1.3有理数的加减法同步练习及答案
人教版七年级数学上册《1.3.1有理数的加法》同步练习(1)含答案
1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则01 基础题知识点1 有理数的加法法则知识提要:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数. 在每题后面的横线上填写和的符号或结果:(1)(-3)+(-5)=-(3+5)=-8;(2)(-16)+6=-(16-6)=-10.1.下列各式的结果,符号为正的是(C )A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+52.(北海中考)计算(-2)+(-3)的结果是(A )A .-5B .-1C .1D .53.计算:(-12)+5=(B )A .7B .-7C .17D .-174.(玉林中考)下面的数与-2的和为0的是(A )A .2B .-2C .12D .-125.如果两个数的和是正数,那么(D )A .这两个数都是正数B .一个为正,一个为零C .这两个数一正一负,且正数的绝对值较大D .必属上面三种情况之一知识点2 有理数加法的应用6.(北流期中)比零下3 ℃多6 ℃的温度是(D )A .-9 ℃B .9 ℃C .-3 ℃D .3 ℃7.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果:(1)先向左运动2个单位长度,再向右运动7个单位长度.列式:-2+7;(2)先向左运动5个单位长度,再向左运动7个单位长度.列式:-5+(-7).8.某人某天收入265元,支出200元,则该天节余65元.9.一艘潜艇所在高度为-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在高度为-50米.10.已知飞机的飞行高度为10 000 m ,上升3 000 m 后,又上升了-5 000 m ,此时飞机的高度是8__000m . 02 中档题11.(安顺中考)计算-|-3|+1结果正确的是(C )A .2B .3C .-2D .412.有理数a 、b 在数轴上对应的位置如图所示,则a +b 的值(A )A .大于0B .小于0C .小于aD .大于b13.下列结论不正确的是(D )A .若a>0,b>0,则a +b>0B .若a<0,b<0,则a +b<0C .若a>0,b<0,且|a|>|b|,则a +b>0D .若a <0,b>0,且|a|>|b|,则a +b>014.若x 是-3的相反数,|y|=5,则x +y 的值为(D )A .2B .8C .-8或2D .8或-215.已知A 地的海拔高度为-53米,而B 地比A 地高30米,则B 地的海拔高度为-23米.16.已知两个数556和-823,这两个数的相反数的和是256. 17.计算:(1)120+(-120); (2)0+(-12); 解:原式=0. 解:原式=-12.(3)-9+(-11); (4)15+(-7);解:原式=-20. 解:原式=8.(5)-7+5; (6)-2.5+(-3.5);解:原式=-2. 解:原式=-6.(7)315+(-225); (8)-3.75+(-214). 解:原式=45. 解:原式=-6.03 综合题18.已知|m|=2,|n|=3,求m +n 的值.解:因为|m|=2,所以m =±2.因为|n|=3,所以n =±3.当m =2,n =3时,m +n =2+3=5;当m =2,n =-3时,m +n =2+(-3)=-1; 当m =-2,n =3时,m +n =(-2)+3=1;当m =-2,n =-3时,m +n =(-2)+(-3)=-5. 故m +n 的值为±1或±5.。
2022-2023学年人教版七年级数学上册《1-3有理数的加减法》同步达标测试题(附答案)
2022-2023学年人教版七年级数学上册《1.3有理数的加减法》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.52.若|m|=2,|n|=3,且m>n,则m+n的值是()A.﹣1B.﹣5C.1或﹣5D.﹣1或﹣53.若两个数的和为负数,则这两个数满足()A.都是负数B.都是正数C.至少一个是负数D.恰好一正一负4.某地一天早晨的气温是﹣2℃,中午温度上升了6℃,半夜比中午又下降了8℃,则半夜的气温是()A.﹣2℃B.﹣4℃C.﹣6℃D.﹣8℃5.若|m|=5,|n|=3且m+n的绝对值等于它的相反数,则m﹣n的值是()A.﹣2或﹣8B.2或﹣8C.2或8D.﹣2或86.下面说法中正确的有()(1)一个数与它的绝对值的和一定不是负数.(2)一个数减去它的相反数,它们的差是原数的2倍.(3)零减去一个数一定是负数.(4)正数减负数一定是负数.(5)数轴上原点两侧的数互为相反数.A.2个B.3个C.4个D.5个7.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.﹣1B.0C.1D.28.下列运算中正确的是()A.8+[14+(﹣9)]=15B.(﹣2.5)+[5+(﹣2.5)]=5C.[3+(﹣3)]+(﹣2)=﹣2D.3.14+[(﹣8)+3.14]=﹣8二.填空题(共8小题,满分40分)9.矿井下A,B,C三处的高度分别是﹣37m,﹣129m,﹣71.3m,那么最高处比最低处高m.10.计算:﹣26﹣(﹣15)=.11.小明在计算1﹣3+5﹣7+9﹣11+13﹣15+17时,不小心把一个运算符号写错了(“+”错写成“﹣”或“﹣”错写成“+”),结果算成了﹣17,则原式从左往右数,第个运算符号写错了.12.厂家检测10个足球的质量,每个足球的标准质量为265克,将每个足球超过克数记为正数,不足克数记为负数,这10个足球称重后的记录为:+1,+1,﹣1.3,+1.5,﹣1,+1.2,+1.3,﹣1.2,+1.4,+1.1.这十个足球的质量共是克.13.计算=.14.已知|x|=2,|y|=1,且|x﹣y|=y﹣x,则x﹣y=.15.若a的相反数等于它本身,b是到原点的距离等于2的负数,c是最大的负整数,则a ﹣b+c的值为.16.计算:1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=.三.解答题(共6小题,满分40分)17.计算:20+(﹣14)﹣(﹣18)+13.18.计算:﹣﹣|﹣|﹣(﹣)+1.19.计算:1.5﹣(﹣4)+3.75﹣(+8).20.计算.(1)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7;(2)0﹣+(+)+(﹣)+2;(3)﹣|﹣1|﹣(+2)﹣(﹣2.75);(4)(﹣3.125)+(+4.75)+(﹣9)+(+5)+(﹣4).21.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:.22.某领导慰问高速公路养护小组,乘车从服务区出发,沿东西向公路巡视,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,﹣9,+7,﹣15,﹣3,+11,(1)求该领导乘车最后到达的地方?(2)行驶1千米耗油0.5升,则这次巡视共耗油多少升?(3)若领导在这6个巡视点发放苹果慰问品,以50kg为标准,超过的记为正数,不足的记为负数,这6个巡视点的苹果重量记为5,﹣6,﹣4,9,﹣8,3(单位:kg),求发放苹果的总重量.参考答案一.选择题(共8小题,满分40分)1.解:﹣3﹣2=﹣5.故选:C.2.解:∵|m|=2,|n|=3,∴m=±2,n=±3,∵m>n,∴当m=2,n=﹣3时,m+n=2﹣3=﹣1;当m=﹣2,n=﹣3时,m+n=﹣2﹣3=﹣5;故选:D.3.解:两个数的和为负数,这两个数都是负数或有一个是负数且负数的绝对值比另一个数的绝对值大;故选:C.4.解:﹣2+6﹣8=4﹣8=﹣4(℃).答:半夜的气温是﹣4℃.故选:B.5.解:∵|m|=5,|n|=3,∴m=±5,n=±3,∵m+n的绝对值等于它的相反数,∴m+n<0,∴①m=﹣5,n=﹣3,②m=﹣5,n=3,当m=﹣5,n=﹣3时,m﹣n=﹣5﹣(﹣3)=﹣2;当m=﹣5,n=3时,m﹣n=﹣5﹣3=﹣8,综上所述:m﹣n=﹣8或﹣2,故选:A.6.解:(1)一个数与它的绝对值的和一定不是负数.正确,(2)一个数减去它的相反数,它们的差是原数的2倍,正确,(3)零减去一个数不一定是负数,如0﹣(﹣3)=3,故不正确,(4)正数减负数一定是正数.如3﹣(﹣4)=7,故不正确,(5)数轴上原点两侧的数不一定互为相反数,如5和﹣4,不是互为相反数.不正确.故选:A.7.解:依题意得:a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0.故选:B.8.解:A、原式=8+5=13,故A不符合题意.B、原式=﹣2.5+2.5=0,故B不符合题意.C、原式=0+(﹣2)=﹣2,故C符合题意.D、原式=3.14+3.14+(﹣8)=﹣1.72,故D不符合题意.故选:C.二.填空题(共8小题,满分40分)9.解:∵最高处:﹣37米,最低处:﹣129米,最高处比最低处高:﹣37﹣(﹣129)=92(米),故答案为:92.10.解:原式=﹣26+15=﹣11.故答案为:﹣11.11.解:∵1﹣3+5﹣7+9﹣11+13﹣15+17=9,9>﹣17,∴小明不小心把“+”写成“﹣”,∵9﹣(﹣17)=26,26÷2=13,∴小明将+13写错为﹣13,故答案为:6.12.解:+1+1﹣1.3+1.5﹣1+1.2+1.3﹣1.2+1.4+1.1=5(克),265×10+5=2655(克),所以这十个足球的质量一共是2655克,故答案为:2655.13.解:原式=1=1=1.故答案为:1.14.解:∵|x|=2,|y|=1,且|x﹣y|=y﹣x,∴x=﹣2,y=1或y=﹣1,∴x﹣y=﹣2﹣1=﹣3或x﹣y=﹣2+1=﹣1.故答案为:﹣3或﹣1.15.解:∵a是相反数等于它本身的数,b是到原点的距离等于2的负数,c是最大的负整数,∴a=0,b=﹣2,c=﹣1,∴a﹣b+c=0+2﹣1=1.故答案为:1.16.解:∵1﹣2﹣3+4=0,5﹣6﹣7+8=0,•,∴算式中从第一个数字开始,依次每四个数的代数和为0,∵2020÷4=505,∴前2020个数字的代数和为0.∴1﹣2﹣3+4+5﹣6﹣7+8+......+2020+2021=2021.故答案为:2021.三.解答题(共6小题,满分40分)17.解:20+(﹣14)﹣(﹣18)+13,=20﹣14+18+13,=6+31,=37.18.解:﹣﹣|﹣|﹣(﹣)+1=﹣﹣++1=(﹣)+(﹣+)+1=+(﹣2)+1=﹣.19.解:原式=1++4++3+﹣8﹣=﹣7+8=1.20.解:(1)原式=(﹣4)+(﹣13)+(﹣5)+9+7=[(﹣4)+(﹣13)+(﹣5)]+(9+7)=(﹣22)+16=﹣6;(2)原式=0+(﹣)++(﹣)+2=[(﹣)+(﹣)]++2=(﹣1)+3=2;(3)原式=﹣1+(﹣2)+2=﹣1+(﹣2+2)=+(﹣1+)=+(﹣1)=﹣;(4)原式=(﹣3)+4+(﹣9)+5﹣4=[(﹣3)+(﹣9)]+(4+5)﹣4=(﹣13)+10﹣4=﹣3﹣4=﹣7.21.解:原式=﹣2020﹣+2019+﹣2018﹣+2017+=﹣2020+2019﹣2018+2017﹣+﹣+=﹣1﹣1+﹣=﹣2﹣=.22.解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11=8(千米),答:该领导乘车最后到达的地方在东边8千米处;(2)|+17|+|﹣9|+|+7|+|﹣15|+|﹣3|+|+11|=62(千米),0.5×62=31(升),答:这次巡视共耗油31升;(3)5+(﹣6)+(﹣4)+9+(﹣8)+3=﹣1(千克),50×6+(﹣1)=299(千克),答:发放苹果的总重量为299千克.。
人教版七年级上册数学 1.3 有理数的加减法 同步练习(含答案)
