________.(第11题)(第14题)12.“直角三角形有两个角是锐角”这个命题的逆命题是____________________,它是一个________命题(填“真”或“假”).13.(·佛山)各边长度都是整数、最大边长为8的三角形共有______个.14.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2,…,∠A6BC与∠A6CD的平分线相交于点A7,得∠A7,则∠A7=________.三、解答题(15、16题每题6分,17题5分,18~20题每题8分,21题9分,22题10分,共60分)15.在△ABC中,∠A+∠B=∠C,∠B=2∠A.(1)求∠A,∠B,∠C的度数;(2)△ABC按边分类,属于什么三角形?△ABC按角分类,属于什么三角形?16.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.求∠4的度数.(第16题)(第17题)17.填写下面证明中每一步的理由.如图,已知BD⊥AC,EF⊥AC,D、F是垂足,∠1=∠2.求证:∠ADG=∠C.证明:∵BD⊥AC,EF⊥AC(已知),∴∠3=∠4=90°(垂直的定义),∴BD∥EF().∴∠2=∠CBD().∵∠1=∠2(已知),∴∠1=∠CBD(),∴GD∥BC(),∴∠ADG=∠C().18.在等腰三角形ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两部分,求这个等腰三角形的底边长.19.如图,已知△ABC.(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE;(2)若∠A=∠B,CE是外角∠BCD的平分线,请判断CE和AB的位置关系,并说明你的理由.(第19题)20.已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.21.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BE D的度数.(2)作△BED中BD边上的高,垂足为F.(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?(第21题)22.已知∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图①,若AB∥ON,则:①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第22题)答案一、1.D 2.D3.C 点拨:利用方程思想求解,设三个内角的度数分别为x ,2x ,3x ,则x +2x +3x =180°,解得x =30°. 3x =90°. 所以这个三角形是直角三角形.4.D5.C 点拨:∵∠CBD 是△ABC 的外角,∴∠CBD =∠C +∠A.又∵∠A =40°,∠CBD =120°,∴∠C =∠CBD -∠A =120°-40°=80°.6.B 点拨:利用分类讨论思想求解,当3 cm 为底边长时,腰长为13-32=5(cm ),此时三角形三边长分别为3 cm ,5 cm ,5 cm ,符合三边关系,能组成三角形;当3 cm 为腰长时,底边长为13-2×3=7(cm ),此时三角形三边长分别为 3 cm ,3 cm ,7 cm ,3+3<7,不符合三边关系,不能组成三角形.所以底边长只能是3 cm ,故选B .7.C8.C 点拨:CD 是△ABC 的高,所以CD ⊥BE ,D 正确;CE 是△ABC 的角平分线,所以∠ACE =∠BCE =12∠ACB ,B 正确;CF 是△ABC 的中线,AF =BF =12AB ,即AB =2BF ,A 正确;故选C .9.A 点拨:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.∵AD ⊥BC ,∴∠ADC =90°,∴∠DAE =90°-∠ACB =90°-54°=36°.又∵BE ⊥AC ,∴∠AEB =90°,∴∠AFB =∠DAE +∠AEB =36°+90°=126°.10.B 点拨:在△BDG 和△CDG 中,由BD =2DC ,知S △BDG =2S △GDC ,因此S △GDC=4,同理S △AGE =S △GEC =3,S △BEC =S △BGD +S △GDC +S △GEC =8+4+3=15,所以△ABC 的面积=2S △BEC =30.故选B .二、11.稳定性12.有两个角是锐角的三角形是直角三角形;假13.20 点拨:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8,故各边长度都是整数、最大边长为8的三角形共有20个.14.α128三、15.解:(1)因为∠A +∠B +∠C =180°,而∠A +∠B =∠C ,所以2∠C =180°,∠C =90°.所以∠A +∠B =90°,而∠B =2∠A ,所以3∠A =90°,∠A =30°,∠B =2∠A=60°.(2)△ABC 按边分属于不等边三角形.按角分属于直角三角形.16.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°,∵∠2=12∠3,∴∠2=10°,∴∠ABC =180°-100°-10°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.17.同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等18.解:设这个等腰三角形的腰长为a ,底边长为b. ∵D 为AC 的中点, ∴AD =DC =12AC =12a.根据题意得⎩⎨⎧32a =15,12a +b =12,或⎩⎨⎧32a =12,12a +b =15.解得⎩⎪⎨⎪⎧a =10,b =7,或⎩⎪⎨⎪⎧a =8,b =11. 又∵三边长为10,10,7和8,8,11均可以构成三角形. ∴这个等腰三角形的底边长为7或11.(第19题)19.解:(1)如图. (2)CE ∥AB.理由如下:∵∠A =∠B ,∴∠BCD =∠A +∠B =2∠B. 又∵CE 是∠BCD 的平分线, ∴∠BCD =2∠BCE , ∴∠BCE =∠B ,∴CE ∥AB.20.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a -3时,2a -1=a ,即a =1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.(第21题)21.(1)∵∠ABE =15°,∠BAD =40°,∴∠BED =∠ABE +∠BAD =15°+40°=55°. (2)如图.(3)∵AD 为△ABC 的中线,BE 为△ABD 的中线,∴S △ABD =12S △ABC ,S △BDE =12S △ABD ,∴S △BDE =12×12S △ABC =14S △ABC ,∵△A BC 的面积为40,∴S △BDE =14×40=10,∵BD =5,∴12×5·EF =10,解得EF =4,即 △BDE 中BD 边上的高为4.22.(1)①20° ②120;60(2)存在.①当点D 在线段OB 上时,若∠BAD =∠ABD ,则x =20.若∠BAD =∠BDA ,则x =35.若∠ADB =∠ABD ,则x =50.②当点D 在射线BE 上时,因为∠ABE =110°,且三角形的内角和为180°,所以只有∠BAD =∠BDA ,此时x =125,综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x =20,35,50,125.。