1.3 有理数的加减法 同步练习一、单选题1.比﹣1小2的数是( )A .3B .1C .﹣2D .﹣3 2.计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法交换律与结合律3.0减去任何一个数,一定是( )A .这个数本身B .这个数的相反数C .这个数的绝对值D .0 4.计算1122--的结果是( ) A .0 B .1 C .﹣1 D .145.已知一个数的绝对值是5,另一个数的绝对值是3,若两数之和的绝对值等于两数之和,则两数之差不可能为( )A .2B .8C .-2D .0 6.计算5372688⎛⎫-+- ⎪⎝⎭的值为( ) A .23- B .5212- C .1324- D .111424- 7.把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 8.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- 9.下列算式:①6-(-6)=0;②(-2)-(+2)=0;③(-7)-|-7|=0;④0- (-12)=12.其中正确的有( )A .1个B .2个C .3个D .4个 10.下列结论不正确的是( )A .若a >0,b >0,则a +b >0B .若a <0,b <0,则a +b <0C.若a>0,b<0,且|a|>|b|,则a+b>0 D.若a<0,b>0,且|a|>|b|,则a+b>0 二、填空题11.-212与-3的和与-5.5的差是____.12.世界上最高的山峰是珠穆朗玛峰,其海拔高度是8844米,吐鲁番盆地的海拔高度大约是-155米.珠穆朗玛峰与吐鲁番盆地两处高度相差________________米.13.计算:(-0.25)-134⎛⎫-⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭=___.14.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:(1)一月份比三月份多获利润____万元;(2)第一季度该工厂共获利润____万元.15.电子青蛙落在数轴上的某一点0P,第一步从0P向左跳1个单位到1P,第二步由1P向右跳2个单位到2P,第三步由2P向左跳3个单位到3P,第四步由3P向右跳4个单位到4P,……,按以上规律跳了2014步时,电子青蛙落在数轴上的点是19.5,则电子青蛙的初始位置0P点所表示的数是________.三、解答题16.一辆货车从超市出发,向东走了3 km到达小彬家,继续向东走了1.5 km到达小颖家,然后向西走了9.5 km到达小明家,最后回到超市.(1)请你以超市为原点,以向东的方向为正方向,用一个单位长度表示1 km,在数轴上表示出小彬家、小颖家、小明家的位置;(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?17.计算:(1)0-(-12);(2)52-(-2.5);(3)34⎛⎫-⎪⎝⎭-12⎛⎫+⎪⎝⎭;(4)218-312;(5)7.2-(-2.8)+(-5).18.10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6、-3、-1、-2、+7、+3、+4、-3、-2、+1与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?参考答案1.D2.D3.B4.A5.D6.B7.C8.C9.A10.D11.012.8999.13.-1.7514.155 22515.-987.516.(1)略;(2)小明家距小彬家8km;(3)货车一共行驶了19千米.17.(1)12;(2)5;(3)114-;(4)318-;(5)518.不足标准2千克;总质量1498千克;平均质量149.8千克;。
人教版七年级上册第一章 有理数 1.3 有理数的加减法 同步练习(含答案)
有理数的加减法同步练习一.选择题1.下列说法正确的是()A.两个数的和一定比这两个数的差大B.零减去一个数,仍得这个数C.两个数的差小于被减数D.正数减去负数,结果是正数2.下列各式中正确的是()A.+5-(-6)=11B.-7-|-7|=0C.-5+(+3)=2 D.(-2)+(-5)=7 3.已知月球表面的最高温度是127℃,最低温度是-183℃,则月球表面的温差是()A.56℃B.65℃C.300℃D.310℃4.已知A地的海拔高度为-53米,而B地比A地低30米,则B地的海拔高度为()A.-83米B.-23米C.30米D.23米5.某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.-5℃C.-3℃D.-9℃6.若|x|=7,|y|=3,且x>y,则y-x等于()A.-4B.-10C.4或10D.-4或-107.已知a>b且a+b=0,则()A.a<0B.b>0C.b≤0D.a>08.计算:1+(-2)+(+3)+(-4)+(+5)+(-6)+…+(+99)+(-100)+(+101)的结果是()A.0B.-1C.-50D.519.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1B.0C.1D.不存在10.已知,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c11.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7B.5C.4D.112.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1、2、-3、4、-5、6、-7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-1二.填空题13.计算:(-7)-(+5)+(+13)= .14.元旦后大雪纷飞而至,某日安徽有三个城市的最高气温分别是-10℃,1℃,-7℃,计算任意两城市的最高温度之差,其中最大温差(绝对值)是℃.15.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e= .16.已知|a|=1,|b|=2,如果a>b,那么a+b= .17.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.三.解答题18.计算:(1)(-21)-(-9)+(-8)-(-12)(2)19.已知|a|=4,|b|=6,若|a+b|=-(a+b),求a-b的值.20.若a<b<0<c<-b,化简:|a-b|+|c+b|21.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?22.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?23.淘宝网是购物综合网站,淘宝网的金币可以抵扣购物、抽奖活动、玩游戏等.获得金币的其中一个途径就是到淘金币网页去签到,规则如下:首日签到领5个金币,连续签到每日再递增5个,每日可领取的金币数量最高为30个,若中断,则下次签到作首日签到,金币个数从5个重新开始领取.(1)按淘金币规则,第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第6天领取个,第7天领取个;连续签到6天,一共领取金币个.(2)从1月1日开始签到,以后连续签到不中断,结果一共领取了255个,问连续签到了几天?(3)张阿姨从1月1日开始坚持每天签到,达到可以每天领取30个金币,后来因故有2天(不定连续)忘记签到,到1月16日签到完成时,发现自己一共领取了215个金币,请直接写出她没有签到日期的所有可能结果.参考答案1-5:DADAB 6-10:DDDAB 11-12:CA13、114、1115、-216、-1或-317、-518、(1)-8;(2)619、:∵|a|=4,|b|=6,|a+b|=-(a+b),∴a=4,b=-6或a=-4,b=-6,当a=4,b=-6时,a-b=4-(-6)=4+6=10,当a=-4,b=-6时,a-b=(-4)-(-6)=(-4)+6=2.20、:∵a<b<0<c<-b,∴a-b<0,c+b<0,|a-b|+|c+b|=-(a-b)-(c+b)=-a+b-c-b=-a-c21、:(1)+5-3+10-8-6+12-10=27-27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5-3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12-8=4(cm),第五次爬行距离原点是|4-6|=2(cm),第六次爬行距离原点是-2+12=10(cm),第七次爬行距离原点是10-10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).54×1=54(粒)所以小虫一共得到54粒芝麻.22、:(1)(+6)+(-3)+(+10)+(-8)+(+12)+(-7)+(-10),=6-3+10-8+12-7-10,=28-28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3(|+6|+|-3|+|+10|+|-8|+|+12|+|-7|+|-10|),=3(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).23、:(1)∵第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第4天领取20个,第5天领取25个,∴第6天领取30个;∵每日可领取的金币数量最高为30个,∴第7天领取30个;连续签到6天,一共领取金币5+10+15+20+25+30=105(个);故答案为:30,30,105;(2)根据题意得:(255-105)÷30=5,5+6=11(天),答:连续签到了11天;(3)根据题意可得,所有可能结果是8号与12号,8号与13号未签。
1.3有理数的加减法(含答案)-
1.3 有理数的加减法●知识单一性训练1.3.1 有理数的加法一、有理数加法法则1.下列计算正确的是()A.+(+20)+(-30)=10 B.(-31)+(-11)=-20C.(-3)+(+3)=0 D.(-2.5)+(+2.4)=0.42.绝对值大于3而小于6的所有整数的和是()A.9 B.-9 C.0 D.13.若│x│=6,│y│=4,则x+y的值是()A.10或2 B.-2或-10 C.10 D.±10或±24.一天早晨的气温是-12℃,中午上升了5℃,半夜又下降了8℃,半夜的气温是(• ) A.-25℃ B.-9℃ C.1℃ D.-15℃5.-10与+7的和的相反数是_______.6.若a>0,b>0,则a+b______0.7.(+35)+(-12)=______.8.已知两个数是3和-5,这两个数的和的绝对值是_______,这两个数的绝对值的和是______.9.计算.(1)47+(-58);(2)(-3)+(-10).10.现有10箱苹果梨,称重记录如下(单位:kg):11,12,11.5,11.8,12.2,•12.3,13,12.5,11.7,12.3,求这10箱苹果梨的总重量.二、有理数加法的运算律11.如果两个有理数的和是正数,那么这两个数() A.一定都是正数 B.一定都是负数C.一定都是非负数 D.至少有一个是正数12.(-2)+4+(-6)+8+…+(-98)+100=________.13.用简便方法计算-19+28+19+(-8)=________.14.计算314+(-235)+534+(-825).15.某商店在一周中每天的盈亏情况如下(盈为正):+120,-25,-20,+30,-21,35,90,计算说明该周是盈还是亏.(单位:元)16.某商业银行一天中午完成了7项业务,取出95元,存入50元,取出90•元,•存入130元,取出103元,存入30元,取出20元,则共增加多少元?17.张村共有10块小麦田,今年的收成与去年相比(增产为正,减产为负)•的情况如下:55kg,79kg,-40kg,-25kg,10kg,-16kg,27kg,-5kg,31kg,4kg,• 今年的小麦总产量与去年相比情况如何?若羌县中学 麦麦提江吉力力- 3 -1.3.2 有理数的减法三、有理数减法法则18.下列计算正确的是( )A .-2-5=-3B .-5-0=5C .-12+12=-1 D .-1.5-(-0.5)=-1 19.一天广州的温度是+18℃,而吉林的温度是-22℃,这天广州比吉林的温度高( ) A .-4℃ B .4℃ C .40℃ D .-40℃ 20.与(-a )-(-b )相等的式子是( ) A .(+a )-(-b ) B .(-a )+b C .(-a )+(-b ) D .(-a )-(+b ) 21.关于算式-4-6,下列说法不正确的是( ) A .表示-4与6的差 B .表示-4与-6的和 C .表示-4与-6的差 D .读作-4减去622.黄山的气温中午是零上2℃,下午下降了7℃,则下午的气温是______. 23.吉林某天的气温是-10~5℃,这天的温差是_____. 24.比-19小3的数是______,比-19小-3的数是______.25.A ,B 两种海拔高度分别为100米、-20米,B 地比A 地低_______.26.