中考数学直角三角形的边角关系综合练习题含详细答案

中考数学直角三角形的边角关系综合练习题含详细答案

中考数学直角三角形的边角关系综合练习题含详细答案一、直角三角形的边角关系1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题:(1)当 t 为何值时,点 E 在 BAC 的平分线上?(2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式;(3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;(4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)4s t =;(2)PEGO S 四边形2315688t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165t =时,OE OQ ⊥. 【解析】【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题.(2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可.(4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG=,由此构建方程即可解决问题.【详解】(1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm ,∴22108-=6(cm ),∵OD 垂直平分线段AC ,∴OC=OA=3(cm ),∠DOC=90°,∵CD ∥AB ,∴∠BAC=∠DCO ,∵∠DOC=∠ACB ,∴△DOC ∽△BCA , ∴AC AB BC OC CD OD ==, ∴61083CD OD==, ∴CD=5(cm ),OD=4(cm ),∵PB=t ,PE ⊥AB , 易知:PE=34t ,BE=54t , 当点E 在∠BAC 的平分线上时,∵EP ⊥AB ,EC ⊥AC ,∴PE=EC ,∴34t=8-54t , ∴t=4. ∴当t 为4秒时,点E 在∠BAC 的平分线上.(2)如图,连接OE ,PC .S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )=1414153154338838252524524t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯⨯-+⨯-⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣ =281516(05)33t t t -++<<. (3)存在. ∵28568(05)323S t t ⎛⎫=--+<< ⎪⎝⎭, ∴t=52时,四边形OPEG 的面积最大,最大值为683. (4)存在.如图,连接OQ .∵OE ⊥OQ ,∴∠EOC+∠QOC=90°,∵∠QOC+∠QOG=90°,∴∠EOC=∠QOG,∴tan∠EOC=tan∠QOG,∴EC GQOC OG=,∴358544345ttt-=-,整理得:5t2-66t+160=0,解得165t=或10(舍弃)∴当165t=秒时,OE⊥OQ.【点睛】本题属于四边形综合题,考查了解直角三角形,相似三角形的判定和性质,锐角三角函数,多边形的面积等知识,解题的关键是学会利用参数构建方程解决问题.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C 处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.如图,反比例函数() 0k y k x=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒.(1)求k 的值及点B 的坐标;(2)求tanC 的值.【答案】(1)2k =,()1,2B --;(2)2.【解析】【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数()0k y k x=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C tan 即可.【详解】(1)∵点A (1,a )在2y x =上,∴a =2,∴A (1,2),把A (1,2)代入 k y x =得2k =, ∵反比例函数()0k y k x=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点,∴A B 、 两点关于原点O 中心对称,∴()12B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,∵90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=, ∴AD 22OD 1tanC tan AOD =∠===.【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD 是关键.4.如图,PB 为☉O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交☉O 于点A ,连接PA ,AO.并延长AO 交☉O 于点E ,与PB 的延长线交于点D .(1)求证:PA 是☉O 的切线;(2)若=,且OC=4,求PA 的长和tan D 的值.【答案】(1)证明见解析;(2)PA =3,tan D=. 【解析】试题分析: (1)连接OB ,先由等腰三角形的三线合一的性质可得:OP 是线段AB 的垂直平分线,进而可得:PA=PB ,然后证明△PAO ≌△PBO ,进而可得∠PBO=∠PAO ,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA 是⊙O 的切线;(2)连接BE ,由,且OC=4,可求AC ,OA 的值,然后根据射影定理可求PC 的值,从而可求OP 的值,然后根据勾股定理可求AP 的值.试题解析:(1)连接OB ,则OA=OB ,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG =3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3AG . 又∵CG ﹣FG =24m ,即3AG ﹣3=24m , ∴AG =123m ,∴AB =123+1.6≈22.4m .6.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为13DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan3B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan B=∵MN∥AD,∴∠A=∠B,∴tan A3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE3在Rt△CEF中,设EF=x,CF3x(x>0),CE=2.5,代入得(52)2=x2+3x2,解得x=1.25,∴CF3x≈2.2,∴该停车库限高约为2.2米.【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.7.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC ,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD ,∵AB ⊥CD ,AB 是⊙O 的直径,∴¶¶ADAC =, ∴∠ACD =∠B =∠ADC ,∵∠FPC =∠B ,∴∠ACD =∠FPC ,∴∠APC =∠ACF ,∵∠FAC =∠CAF ,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG=225OP OG6+=,GD=222 3DE GE+=,∴PD=PG+GD=3102.