一种机器零件,图纸标明是Ф0.040.0230+-,合格品的最大直径与最小直径的差是_____. 27.已知m 是6的相反数,n 比m 的相反数小6,求m 比n 大多少.28.一辆货车从超市出发,向东走了2km 到小明家,继续走了2.5km 到小奇家,又向西走了8.5km 到达小华家,最后回到超市.(1)以超市为原点,向东为正方向,用1个单位长度表示1km ,画数轴表示小明、小奇、小华家的位置;(2)小华家距小奇家多远?(3)货车共行驶了多少千米?四、有理数加减混合运算29.下列各式不成立的是()A.20+(-9)-7+(-10)=20-9-7-10B.-1+3+(-2)-11=-1+3-2-11C.-3.1+(-4.9)+(-2.6)-4=3.1-4.9-2.6-4D.-7+(-18)+(-21)=-7-(18-21)-3430.把(-23)+(-5)-(-4)-(+9)写成省略括号和的形式_______,可读作______.31.若│a│=8,│b│=1,c是最大的负整数,则a+b-c=________.32.三个数-10,-7,+5的和比它们的绝对值的和小________.33.从-1中减去-112与-78的和所得的差是_________.34.某次外语竞赛,成绩85分以上为优秀,•现将某小组参加外语竞赛的同学成绩简记为10,-5,0,+8,-3,这几名同学的平均成绩是________.35.计算:(1)-6-8-2+3.54-4.72+16.46-5.28;(2)(-323)-(-234)-(-123)-1.75.36.根据下列条件,求a+(-b)-(-c)的值.(1)a=3,b=-4,c=-5;(2)a=-6.5,b=12.7,c=-2.9.37.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?若羌县中学 麦麦提江吉力力- 5 -●能力提升性训练1.计算(-200056)+(-199923)+400034+(-112).2.若m ,n 互为相反数,则│2+m+(-1)+n │的值是多少?3.若│x-3│与│y+2│互为相反数,求x+y+3的值.4.小明的妈妈是一个蔬菜经销商,一天妈妈到市场共购进8筐蔬菜,•称重的记录如下(单位:千克):53,44,54,52,49,46,45,46.你能帮小明的妈妈计算出这些蔬菜的总重量吗?把你的做法写出来.5.某日长春等五个城市的最高气温与最低气温记录如下:哪个城市的温差最大?哪个城市的温差最小?6.某日小明在一条南北方向的公路上跑步,他从A地出发,每隔10•分钟记录下自己的跑步情况(向东为正方向,单位:m).-1008,+1100,-976,+1010,-827,+946.1小时后他停下来信息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?7.计算1-3+5-7+9-11+…+97-99.8.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所,已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,•若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.9.某水利勘察队,第一天向上游走了523千米,第二天又向上游走了413千米,•第三天向下游走了4.5千米,第四天又向下游走了423千米,试用有理数结合加法计算,•第四天勘察队在出发点的什么位置?10.计算11111 122334989999100 +++++⨯⨯⨯⨯⨯g g g.若羌县中学 麦麦提江吉力力- 7 -●针对性训练1.计算: (1)(-4)+(-7); (2)1.3+(-2.7); (3)67+(-73); (4)(+3.8)+(-4.9).2.计算:(1)(-41)+(+56)+(-21)+(-31); (2)57+(-56)+16+(-27).3.计算:(1)-2.4+3.5-4.6+3.5; (2)3.75-(+1.5)-(-414)-(+812);(3)(-412)-{325-[-0.13-(-0.33)]}.●中考全接触1.(2006,临安)我市2005年的最高气温为39℃,,最低气温为零下7℃,则2005•年温差列式正确的是()A.(+39)-(-7) B.(+39)+(+7)C.(+39)+(-7) D.(+39)-(+7)2.(2005,济南)若a与2互为相反数,则│a+2│等于()A.0 B.-2 C.2 D.43.(2005,温州)计算-1+(+3)的结果是()A.-1 B.1 C.2 D.34.(2005,南京)比-1大1的数是()A.-2 B.-1 C.0 D.15.(2005,北京海淀)已知(1-m)2+│n+2│=0,则m+n的值为()A.-1 B.-3 C.3 D.不确定6.(2005,浙江)计算-2-1的结果是()A.-3 B.-2 C.-1 D.37.(2006,浙江)计算1-2的结果是()A.-1 B.0 C.1 D.±18.(2006,哈尔滨)若x的相反数是-3,│y│=5,则x+y的值为()A.-8 B.2 C.8或-2 D.-8或29.(2005,湖州)计算1-3=_______.10.(2005,安徽)冬季的某日,上海最低气温是3℃,北京最低气温是-5℃,这一天上海的最低气温比北京的最低气温高_______℃.11.(中考预测题)若m,n互为相反数,则m+n=______.12.(中考预测题)阅读理解题.下表列出了国外几个城市与北京的时差(•带正号的数表示同一时刻比北京时间早的小时数).(1)如果现在北京时间是9:30,那么现在纽约时间是多少?东京时间是多少?(2)小明现在想给远在巴黎的表姐打电话,你认为合适吗?若羌县中学 麦麦提江吉力力- 9 -答案:【知识单一性训练】1.C [提示:根据加法法则可知,互为相反数的和为0,故选C .] 2.C [提示:符合条件的整数有±4,±5,所以和为0,故选C .]3.D [提示:│x │=6,│y │=4,所以x=±6,±4,所以x+y=±2,±10,故选D .] 4.D [提示:根据题意可列式-12+5-8=-15,故选D .] 5.3 [提示:-(-10+7)=3.]6.> [提示:因为a>0,b>0,属于两个正数相加,所以和为正,故a+b>0.] 7.110 [提示:(+35)+(-12)=(+65)(1010+-)=110.] 8.2 8 [提示:│3+(-5)│=2,│3│+│-5│=8.] 9.解:(1)47+(-58)=32353()565656+-=-. (2)(-3)+(-10)=-13. 10.解:11+12+11.5+11.8+12.2+12.3+13+12.5+11.7+12.3=120.3(kg ).11.D [提示:例如:4+(-2)=2,排除A ;两负数之和仍是负数,排除B ;0+0=0,排除C ,故选D .] 12.50 [提示:(-2)+4+(-6)+8+…+(-98)+100=25×2=50.] 13.20 [提示:-19+28+19+(-8)=[(-19)+19]+[28+(-8)]=20.] 14.解:314+(-235)+534+(-825)=(314+534)+[(-235)+(-825)]=9+(-11)=-2. 15.解:120+(-25)+(-20)+30+(-21)+35+90=(120+30+35+90)+[(-25)+(-20)+(•-21)]=275+(-66)=209(元),所以盈利209元.答:该周盈利209元. 16.提示:存入记为正,取出记为负,将各数加起来求和.解:(-95)+(+50)+(-90)+(+130)+(-103)+(+30)+(-20)=-98(元). 答:共增加-•98元.17.解:55+79+(-40)+(-25)+10+(-16)+27+(-5)+31+4=(55+79+10+27+31+4)+[(-40)+(-16)+(-25)+(-5)]=120(kg ).答:今年的小麦总产量与去年相比增产120kg . 18.D [提示:-2-5=-7,-5-0=-5,-12+12=0,排除A ,B ,C .] 19.C [提示:(+18)-(-22)=40℃,故选C .] 20.B [提示:(-a )-(-b )=-a+b .故选B .] 21.C [提示:-4-6是省略加号的和的形式.] 22.-5℃ [提示:2-7=-5℃.]23.15℃ [提示:5-(-10)=15℃.]24.-22 -16 [提示:-19-3=-22,-19-(-3)=-16.] 25.120米 [提示:100-(-20)=120(米).]26.0.06 [提示:最大直径是30.04,最小直径是29.98,其差是30.04-29.98=0.06.] 27.解:因为m 是6的相反数,所以m=-6,又因为n 比m 的相反数小6,所以n=-6-•6=•-12,所以m-n=-6-(-12)=-6+12=6,答:m比n大6.28.解:(1)如图所示.(2)4.5-(-4)=8.5,小华家距小奇家8.5km.(3)2+2.5+8.5+4=17,共行驶了17km.29.D [提示:-7+(-18)+(-21)-34=-7-18-21-34.故选D.]30.-23-5+4-9 负23,负5,正4,负9的和 [提示:先将减法统一成加法,再写成省略括号的和的形式,还可以读作负23减5加4减9.]31.±8 -6 10 [提示:因为│a│=8,│b│=1,c是最大的负整数,所以a=•±8,b=±1,c=-1,所以①当a=8,b=1,c=-1时,a+b-c=8+1-(-1)=10.②当a=-8时,b=1,c=•-1时,a+b-c=-8+1-(-1)=-6.③当a=8,b=-1,c=-1时,a+b-c=8+(-1)-(-1)=8.④当a=•-8,b=-1,c=-1时,a+b-c=-8+(-1)-(-1)=-8.]32.34 [提示:(│-10│+│-7│+│+5│)-(-10-7+5)=34.]33.-124[提示:-1-(-112-78)=-124.]34.87 [提示:85+(10-5+0+8-3)÷5=87.]35.解:(1)-6-8-2+3.54-4.72+16.46-5.28=(-6-8-2-4.72-5.28)+(3.54+16.46)=-26+20=-6.(2)(-323)-(-234)-(-123)-1.75=(-323)+234+123-134=(-323+123)+(234-134)=-2+1=-1.36.解:(1)当a=3,b=4,c=-5时,a+(-b)-(-c)=a-b+c=3-(-4)+(-5)=3+4-5=2.(2)当a=-6.5,b=12.7,c=-2.9时,a+(-b)-(-c)=a-b+c=-6.5-12.7-2.9=-22.1.37.解:(1)因为+5-3+10-8-6+12-10=0,所以小虫最后回到出发点A.(2)•第一次爬行距离原点是5cm,第二次爬行距离原点是5-3=2(cm)•,• 第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12-8=4(cm),第五次爬行距离原点是│4-6│=│-2│(cm),第六次爬行距离原点是-2+12=10(cm),第七次爬行距离原点是10-•10=•0(cm),从上面可以看出小虫离开原点最远是12cm.(3)小虫爬行的总路程为:│+5│+│-3│+│+10│+│-8│+│-6│+│+12│+│-10│=54(cm),则小虫一共得到54•粒芝麻.【能力提升性训练】若羌县中学 麦麦提江吉力力 - 11 - 1.解:原式=[(-2000)+(-56)]+[(-1999)+(-23)]+(4000+34)+[(-1)+(-12)] =[(-2000)+(-1999)+(-1)+4000]+[(-56)+(-23)+34+(-12)]=0+(-114)=-114. 2.解:因为m ,n 互为相反数,所以m+n=0,所以│2+m+(-1)+n │=│2+(-1)+m+n │=•│1+m+n │=│1+0│=1.3.解:因为│x-3│与│y+2│互为相反数,所以│x-3│+│y+2│=0,所以│x-•3│=0,│y+2│=0,即x-3=0,y+2=0,所以x=3,y=-2,所以x+y+3=3+(-2)+3=4.4.解:取基数50,超过50的记为正,不足50的记为负,于是得3,-6,4,2,-1,-4,-5,-4,所以总质量为:50×8+[3+(-6)+4+2+(-1)+(-4)+(-5)+(-4)]=400+(-11)=389(千克).5.解:2-(-12)=2+(+12)=14,3-(-10)=3+(+10)=13,3-(-8)=3+(+8)=11,12-2=10,6-(-2)=6+(+2)=8,故五个城市中哈尔滨的温差最大,为14℃,大连的温差最小,•为8℃.6.