【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.8.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.9.已知抛物线y=﹣16x2﹣23x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.【答案】(1) y=13x+2;(2) 点M坐标为(﹣2,53)时,四边形AOCP的面积最大,此时|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(35-,195).【解析】【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.【详解】(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,83),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k13=,则:直线AC的表达式为:y13=x+2;(2)如图,过点P作x轴的垂线交AC于点H.四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设点P坐标为(m,16-m223-m+2),则点G坐标为(m,13m+2),S△ACP12=PG•OA12=•(16-m223-m+213-m﹣2)•612=-m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,52).连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,直线OP的表达式为:y56=-x,当x=﹣2时,y53=,即:点M坐标为(﹣2,5 3),|PM﹣OM|的最大值为:2222555(32)()2()233-++--+=61.(3)存在.∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6﹣a)2=22+a2,解得:a83=,则:MC103=,过点D作x轴的垂线交x轴于点N,交EC于点H.在Rt△DMC中,12DH•MC12=MD•DC,即:DH10833⨯=⨯2,则:DH85=,HC2265DC DH=-=,即:点D的坐标为(61855-,);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣61010,D′坐标为(618551010,-++),而点E坐标为(﹣6,2),则2''A D =22618(6)()55-++=36,2'A E =223()(2)1010m m +-=24410m m -+,2'ED =222438()()551010m m +++=232128510m m ++.若△A ′ED ′为直角三角形,分三种情况讨论: ①当2''A D +2'A E=2'ED 时,36+24410m m -+=232128510m m ++,解得:m =2105,此时D ′(6318551010m m ,-++)为(0,4); ②当2''A D +2'ED =2'A E 时,36+232128510m m ++=24410m m -+,解得:m =8105-,此时D ′(6318551010m m ,-++)为(-6,2);③当2'A E +2'ED =2''A D 时,24410m m -++232128510m m ++=36,解得:m =8105-或m =105,此时D ′(6318551010m m ,-++)为(-6,2)或(35-,195).综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,195). 【点睛】本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.10.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.(1)填空:点的坐标为 ,抛物线的解析式为 ; (2)当点在线段上运动时(不与点,重合),①当为何值时,线段最大值,并求出的最大值;②求出使为直角三角形时的值;(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.【答案】(1),;(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.【解析】【分析】(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.【详解】解:(1)把点坐标代入直线表达式,解得:,则:直线表达式为:,令,则:,则点坐标为,将点的坐标代入二次函数表达式得:,把点的坐标代入二次函数表达式得:,解得:,故:抛物线的解析式为:,故:答案为:,;(2)①∵在线段上,且轴,∴点,,∴,∵,∴抛物线开口向下,∴当时,有最大值是3,②当时,点的纵坐标为-3,把代入抛物线的表达式得:,解得:或0(舍去),∴;当时,∵,两直线垂直,其值相乘为-1,设:直线的表达式为:,把点的坐标代入上式,解得:,则:直线的表达式为:,将上式与抛物线的表达式联立并解得:或0(舍去),当时,不合题意舍去,故:使为直角三角形时的值为3或;(3)∵,,在中,,则:,,∵轴,∴,若抛物线上有且只有三个点到直线的距离是,则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.当过点的直线与抛物线有一个交点,点的坐标为,设:点坐标为:,则:,过点作的平行线,则点所在的直线表达式为:,将点坐标代入,解得:过点直线表达式为:,将拋物线的表达式与上式联立并整理得:,,将代入上式并整理得:,解得:,则点的坐标为,则:点坐标为,则:,∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,即:过点与平行的直线与抛物线的交点为另外两个点,即:、,直线的表达式为:,将该表达式与二次函数表达式联立并整理得:,解得:,则点、的横坐标分别为,,作交直线于点,则,作轴,交轴于点,则:,,,则:,同理:,故:点,,,构成的四边形的面积为:6或或.【点睛】本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.11.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若2,cos∠ACD= 45,求tan∠AEC的值及CD的长.【答案】tan ∠AEC=3, CD=12125【解析】解:在RT △ACD 与RT △ABC 中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos ∠ABC=cos ∠ACD=45在RT △ABC 中,45BC AB = 令BC=4k,AB=5k 则AC=3k 由35BE AB = ,BE=3k 则CE=k,且CE=2 则k=2,AC=32 ∴RT △ACE 中,tan ∠AEC=ACEC=3 ∵RT △ACD 中cos ∠ACD=45CD AC = ,,CD=12125.12.在平面直角坐标系中,O 为坐标原点,点A (0,1),点C (1,0),正方形AOCD 的两条对角线的交点为B ,延长BD 至点G ,使DG=BD ,延长BC 至点E ,使CE=BC ,以BG ,BE 为邻边作正方形BEFG . (Ⅰ)如图①,求OD 的长及ABBG的值; (Ⅱ)如图②,正方形AOCD 固定,将正方形BEFG 绕点B 逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′. ①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A 、B 、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(12+2,12﹣2)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.。