解:(-1008)+(+1100)+(-976)+(+1010)+(-827)+(946)=[(-1008)+(-976)+(•-827)]+[(+1100)+(+1010)+(+946)]=(-2811)+(3056)=+(3056-2811)=245(m )•.•│-1008│+│+1100│+│-976│+│1010│+│-827│+│+946•│=•1008+•1100+•976+1010+827+946=5867(m ).答:小明在A 地南方,距A 地245m ,小明共跑了5867m .7.解:1-3+5-7+9-11+…+97-99=(1-3)+(5-7)+(9-11)+…+(97-99)=-2+(-2)+(•-2)+…+(-2)=25×(-2)=-50.8.解:(1)如图所示. (2)300-(-200)=500(m ).9.解:设向上游为正,则向下游为负,根据题意,得(+523)+(+413)+(-4.5)+(-423)=10+(-916)=56(千米),答:第四天勘察队在出发点的上游56千米处. 10.解:原式=(11-12)+(12-13)+(13-14)+…(198-199)+(199-1100)=11-12+12-13+13-14+…198-199+199-1100=1-1100=99100.【针对性训练】1.解:(1)(-4)+(-7)=-(4+7)=-11.(2)1.3+(-2.7)=-(2.7-1.3)=-1.4.(3)67+(-73)=-(73-67)=-6.(4)(+3.8)+(-4.9)=-(4.9-3.8)=-1.1.2.(1)(-41)+(+56)+(-21)+(-31)=[(-41)+(-21)+(-31)]+(+56)=-(41+21+31)+(+56)=-93+(+56)=-(93-56)=-37.(2)57+(-56)+16+(-27)=[57+(-27)]+[(-56)+16]=(57-27)+(-56+16)=37+(-23)=9141495()()2121212121+-=--=-.3.提示:去括号时,先去小括号,再去中括号,最后去大括号,每一步要认真仔细,不要跳步.解:(1)-2.4+3.5-4.6+3.5=(-2.4-4.6)+(3.5+3.5)=-7+7=0.(2)3.75-(+1.5)-(-414)-(+812)=3.75-1.5+414-812=(3.75+414)+(-1.5-812)=8+(-10)=-2.(3)(-412)-{325-[-0.13-(-0.33)]}=(-412)-{3250.13+0.33}}=(-412)-{325-0.2}=(-4.5)-(3.4-0.2)=-4.5-3.2=-7.7.【中考全接触】1.A2.A [提示:a与2互为相反数,则a+2=0,所以│a+2│=0.]3.C [提示:-1+(+3)=+(3-1)=2.]4.C [提示:0-(-1)=1,故选C.]5.A [提示:因为(1-m)2+│n+2│=0,且(1-m)2≥0,│n+2│≥0,所以1-m=0,n+2=0,所以m=1,n=-2,所以m+n=1+(-2)=-1.]6.A [提示:-2-1=-2+(-1)=-3.]7.A [提示:1-2=1+(-2)=-1.]8.C [提示:由题意可知x=3,y=±5,所以x+y=3+5=8,或x+y=3+(-5)=-2.]9.-210.8 [提示:3-(-5)=8℃.]11.012.解:(1)纽约时间:9:30-13+24=20:30,东京时间:9:30+1=10:30.(2)•巴黎时间:9:30-7=2:30,所以此时巴黎是半夜2:30,他这时打电话不合适.。
1.3 有理数的加减法 试卷1(含答案)
分级训练题A 级1.一个数加上12得﹣5,那么这个数为()A .7B .﹣7C .17D .﹣17 2.下列计算正确的是()A .(30)(40)10-+-=B .(51)(30)21-+-=-C .(10)(+10)0-+=D .(+3.9)(+3.1)0.8+=3.若a +b =0,那么有理数a ,b 的取值一定() A .都是0 B .互为倒数C .互为相反数D .至少有一个是0 4.若两个数的和为整数,则这两个数() A .至少有一个为正数 B .只有一个正数 C .两个数都是整数 D .必有一个数是05.冬季某天我国三个城市的最高气温分别是﹣10℃,1℃,﹣7℃,它们任意两城市中最大的温差是()A .11℃B .17℃C .8℃D .3℃ 6.世纪测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A -C 表示观测点A 相对观测点C 的高度)根据这次测量的数据,可得观测点A 相对观测点B 的高度是()mA .210B .130C .390D .﹣2107.将556-拆成整数部分和分数部分556-=()+()8.计算:(1)﹣3.4-(-4.7);(2)(-50.9)+(-123.7);(3)1210945635-+;(4)22()()73---.9.计算:(1)23+(-17)+(+7)+(-13); (2)(-1.76)+(-19.15)+(-8.24);(3)2384(33)(1.6)(21)51111------;(4)311(17)(6.25)(8)(0.75)(22)424+-+--+-+;(5)121 4.4[(0.1)8(11)]1333 +-++-+;(6)111 (3)[(3)(5)]443---++;(7)32135+(8)3+(2) 4545-+-;(8)313135 1(1)424288⎡⎤---+-+⎢⎥⎣⎦10.一口井水面比井口低3m,一蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5m,往下滑了0.3m;第二次往上爬了0.42m,却又下滑了0.15m;第三次往上爬了0.7m,却又下滑了0.15m;第四次往上爬了0.75m,却又下滑了0.2m;第五次往上爬了0.55m,没有下滑;第六次往上爬了0.48m,此时蜗牛有没有爬出井口?请通过列式计算加以说明.B级11.下列说法正确的是()A.若x+y=0,则x与y互为相反数B.若x-y>0,则x<yC.若x-y=0,则则x与y互为相反数D.若x-y<0,若x>y12.已知x>0,y<0.且x+y<0,那么有理数x,y,﹣x,﹣y的大小关系为.13.已知a,b,c,d都是有理数,若4a b+=,2c d+=,且2a cb d-+-=,则a+b+c+d=14.某检修小组乘汽车检修供电线路,约定前进为正,后退为负.某天自A地出发到手工时,所走路程(单位:km)为:﹢22,﹣3,+4,﹣2,﹣8,+17,﹣2,﹣3,﹢12,﹢7,﹣5,问:收工时距A地多远?若每千米耗油4L,问从A地出发到收工共耗油多少升?15.将分数34,25分别输入下边的流程图,在输入圈的括号内一次填入输出的数.并写出计算结果16.已知数轴上有A,B两点,A,B间的距离是2,点A与原点的距离是3. (1)B点表示的数是什么?(2)B点表示的这些数的和是多少?(3)所有满足条件的B点与原点的距离之和是多少?17.已知51a +=,23b -=,求a -b 的值.18.试用“>”,“<”,“=”填空: (1)4545+=+ (2)(4)(5)45-+-=-+- (3)4(5)45+-=+- (4)4545-+=-+请通过以上各式总结任意两个不为0的有理数的和的绝对值与其绝对值的和的大小关系.C 级19.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差卸载这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后可能产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续一次操作下去,则从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是20.若1791113151713122030425672n =+-+-+-+,则n 的负倒数为 21.甲、乙两同学做“投球进筐”的游戏.商定:每人玩5局,每局在指定线外将一个皮球投往筐中,一次未进可再投第二次,以此类推,但最多只能投6次,当投进后,该局结束,并(1)为计算得分,双方约定:记“×”的该局得0分,其他局得分的计算方法要满足两个条件:①投球次数越多,得分越低;②得分为正数.请你按约定的要求,用公式或表格的方式或表格的方式,写出一个将其他局的投球次数n换算成得分M的具体方案.(2)请根据上述约定和你写出的方案,计算甲、乙两人的每局得分,并从平均分的角度来判断谁投的更好.参考答案1.3有理数的加减法1.A.2.C.3.C 4.A 5.A 6.A.7.-5,56. 8.1.3;174.6;347115;821.9.0;-29.15;61;-3;2.3;-513;-2;-3.10.0.5-0.3+0.42-0.15+0.7-0.15+0.75-0.2+0.55+0.48=2.6,没有爬出.11.A.12.y<-x<x<-y.13.±6. 14.前进39m;340L.15.512,115-.16.(1)±1,±5;(2)0;(3)1217.-9,-3,1,7.18.=,=,<,<,和的绝对值小于等于绝对值的和.19.520.提示:每操作一次其和增加一个(8-3).20.-0.9.21.有许多方案,这里给出两种.解法一:(1)其他局投球次数n换成该局得分M的公式为:M=7-n.(2)甲的平均分=2+0+3+0+611=55(分)乙的平均分=0+5+3+5+013=55(分)故以此方案来判断;乙投得更好,解法二:(1)其他局投球次数n换成该局得分M的公式为60 Mn(2)甲的平均分=12+0+15+0+6087=55(分)乙的平均分=0+30+15+30+075=55(分)故以此方案来判断:甲投得更好.。
人教版数学七年级上册1.3 有理数的加减法 同步练习
一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( ) A .(-3)+5=-2 B .(-7)+(-7)=0 C .(-6)+(-3)=-9 D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17, -32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样 5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =_______. 15.绝对值大于1而小于6的所有整数的和是____. 16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________) =(-19)+(+21)(________________) =2.(______ __________)19. 假设a -(-b)=0,那么a 与 b 的关系是____________. 20. |x|=5,y =3,那么 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.A ,B 两点在数轴上分别表示的数为m ,n . (1)对照数轴填写下表:(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为____________,如果d=3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是(C)A .(-3)+5=-2B .(-7)+(-7)=0C .(-6)+(-3)=-9D .9+(-9)=12. .用字母表示有理数的减法法那么正确的选项是( B ) A .a -b =a +b B .a -b =a +(-b) C .a -b =-a +b D .a -b =a -(-b)3. 以下式子可读作“负10,负6,正3,负7的和〞的是( B ) A .-10+(-6)+(+3)-(-7) B .-10-6+3-7C .-10-(-6)-3-(-7)D .-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,那么今年小麦的总产量与去年相比( D )A .增产2千克B .减产2千克C .增产12千克D .与去年的产量一样5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,那么房屋内的温度比冰箱冷冻室的温度高( A )A .26℃B .14℃C .-26℃D .-14℃ 6. 0减去一个数等于( C )A .这个数B .0C .这个数的相反数D .负数7. 在数1,2,3,4,…,405前分别加“+〞或“-〞,使所得数字之和为非负数,那么所得非负数最小为( B )A .0B .1C .2D .3 8. a ,b 在数轴上的位置如下图,那么a -b 的结果的符号为( B )A .