初二数学三角形边角练习题12.25

初二数学三角形边角练习题12.25

一.选择题(共23小题)之袁州冬雪创作1.如图,图中三角形的个数为()A.3个B.4个C.5个D.6个2.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()A.399 B.401 C.405 D.4073.下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形4.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有双方相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④5.下列说法正确的有()(1)等边三角形是等腰三角形;(2)三角形的双方之差大于第三边;(3)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.1个B.2个C.3个D.4个6.如图,线段AC,DE相交于点B,则图中可数出的三角形个数为()A.60 B.52 C.48 D.427.若有一个公共角的两个三角形称为一对“共角三角形”,则图中以角B为公共角的“共角三角形”有()对.A.6 B.9 C.12 D.158.三角形的一个顶点与对边中点的连线称三角形的中线,这条中线关于这个顶角的平分线对称的直线称为三角形的共轭中线,对于共轭中线下列说法正确的序号是()①等腰三角形底边上的共轭中线就是它的高;②直角三角形斜边上的高线就是斜边的共轭中线;③钝角三角形最大边上的共轭中线就是它的高;④△ABC中,若AM为BC边上的中线,AD为BC边上的共轭中线,则∠BAM=∠CAD.A.①②B.①②④C.①③④D.①②③④9.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE 平分∠BAC.A.1 B.2 C.3 D.410.给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()A.1个B.2个C.3个D.4个11.①三角形的三条角平分线交于一点,这点到三条边的间隔相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的间隔相等.以上命题中真命题是()A.①④B.②③C.①②③④D.①③④12.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A.1cm2B.2cm2C.8cm2D.16cm213.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF 的面积分别为4、5、6,四边形DHOG面积为()A.5 B.4 C.8 D.614.如图,P是△ABC内一点,BP,CP,AP的延长线分别与AC,AB,BC交于点E,F,D.思索下列三个等式:①;②;③.其中正确的有()A.0个B.1个C.2个D.3个15.如图,任意四边形ABCD中,AC和BD相交于点O,把△AOB、△AOD、△COD、△BOC的面积分别记作S1、S2、S3、S4,则下列各式成立的是()A.S1+S3=S2+S4B.S3﹣S2=S4﹣S1C.S1•S4=S2•S3 D.S1•S3=S2•S416.设△ABC的三边长分别为BC=2,CA=3,AB=4,h a,h b,h c分别暗示边BC、CA、AB上的高,则=()A.B.C.D.17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=()A.1 B.2 C.3 D.418.G为△ABC的重心,△ABC的三边长知足AB>BC>CA,记△GAB,△GBC,△GCA的面积分别为S1、S2、S3,则有()A.S1>S2>S3B.S1=S2=S3C.S1<S2<S3D.S1S2S3的大小关系不确定19.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()A.40°B.41°C.42°D.43°20.