正B .负C .0D .无法确定 9. 以下说法正确的选项是( B )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数 10. 计算(-2.29)+8+(-7.71)时,以下简便运算正确的选项是( D ) A .[(-2.29)+8]+(-7.71) B .(-2.29)+[8+(-7.71)] C .(-8)+(2.29+7.71) D .[(-2.29)+(-7.71)]+8 (-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B ) A .-8+4-5+2 B .-8-4-5+2 C .-8-4+5+2 D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D ) A .加法交换律 B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____. 14. a +x =2021 ,b +y =-2021,那么a +b +x +y =____-5___. 15.绝对值大于1而小于6的所有整数的和是__0__.16. 有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,那么列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,那么a +(-b )-|-c |的值为__ 1 __.18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________) =[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___) =(-19)+(+21)(____有理数加法法那么__) =2.(______ 有理数加法法那么______)19. 假设a -(-b)=0,那么a 与 b 的关系是___互为相反数_________. 20. |x|=5,y =3,那么 x -y 的值为__2或-8______. 三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16).解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212.(4)原式=212+2.5+1-112=4.5.(5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20. (6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(7)原式=-12+5+4+(-9)=-12.(8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513.22.假设a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值. 解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8; 当a =3,b =-10,c =-5时,a -b -(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+〞表示股票比前一天上涨,“-〞表示股票比前一天下跌)上周末 收盘价 周一 周二 周三 周四 周五(1)(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.〔3〕周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.A,B两点在数轴上分别表示的数为m,n.(1)m 6 -6 -6 -6 2 -n 4 0 4 -4 -8 -A,B两点间的距离 2 6 10 2 10 0(2)假设A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)A,B在数轴上分别表示的数为x和-1,那么A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1|当d=3时,|x-(-1)|=3,所以x=2或-4。
【精品讲义】人教版 七年级数学(上) 专题1.3 有理数的加减法(知识点+例题+练习题)含答案
第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。
人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》同步能力提升训练(附答案)1.﹣20+21=()A.﹣1B.1C.﹣2021D.20212.下列计算正确的是()A.﹣5+(﹣3)=﹣(5﹣3)=﹣2B.2﹣(﹣5)=﹣(5﹣2)=﹣3C.(﹣3)﹣(﹣4)=﹣(3+4)=﹣7D.(﹣3)+(+2)=﹣(3﹣2)=﹣1 3.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或34.昆明市某天的最高气温为12℃,最低气温为﹣2℃,这天的最高气温比最低气温高()A.﹣10℃B.10℃C.14℃D.﹣14℃5.下列说法中,正确的是()A.若|a|=|b|,则a=b B.互为相反数的两数之和为零C.0是最小的整数D.数轴上两个有理数,较大的数离原点较远6.温度﹣4℃比﹣9℃高()A.5℃B.﹣5℃C.13℃D.﹣13℃7.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.708.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则a+b+c的值是()A.﹣2B.﹣1C.1D.09.2020年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()A.14℃B.﹣14℃C.38℃D.﹣38℃10.比﹣2大2的数是()A.﹣4B.0C.2D.411.计算:﹣3﹣(﹣2)+5=.12.已知a<b,且|a|=6,|b|=3,则a﹣b的值为.13.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.14.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.15.我市某天上午的气温为﹣2℃,中午上升了6℃,下午受冷空气的影响,到夜间温度下降了9℃,则这天夜间的气温为.16.﹣5与3的和的绝对值是;﹣5的相反数与3的绝对值的差是.17.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.18.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是.19.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).20.1+(﹣6.5)+3+(﹣1.25)﹣(﹣2).21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).22.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(4)﹣|﹣1|﹣(+2)﹣(﹣2.75).23.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?24.出租车司机小王某天下午的一段时间内营运全是在东西走向的“抚顺”路上进行的.如果向东记作“+”,向西记作“﹣”,他这段时间内行车情况如下:﹣2,+5,﹣2,﹣3,﹣6,+6(单位:公里;每次行车都有乘客),请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每公里耗油0.1升,每升汽油5.7元,不计汽车的损耗的情况下,请你帮小王计算一下这段时间所耗的汽油钱是多少元?25.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?参考答案1.解:原式=+(21﹣20)=1.故选:B.2.解:A.﹣5+(﹣3)=﹣8,此选项错误;B.2﹣(﹣5)=2+5=7,此选项错误;C.(﹣3)﹣(﹣4)=﹣3+4=1,此选项错误;D.(﹣3)+(+2)=﹣(3﹣2)=﹣1,此选项正确;故选:D.3.解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.4.解:12﹣(﹣2)=12+2=14(℃),即这天的最高气温比最低气温高14℃.故选:C.5.解:A、若|a|=|b|,则a=±b,故原说法错误,故本选项不符合题意;B、互为相反数的两数之和为零,说法正确,故本选项符合题意;C、没有最小的整数,故原说法错误,故本选项不符合题意;D、数轴上两个有理数,绝对值较大的数离原点较远,故原说法错误,故本选项不符合题意;故选:B.6.解:∵﹣4﹣(﹣9)=5(℃),∴温度﹣4℃比﹣9℃高5℃.故选:A.7.解:35+(35﹣10)=35+25=60.故选:B.8.解:∵a是最大的负整数,b是最小的正整数,c的相反数等于它本身,∴a=﹣1,b=1,c=0,∴a+b+c=﹣1+1+0=0,故选:D.9.解:﹣12﹣(﹣26)=﹣12+26=14(℃),故选:A.10.解:﹣2+2=0,即比﹣2大2的数是0,故选:B.11.解:﹣3﹣(﹣2)+5=﹣3+2+5=4;故答案为:4.12.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a﹣b=﹣6﹣3=﹣9或a﹣b=﹣6﹣(﹣3)=﹣3.故答案为:﹣9或﹣3.13.解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.14.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.15.解:﹣2+6﹣9=4﹣9=﹣5(℃)答:这天夜间的气温为﹣5℃.故答案为:﹣5℃.16.解:|﹣5+3|=|﹣2|=2,﹣(﹣5)﹣|3|=5﹣3=2,故答案为:2,2.17.解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.18.解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.19.解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.20.解:==0+6﹣6.5=﹣0.5.21.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.22.解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=(23+7)+(﹣17﹣16)=30﹣33=﹣3;(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4=(﹣26.54+18.54)+(6.4﹣6.4)=﹣8+0=﹣8;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7)=(﹣0.5﹣7)+(3+2.75)=﹣8+6=﹣2;(4)﹣|﹣1|﹣(+2)﹣(﹣2.75)=﹣1﹣2+2.75=+(﹣1﹣2+2.75)=﹣1=﹣.23.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:5﹣3=2(米);第3次守门员离开球门线:2+10=12(米);第4次守门员离开球门线:12﹣8=4(米);第5次守门员离开球门线:|4﹣6|=2(米);第6次守门员离开球门线:|﹣2+12|=8(米);第7次守门员离开球门线:|8﹣10|=2(米);所以在练习过程中,守门员离开球门线的最远距离是12米.24.解:(1)﹣2+5﹣2﹣3﹣6+6=﹣2(公里).故小王在下午出车的出发地的正西方向,距下午出车的出发地2公里远;(2)2+5+2+3+6+6=24(公里),24×0.1×5.7=13.68(元).故这段时间所耗的汽油钱是13.68元.25.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.。
2019-2020学年人教版七年级数学上册同步精品课堂1-3 有理数的加减法 (练习)(含答案)
④一个数的倒数一定小于它本身;错误,例如:1的倒数是1等于它本身;
故选:A.
【点睛】本题考查了有理数的加法、减法,倒数的定义,以及有理数大小的比较,熟练掌握相关知识点是解题的关键。
二、填空题(共5小题)
11.(2018·合肥市金湖中学初一期中)如果|a|=5,|b|=4,且a+b<0,则a-b的值是________.
13.(2018·扬州市梅岭中学初一期末)元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.
【答案】9
【解析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.
【详解】这天的温差为4-(-5)=4+5=9(℃),
故答案为:9
故选:B.
7.(2018·郑东新区实验学校初一期中)如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为( )A.﹣1B来自0C.1D.3【答案】C
【解析】
【详解】分析:先计算出中间数列上三个数的和,再根据每行、每列、每条对角线上的三个数之和相等,得a+5+0=3,3+1+b=3,c﹣3+4=3,求得a、b、c的值,即可得a﹣b+c的值.
【详解】﹣50﹣10=﹣60m,
故答案为:﹣60m.
【点睛】本题考查了有理数的减法,正确列出算式,熟记有理数减法法则是解题的关键.
15.(2018·泉州市北峰中学初一期中)算式8﹣7+3﹣6正确的读法是___________.
七年级数学上册1.3有理数的加减法1.3.1有理数的加法课时练(附模拟试卷含答案)
1.3 有理数的加减(1)有理数的加法1.比-1大1的数是( )A .-2B .-1C .0D .12.若a 为有理数,则-a 与|a|的和( )A. 可能是负数B. 不可能是负数C. 只可能是正数D. 只可能是03.若三个不等的有理数的和为0,则下列结论正确的是( )A .三个加数全是0B .至少有一个加数为负数C .最多有一个加数是负数D .最少有两个加数是正数4.如果一个数等于另一个数的绝对值,那么这两个数的和是( )A .负数B .正数C .非负数D .非正数5.如果a b c +=,且a ,b 都大于c ,那么a ,b 一定是( )A .同为负数B .一个正数一个负数C .同为正数D .一个负数一个是零6.计算:(4)(7)______(4)(7)______-+-=++-=;.7.比-7大5的数是_______.8.已知3,2x y ==,且0xy <,则x y +的值等于_______.9.若0a >,0b >,则____0a b +;若0a <,0b <,则____0a b +;若0a >,0b <,且a b >,则____0a b +.10.某自行车厂本周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆,393辆,397辆,410辆,391辆,385辆,405辆.(1) 用正负数表示每日实际生产量与计划量的增减情况;(2) 该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆?参考答案1.C .2.B .3.B .4.C .5.A .6.113--,. 7.-2.8.1-或1.9.>,<,>.10.(1)把超过计划量的车辆数用正数表示,把低于计划量的车辆数用负数表示可得到573109155+--+--+,,,,,,,(2)本周总增减量为(5)(7)(3)(10)(9)(15)(5)14++-+-+++-+-++=-.⨯+-=辆.因此本周总产量为4007(14)2786÷=(辆).平均每日实暮途穷际生产278673982019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.下列说法中,正确的有( )①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC ,则点B 是线段AC 的中点.A .1个B .2个C .3个D .4个3.如图,OC 是平角∠AOB 的平分线,OD 、OE 分别是∠AOC 和∠BOC 的平分线,图中和∠COD 互补的角有( )个A.1B.2C.3D.0 4.若代数式13k +值比312k +的值小1,则k 的值为( ) A.﹣1 B.27 C.1 D.575.若x=2是关于x 的方程2x+3m-1=0的解,则m 的值为( ) A .-1 B .0 C .1 D .13 6.下列说法正确的是( ) A.3xy 5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式 D.2x x 1--的常数项是17.下列方程变形中,正确的是( )A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程2332t =,未知数系数化为1,得t=1 D.方程110.20.5x x --=化成3x=6 8.现有五种说法:①-a 表示负数;②绝对值最小的有理数是0;③3×102x 2y 是5次单项式;④5x y -是多项式.其中正确的是( )A.①③B.②④C.②③D.①④9.下列运算中,正确的是( )A .2a+3b =5abB .2a 3+3a 2=5a 5C .4a 2b ﹣4ba 2=0D .6a 2﹣4a 2=0 10.在算式526--⊗中的“⊗”所在位置,填入下列哪种运算符号,能使最后计算出来的值最小( ).A.+B.-C.⨯D.÷11.已知a 、b 为有理数,ab≠0,且M=||||a b a b +,当a 、b 取不同的值时,M 的值是( ) A.±2 B.±1或±2 C.0或±1 D.0或±212.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A.a+b >0B.a+b <0C.ab >0D.|a|>|b| 二、填空题13.计算:18.6°+42°24'=______.14.已知一个角的余角比它的补角的13小18°,则这个角_____. 15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.已知方程()325x x +=与()42a x x -=有相同的解,则a 的值是______________.17.如图,在3×3的“九宫格”中填数,要使每行每列及每条对角线上的三数之和都相等.则B 表示的数是________________.18.绝对值大于1而小于5的整数的和是______.19.按图程序计算,若开始输入的值为9,则输出的结果为______.20.已知23a ab +=-,27ab b +=,则222a ab b ++=_____.三、解答题21.已知:如图,ABC ADC ∠=∠,DE 是ADC ∠的平分线,BF 是ABC ∠的平分线,且23∠∠=.求证:13∠=∠.22.某项工作,甲单独做要6天完成,乙单独做要l2天完成,若甲、乙合作完成此项工作,求多少天可以完成?(列一元一次方程求解)23.先阅读,然后答题.阿基米德测皇冠的故事叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:"优勒加!优勒加!(意为发现了)".夫人这回可真着急了,嘴里嘟囔着"真疯了,真疯了",便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了. 小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:小明准备了一个长方体的无盖容器和A ,B 两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为30mm ,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3个A 型号钢球,水面的高度涨到36mm ;把3个A 型号钢球捞出,再放入2个B 型号钢球,水面的高度恰好也涨到36mm .由此可知A 型号与B 型号钢球的体积比为____________;探究二:小明把之前的钢球全部捞出,然后再放入A 型号与B 型号钢球共10个后,水面高度涨到57mm ,问放入水中的A 型号与B 型号钢球各几个?24.如图,将两块三角板的直角顶点重合.(1)写出以点C 为顶点的相等的角;(2)若∠ACB =150°,求∠DCE 的度数;(3)写出∠ACB 与∠DCE 之间所具有的数量关系.25.化简求值:已知:(x ﹣3)2+|y+13|=0,求3x 2y ﹣[2xy 2﹣2(xy 232x y -)+3xy]+5xy 2的值. 26.化简求值:(-3x 2-4y )-(2x 2-5y+6)+(x 2-5y-1);其中 x=-3 ,y=-127.现从小欣作业中摘抄了下面一道题的解题过程: 计算:24÷(13-18-16); 解:24÷(13-18-16) =24÷13-24÷18-24÷16 =72-192-144=-264;观察以上解答过程,请问是否正确?若不正确,请写出正确的解答.28.计算(1)1125424929⎛⎫-⨯+-⨯ ⎪⎝⎭ (2)()()2108(2)43-+÷---⨯- ()()1573242612⎛⎫+-⨯-⎪⎝⎭ (4)()(321210.5[23)3⎤---⨯⨯--⎦.【参考答案】***一、选择题1.A2.B3.B4.D5.A6.C7.D8.B9.C10.C11.D12.B二、填空题13.61°14.72°15.(a+ SKIPIF 1 < 0 b).解析:(a+54 b).16.517.-401918.19.20.4三、解答题21.见解析;22.4天可以完成.23.探究一:2:3;探究二:A型号钢球3个,B型号钢球7个.24.(1)见解析;(2)30°;(3)∠ACB+∠DCE=180°.25.26.原式=-4x2-4y-7,代入得-39.27.错误,正确的解法见解析.28.(1)﹣115;(2)0;(3)﹣18;(4)﹣656.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30°2.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民3.如图,两块直角三角板的直顶角O 重合在一起,若∠BOC=15∠AOD ,则∠BOC 的度数为( )A .30° B. 45° C.54° D.60°4.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还多出2个座位.有下列四个等式:①4010432m m +=-;②1024043n n +-=;③1024043n n -+=;④4010432m m -=+.其中正确的是( ).A.①②②B.②④C.①③D.③④ 5.一艘轮船航行在A 、B 两地之间,已知该船在静水中每小时航行12千米,轮船顺水航行需用6小时,逆水航行需用10小时,则水流速度和A 、B 两地间的距离分别为( )A .2千米/小时,50千米B .3千米/小时,30千米C .3千米/小时,90千米D .5千米/小时,100千米6.下列各组的两项不是同类项的是 ( )A.2ax 2 与 3x 2B.-1 和 3C.2x 2y 和-2y xD.8xy 和-8xy 7.多项式2x 3-8x 2+x-1与多项式3x 3+2mx 2-5x+3的和不含二次项,则m 为( )A .2B .-2C .4D .-48.我国宋朝数学家杨辉1261年的著作《详解九章算法》给出了在()(n a b n +为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按a 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则2019(1)x +展开式中含2018x 项的系数是( )A.2016B.2017C.2018D.20199.下列方程变形中,正确的是( )A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程2332t =,未知数系数化为1,得t=1 D.方程110.20.5x x --=化成3x=6 10.由四舍五入得到的近似数2.6万,精确到( )A .千位B .万位C .个位D .十分位11.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A .312×104B .0.312×107C .3.12×106D .3.12×10712.1-的绝对值是( )A.1B.0C.1-D.1±二、填空题13.计算:21°17′×5=___________.(结果用度、分、秒表示)14.如图,甲从A 点出发向北偏东60°方向走到点C ,乙从点A 出发向南偏西25°方向走到点B ,则∠BAC 的度数是__________.15.