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个21.当三角形中一个内角α是另外一个内角β的两倍时,我们称此三角形为“尺度三角形”,其中α为“尺度角”,如果一个“尺度三角形”的“尺度角”为100°,那末这个“尺度三角形”的最小内角度数为()A.30°B.45°C.50°D.60°22.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°23.如图,∠1=75°,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC,∠EDF=∠EFD.则∠A的度数为()A.15°B.20°C.25°D.30°二.填空题(共5小题)24.下列说法正确的是(只填序号)①三角形的角平分线是射线;②二角形的三条角平分线都在三角形外部,且交于一点;③三角形的三条高都在三角形外部;④三角形的一条中线把该三角形分成面积相等的两部分.25.如图,在△ABC中,E是BC上的一点,EC=2BE,点D 是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=36,则S1﹣S2=.26.如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E 是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那末当t=,△APE的面积等于10.27.如图,在△ABC中,∠A=75°,直线DE分别与边AB,AC交于D,E两点,则∠1+∠2=.28.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为°.三.解答题(共1小题)29.观察以下图形,回答问题:(1)图②有个三角形;图③有个三角形;图④有个三角形;…猜测第七个图形中共有个三角形.(2)按上面的方法继续下去,第n个图形中有个三角形(用n的代数式暗示结论).参考答案一.选择题(共23小题)1.C;2.B;3.D;4.C;5.B;6.C;7.A;8.B;9.B;10.B;11.C;12.D;13.A;14.D;15.D;16.B;17.B;18.B;19.B;20.C;21.A;22.C;23.A;二.填空题(共5小题)24.②④;25.6;26.或或;27.255°;28.105;三.解答题(共1小题)29.3;5;7;13;(2n-1);。

初二上册三角形的边角关系

初二上册三角形的边角关系

三角形边角关系一、三角形三边的关系例1、已知三角形的三边长均为整数,其中两边之差为5,若此三角形周长为奇数,则第三边的最小值为 。

练习1、已知一个三角形的两边长分别为a ,b ,且a>b ,那么这个三角形周长l 的取值范围是( )A.a 3<l <b 3B.2a<l <2(a+b)C.2b+a<l <2a+bD.a+2b<l <3a-b练习2、已知等腰三角形的周长为12,则腰长a 的取值范围是( )A.a>3B.a>6C.3<a<6D.4<a<7练习3、不能构成三角形的数组是( )A.(1,3,2)B.(1999,999,199)C.(2225,4,3)D.(2226,5,4)练习4、已知一个三角形有两边长均为3-x ,第三边长为2x ,若该三角形的边长都为整数,试判断此三角形的形状.练习5、如图、AD 是△ABC 的中线。

求证:21(AB+AC-BC )<AD<21(AB+AC+BC )练习6、如图、O 为△ABC 内一点,AB=AC ,BO=CO.求证:AB>BO.二、三角形的面积例2、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.8练习7、如图、△ABC中,已知点D、E、F分别为BC、BD、CD的中点,且△ABC的面积是4cm2,则△AEF的面积是 cm2。

练习8、如图、已知△ABC的面积为1、点E是线段AC的中点,点O是线段BE的中点,连接AO并延长交BC于点D,连接CO并延长交AB于点F,则四边形BDOF的面积为。