关于x 的方程ax ﹣2x ﹣5=0(a≠2)的解是_____.16.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.17.若单项式5x 4y 和5x n y m是同类项,则m+n 的值是_______.18.如图是用七巧板拼成的老人图形,如果原正方形的边长为20,则图中黑色部分的面积为______.19_____.20.比较大小,4-______3(用“>”,“<”或“=”填空).三、解答题21.填写下面证明过程中的推理依据:已知:如图,AB ∥CD ,BE 平分∠ABC ,CF 平分∠BCD .求证:∠1=∠2证明:∵AB ∥CD (__________)∴∠ABC=∠BCD (__________)∵BE 平分∠ABC ,CF 平分∠BCD (__________)∴∠1=12∠ ______ ,(__________) ∠2=12∠ ______ .(__________) ∴∠1=∠2.(__________)22.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠;(2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系.23.《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.24.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?25.一个四边形的周长是48 cm ,已知第一条边长是a cm ,第二条边比第一条边的2倍还长3 cm ,第三条边长等于第一、第二两条边长的和.(1)用含a 的式子表示第四条边长;(2)当a =7时,还能得到四边形吗?并说明理由.26.小明准备完成题目:化简:(□x 2+6x+8)-(6x+5x 2+2)发现系数“□”印刷不清楚.(1)她把“□”猜成4,请你化简(4x 2+6x+8)-(6x+5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”请通过计算说明原题中“□”是几?27.计算 (1)(-1)2×5+(-2)3÷4; (2)52-83()×24+14÷31-2()+|-22|. (3)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab].28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】***一、选择题1.A2.A3.A4.C5.C6.A7.C8.D9.D10.A11.C12.A二、填空题13.106°25′14.145°15. SKIPIF 1 < 0解析:52 a-16.10017.5;18.5019. SKIPIF 1 < 0解析:20.<;三、解答题21.已知;两直线平行,内错角相等;已知;ABC;角平分线的定义;BCD;角平分线的定义;等量代换.22.(1)①见解析,②见解析;(2)65°;(3)12m n=,见解析.23.城中有75户人家.24.生产圆形铁片的有24人,生产长方形铁片的有18人. 25.(1) (42-6a)cm(2)不能26.(1) -x2+6;(2)527.(1)3;(2)19;(3)7a2-2b2+ab.1 2;(2)52.28.(1)﹣2。
人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷
人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷基础卷(时间:90分钟,满分:100分)一、选择题(每小题4分,共28分)1.两数相加,如果和不是正数,这两个数()A.都是负数B.都是正数C.一正一负D.至少有一为负2.若a为有理数,则∣a∣+a的结果为()A.正数B.负数C.不可能是负数D.正数、负数和零都有可能3.若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是()A.0 B.1 C.2 D.±24.若a,b互为相反数,则a+b的值为()A.0 B.1 C.2 D.±25、绝对值大于2且小于5的所有整数的和是()A、7B、-7C、0D、46、下列说法中正确的是()A、最小的整数是0B、有理数分为正数和负数C、如果两个数的绝对值相等,那么这两个数相等D、互为相反数的两个数的绝对值相等7、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()A、在家B、在学校C、在书店D、不在上述地方二、填空题(每空2分,共34分)8.(1);(2);(3);(4);(5);(6)。
9.已知两个数是15和-21,这两个数的和的绝对值是___,绝对值的和是__。
10.绝对值小于3的所有整数的和是___。
11、加法交换律用字母表示为:______;加法结合律用字母表示为:___。
12、如果a>0,b>0,那么a+b___0;如果a<0,b<0,那么a+b___0;如果a>0,b<0,且∣a∣>∣b∣,那么a+b___0;如果a<0,b>0,且∣a∣<∣b∣,那么a+b___0。
13、有理数的减法法则,用字母表示为:a-b=____。
14、若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是____.三、解答题(共38分)15、(14分)计算(1)-17+23+(-16)-(-7);(2)1+(-21)+∣-2-3∣-25。
1.3有理数的加减法知识点分类练习(附答案)2021-2022学年七年级数学人教版上册
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》知识点分类练习(附答案)一.有理数的加法1.计算(﹣3)+(﹣9)结果是()A.﹣6B.﹣12C.6D.122.计算:3+(﹣1),其结果等于()A.2B.﹣2C.4D.﹣43.计算(﹣5)+2的结果是()A.﹣7B.3C.﹣3D.74.20+(﹣20)的结果是()A.﹣40B.0C.20D.405.比﹣2大5的数是()A.﹣7B.﹣3C.3D.76.计算:18+(﹣17)+7+(﹣8).二.有理数的减法7.计算1﹣2,结果正确的是()A.3B.1C.﹣1D.﹣38.计算3﹣(﹣2)的结果等于()A.﹣6B.6C.﹣5D.59.计算2﹣|﹣3|的结果是()A.﹣5B.﹣1C.1D.510.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13B.13C.﹣3D.311.计算﹣(﹣)的结果等于()A.B.﹣C.D.﹣12.比﹣2小3的数是()A.5B.1C.﹣1D.﹣513.下列说法正确的是()A.减去一个数,等于加上这个数的相反数B.被减数的绝对值大于减数的绝对值,其差必为正数C.零减去一个有理数,差一定是负数D.两个数的差必小于零三.有理数的加减混合运算14.把笔尖放在数轴的原点,沿数轴先向左(负方向)移动6个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.6+3=9B.﹣6﹣3=﹣9C.6﹣3=3D.﹣6+3=﹣3 15.我市2021年的最高气温为33℃,最低气温为零下27℃,则计算2021年温差列式正确的是()A.(+33)﹣(﹣27)B.(+33)+(+27)C.(+33)+(﹣27)D.(+33)﹣(+27)16.珠穆朗玛峰海拔高8848米,塔里木盆地海拔高﹣153米,求珠穆朗玛峰比塔里木盆地高多少米,列式正确的是()A.8848+153B.8848+(﹣153)C.8848﹣153D.8848﹣(+153)17.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7 18.若数轴上点A、B表示的数分别为5和﹣5,则AB之间的距离可以表示为()A.5+(﹣5)B.5﹣(﹣5)C.(﹣5)+5D.(﹣5)﹣5 19.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.20.计算:(﹣3)+1﹣5﹣(﹣8).21.计算:﹣2+(﹣3)﹣(﹣5).22.计算:(1)12﹣(﹣18)+(﹣7)﹣6.(2)(﹣0.5)+3+2.75+(﹣5).23.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数d 的点到原点的距离为4,求a﹣b﹣c+d的值.24.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?25.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期一二三四五六日柚子销售超过或不足计+3﹣5﹣2+11﹣7+13+5划量情况(单位:千克)(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?26.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?参考答案一.有理数的加法1.解:(﹣3)+(﹣9)=﹣12.故选:B.2.解:3+(﹣1)=2.故选:A.3.解:原式=﹣(5﹣2)=﹣3.故选:C.4.解:20+(﹣20)=0.故选:B.5.解:比﹣2大5的数是:﹣2+5=3.故选:C.6.解:18+(﹣17)+7+(﹣8)=1+7+(﹣8)=8+(﹣8)=0.二.有理数的减法7.解:1﹣2=1+(﹣2)=﹣1,故选:C.8.解:3﹣(﹣2)=3+2=5,故选:D.9.解:原式=2﹣3=﹣1,故A、C、D错误,故选:B.10.解:(﹣5)﹣(﹣8)=(﹣5)+8=3.故选:D.11.解:﹣(﹣)===.故选:A.12.解:﹣2﹣3=﹣5,故选:D.13.解:A.减去一个数,等于加上这个数的相反数,故符合题意;B.被减数的绝对值大于减数的绝对值,若被减数为负数时,其差为负数,故不符合题意;C.零减去一个负有理数,差为正数,故不符合题意;D.较大的数减去较小的数,差大于零,故不符合题意,故选:A.三.有理数的加减混合运算14.解:由题意可知:﹣6+3=﹣3,故选:D.15.解:把0℃以上记作正数,把0℃以下记作负数,则:最高温度为+33℃,最低温度为﹣27℃,∴温差=(+33)﹣(﹣27),故选:A.16.解:8848﹣(﹣153)=8848+153,故选:A.17.解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.18.解:∵数轴上点A、B表示的数分别为5和﹣5,∴AB之间的距离可以表示为:5﹣(﹣5).故选:B.19.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.20.解:(﹣3)+1﹣5﹣(﹣8)=﹣2﹣5+8=﹣7+8=1.21.解:原式=﹣2﹣3+5=﹣5+5=0.22.解:(1)12﹣(﹣18)+(﹣7)﹣6=30﹣7﹣6=17.(2)(﹣0.5)+3+2.75+(﹣5)=[﹣0.5+(﹣5)]+(3+2.75)=(﹣6)+6=0.23.解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数d 的点到原点的距离为4,∴a=1,b=﹣1,c=0,d=±4,则当a=1,b=﹣1,c=0,d=﹣4时,a﹣b﹣c+d=1+1﹣0﹣4=﹣2;当a=1,b=﹣1,c=0,d=4时,a﹣b﹣c+d=1+1﹣0+4=6.故a﹣b﹣c+d的值为﹣2或6.24.解:(1)14﹣(﹣8)=22(分钟),∴小李跑步时间最长的一天比最短的一天多跑22分钟.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(分钟),240×0.1=24(千米)∴若小李跑步的平均速度为每分钟0.1千米,则这七天他共跑了24千米.25.解:(1)13﹣(﹣7)=13+7=20(千克).答:小王第一周销售柚子最多的一天比最少的一天多销售20千克.(2)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(3)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.26.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。
人教版七年级数学上册随堂练习附答案1.3 有理数的加减法