练习9、如图、点D、E分别是△ABC的边AC、AB上的点,直线BD与CE交于点F,已知△CDF,△BFE,△BCF的面积分别为3,4,5,则四边形AEFD的面积是。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.S1>S2>S3ﻩB.S1=S2=S3
C.S1<S2<S3ﻩD.S1S2S3的大小关系不确定
19.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=98°,则∠C的度数为()
A.40°B.41°ﻩC.42°D.43°
20.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有( )
①等腰三角形底边上的共轭中线就是它的高;
②直角三角形斜边上的高线就是斜边的共轭中线;
③钝角三角形最大边上的共轭中线就是它的高;
④△ABC中,若AM为BC边上的中线,AD为BC边上的共轭中线,则∠BAM=∠CAD.
A.①②B.①②④C.①③④ﻩD.①②③④
9.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()
初二数学三角形边角练习题.
————————————————————————————————作者:
———————————————————————————————— 日期:
初二数学三角形边角练习题12.25
一.选择题(共23小题)
1.如图,图中三角形的个数为( )
A.3个ﻩB.4个C.5个ﻩD.6个
2.三角形纸片内有200个点,连同三角形的顶点共203个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是()
A.399B.401ﻩC.405D.407
3.下列说法正确的是()
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形
B.一个等腰三角形一定是锐角三角形,或直角三角形
C.一个直角三角形一定不是等腰三角形,也不是等边三角形
D.一个等边三角形一定不是钝角三角形,也不是直角三角形
4.下列说法正确的有()
A.0个B.1个C.2个D.3个
15.如图,任意四边形ABCD中,AC和BD相交于点O,把△AOB、△AOD、△COD、△BOC的面积分别记作S1、S2、S3、S4,则下列各式成立的是()
A.S1+S3=S2+S4ﻩB.S3﹣S2=S4﹣S1C.S1•S4=S2•S3D.S1•S3=S2•S4
16.设△ABC的三边长分别为BC=2,CA=3,AB=4,ha,hb,hc分别表示边BC、CA、AB上的高,则 =( )
①等腰三角形是等边三角形;
②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;
③等腰三角形至少有两边相等;
④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.
A.①②ﻩB.①③④C.③④D.①②④
5.下列说法正确的有()
(1)等边三角形是等腰三角形;(2)三角形的两边之差大于第三边;(3)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.
A.1个B.2个ﻩC.3个D.4个
6.如图,线段AC,DE相交于点B,则图中可数出的三角形个数为()
A.60B.52ﻩC.48ﻩD.42
7.若有一个公共角的两个三角形称为一对“共角三角形”,则图中以角B为公共角的“共角三角形”有()对.
A.6ﻩB.9C.12ﻩD.15
8.三角形的一个顶点与对边中点的连线称三角形的中线,这条中线关于这个顶角的平分线对称的直线称为三角形的共轭中线,对于共轭中线下列说法正确的序号是()
A.1cm2ﻩB.2cm2C.8cm2ﻩD.16cm2
13.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为4、5、6,四边形DHOG面积为()
A.5ﻩB.4C.8D.6
14.如图,P是△ABC内一点,BP,CP,AP的延长线分别与AC,AB,BC交于点E,F,D.考虑下列三个等式:① ;② ;③ .其中正确的有()
A. B. ﻩC. D.
17.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=()
A.1B.2ﻩC.3D.4
18.G为△ABC的重心,△ABC的三边长满足AB>BC>CA,记△GAB,△GBC,△GCA的面积分别为S1、S2、S3,则有( )
A.70°B.80°C.90°ﻩD.100°
23.如图,∠1=75°,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC,∠EDF=∠EFD.则∠A的度数为()
A.15°ﻩB.20°C.25°D.30°
①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.
A.1B.2ﻩC.3ﻩD.4
10.给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一
点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()
A.1个ﻩB.2个C.3个ﻩD.4个
11.①三角形的三条角平分线交于一点,这点到三条边的距离相等;
②三角形的三条中线交于一点;
③三角形的三条高线所在的直线交于一点;
④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.
以上命题中真图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()
A.1个B.2个ﻩC.3个ﻩD.4个
21.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“标准三角形”,其中α为“标准角”,如果一个“标准三角形”的“标准角”为100°,那么这个“标准三角形”的最小内角度数为()
A.30°ﻩB.45°C.50°D.60°
22.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()
相关文档
最新文档