1.3 有理数的加减法一、选择题(共10小题;共30分)1. 某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为( )A. 76米B. 84.8米C. 85.8米D. 86.6米2. 如果三个数的和为零,那么这三个数一定是( )A. 两个正数,一个负数B. 两个负数,一个正数C. 三个都是零D. 其中两个数之和等于第三个数的相反数3. 若两个非零的有理数a,b,满足:∣a∣=a,∣b∣=−b,a+b<0,则在数轴上表示数a,b的点正确的是( )A. B.C. D.4. 在进行异号的两个有理数加法运算时,用到下面的一些操作:①将绝对值较大的有理数的符号作为结果的符号并记住②将记住的符号和绝对值的差一起作为最终的计算结果③用较大的绝对值减去较小的绝对值④求两个有理数的绝对值⑤比较两个绝对值的大小其中操作顺序正确的步骤是( )A. ①②③④⑤B. ④⑤③②①C. ①⑤③④②D. ④⑤①③②第5页(共7 页)第5页(共7 页) 5. 下列运算正确的个数为 ( )①(−2)+(−2)=0;②(−6)+(+4)=−10;③0+(−3)=+3;④(+56)+(−16)=23; ⑤−(−34)+(−734)=−7 A. 0 B. 1 C. 2D. 3 6. 计算 18−(−5) 的结果等于 ( ) A. 15 B. −13 C. 23 D. −40 7. 小明经常在一条南北方向的公路上散步.他每次从 A 点出发,两次记录自己散步的情况如下(向南走为正方向),如果第二次记录时停下,此时他离 A 点最近的是 ( )A. −225 米,510 米B. −152 米,−250 米C. 123 米,−151 米D. 150 米,300 米8. 如图,点 A ,B ,C 在一次函数 y =−2x +m 的图象上,它们的横坐标依次为 −1,1,2,分别过这些点作 x 轴与 y 轴的垂线,则图中阴影部分的面积之和是 ( )A. 1B. 3C. 3(m −1)D. 32(m −2) 9. 计算 ∣−5+3∣ 的结果是 ( )A. −2B. 2C. −8D. 8。
《1、3有理数的加减法》同步培优提升训练(附答案)21-22学年七年级数学人教版上册
2021-2022学年人教版七年级数学上册《1.3有理数的加减法》同步培优提升训练(附答案)一.选择题1.某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃2.一个数比﹣10的绝对值大1,另一个数比2的相反数小1,则这两个数的和为()A.7B.8C.9D.103.下列算式的结果中是负数的是()A.﹣7﹣(﹣8)B.﹣C.(﹣2)+(﹣3)﹣(﹣4)D.0﹣(﹣2019)4.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.1个B.2个C.3个D.4个5.已知|a|=5,|b|=2,且a<0,b>0,则a+b的值为()A.7B.﹣7C.3D.﹣36.数轴上点A表示﹣3,点B表示1,那么线段AB长度可用算式表示为()A.﹣3+1B.1﹣(﹣3)C.﹣3﹣1D.1﹣37.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.708.某超市出售的一种品牌大米袋上,标有质量为(20±0.4)kg的字样,从超市中任意拿出该品牌大米两袋,它们的质量最多相差()A.0.4kg B.0.55kg C.0.6kg D.0.8kg二.填空题9.计算:①(+2)+(﹣)=;②(﹣2)+7+(﹣)+12=.10.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是.11.|a|=4,|b|=6,则|a+b|﹣|a﹣b|=.12.4.5+(﹣2.6)﹣(﹣1.1)+()=2,括号内应填入的数是.13.如图,a,b是有理数,则式子|a|﹣|b|+|b+a|化简的结果为.14.比﹣2的相反数大﹣8的数是.15.有8筐白菜,以每筐25千克为准,超过的千克数记为正数,不足记为负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.这8筐白菜一共千克.16.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.三.解答题17.(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11);(2)(﹣1)+(﹣57)﹣(﹣1)+42;(3)0.25+(﹣)﹣﹣|﹣|;(4)+(﹣2)﹣(﹣1)﹣(+0.5).18.(1)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|;(2)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12);(3)(﹣3)+(+)+(﹣0.5)++3;(4)简便运算:(﹣301)+125+301+(﹣75);(5)27﹣18+(﹣7)﹣32;(6)15﹣(+5)﹣(+3)+(﹣2)﹣(+6).19.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km6km (1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.3升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?20.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?参考答案一.选择题1.解:﹣2+12﹣8=10﹣8=2(℃).答:半夜的气温是2℃.故选:B.2.解:比﹣10的绝对值大1的数是11,比2的相反数小1的数是﹣3,11+(﹣3)=8,故选:B.3.解:∵﹣7﹣(﹣8)=1>0,∴选项A不符合题意;∵﹣=>0,∴选项B不符合题意;∵(﹣2)+(﹣3)﹣(﹣4)=﹣1<0,∴选项C符合题意;∵0﹣(﹣2019)=2019>0,∴选项D不符合题意.故选:C.4.解:①减去一个数,等于加上这个数的相反数,说法正确;②两个互为相反数的数和为0,说法正确;③两数相减,差一定小于被减数,说法错误,如1﹣(﹣2)=1+2=3,3>1;④如果两个数的绝对值相等,则这两个数相等或互为相反数,所以这两个数的和或差等于零,故④说法正确.所以正确的说法有①②④.故选:C.5.解:∵|a|=5,|b|=2,∴a=±5,b=±2,∵a<0,b>0,∴a=﹣5,b=2,∴a+b=﹣5+2=﹣3.故选:D.6.解:∵数轴上点A表示﹣3,点B表示1,∴线段AB长度可用算式表示为:1﹣(﹣3).故选:B.7.解:35+(35﹣10)=35+25=60.故选:B.8.解:∵超市出售的某种品牌的大米袋上,标有质量为(20±0.4)kg的字样,∴标准大米的质量最多相差:0.4﹣(﹣0.4)=0.4+0.4=0.8(kg),故选:D.二.填空题9.解:①(+2)+(﹣)=1;②(﹣2)+7+(﹣)+12=[(﹣2)+12]+[7+(﹣)]=10+6=16.10.解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.11.解:∵|a|=4,|b|=6,∴a=±4,b=±6,当a=4,b=6时,|a+b|﹣|a﹣b|=|4+6|﹣|4﹣6|=10﹣2=8;当a=4,b=﹣6时,|a+b|﹣|a﹣b|=|4+(﹣6)|﹣|4﹣(﹣6)|=﹣8;当a=﹣4,b=6时,|a+b|﹣|a﹣b|=|﹣4+6|﹣|﹣4﹣6|=﹣8;当a=﹣4,b=﹣6时,|a+b|﹣|a﹣b|=|﹣4+(﹣6)|﹣|(﹣4)﹣(﹣6)|=8;由上可得,|a+b|﹣|a﹣b|=±8,故答案为:±8.12.解:2﹣[4.5+(﹣2.6)﹣(﹣1.1)]=2﹣(1.9+1.1)=2﹣3=﹣1.故答案为:﹣1.13.解:由有理数a、b在数轴上的位置,可得﹣1<a<0、b>1、a+b>0,∴|a|﹣|b|+|b+a|=﹣a﹣b+b+a=0,故答案为:0.14.解:∵﹣2的相反数是﹣(﹣2),∴比﹣2的相反数大﹣8的数是:﹣(﹣2)+(﹣8)=﹣6.故答案为:﹣6.15.解:(1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5)+25×8=﹣5.5+200=194.5(千克).这8筐白菜一共194.5千克.故答案为:194.5.16.解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.三.解答题17.解:(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)=﹣16﹣29+7﹣11=﹣49.(2)(﹣1)+(﹣57)﹣(﹣1)+42=[(﹣1)﹣(﹣1)]+[(﹣57)+42]=0﹣15.3=﹣15.3.(3)0.25+(﹣)﹣﹣|﹣|=(0.25﹣)+[(﹣)﹣|﹣|]=﹣0.5﹣1=﹣1.5.(4)+(﹣2)﹣(﹣1)﹣(+0.5)=[﹣(﹣1)]+[(﹣2)﹣(+0.5)]=2﹣3=﹣1.18.解:(1)==4.5;(2)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣8﹣9+15+12=10;(3)===;(4)(﹣301)+125+301+(﹣75)=﹣301+301+125﹣75=50;(5)27﹣18+(﹣7)﹣32=27﹣7﹣18﹣32=20﹣50=﹣30;(6)==15﹣8﹣10=﹣3.19.解:(1)5+2+(﹣4)+(﹣3)+6=6(km),答:接送完第5批客人后,该驾驶员在公司的南边6千米处.(2)(5+2+|﹣4|+|﹣3|+6)×0.3=20×0.3=6(升),答:在这个过程中共耗油6升.(3)[8+(5﹣3)×1.8]+8+[8+(4﹣3)×1.8]+8+[8+(6﹣3)×1.8]=50.8(元),答:在这个过程中该驾驶员共收到车费50.8元.20.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元。
1.3有理数的加减法(原卷版)
1.3有理数的加减法同步优化训练一、选择题1. 把式子-(-15)-(+8)-(-7)+(-4)写成省略括号和加号的和的形式为()A.-15-8-7+4 B.15+8-7-4C.15-8+7-4 D.-15-8+7-42. 下列各式中,计算结果为正的是()A.(-50)+(+4) B.2.7+(-4.5)C.(-13)+25D.0+(-13)3. 计算|-6-2|的结果是()A.-8 B.8 C.-4 D.44. 温度由-4 ℃上升7 ℃是()A.3 ℃B.-3 ℃C.11 ℃D.-11 ℃5. 储蓄所办理了几笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这时储蓄所的存款增加了()A.12.25万元B.-12.25万元C.12万元D.-12万元6. 某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是()A.星期一B.星期二C.星期三D.星期四7. 花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿大街向东走了20米,接着又向西走了-30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方二、填空题8. 比-3大5的数是________.9. 五袋优质大米以每袋50 kg 为基准,超过的记为正,不足的记为负,称重记录(单位:kg)如下:+4.5,-4,+2.3,-3.5,+2.5.那么这五袋大米共超重__________kg ,总质量为__________kg.10. 一种机器零件,图纸标明是Ф30-0.02+0.04,合格品的最大直径与最小直径的差是________.11. 已知a +c =-2019,b +d =2020,则a +d +c +b 的值是________.12. 若一个数的相反数是8,另一个数是绝对值最小的数,则这两个数的和是________.13. 如图所示,数轴上点A 表示的数为a ,点B 表示的数为b ,则a -b =________.14. 计算:-3.5+⎪⎪⎪⎪⎪⎪-52-(-2)=________.三、解答题15. 股民小王上星期五以收盘价67元买进某公司股票1000股,下表为本周内(除星期六、星期日)每日该股票的涨跌情况(上涨记为正,下跌记为负):星期一 星期二 星期三 星期四 星期五 +4+4.5-1-2.5-6(1)星期三收盘时,该股票每股多少元?(2)本周内该股票每股最高价为多少元?最低价为多少元?16. 用适当的方法计算下列各题:(1)(+7)+(-21)+(-7)+(+21); (2)-4+17+(-36)+73;(3)⎝ ⎛⎭⎪⎫-37+⎝ ⎛⎭⎪⎫+15+⎝ ⎛⎭⎪⎫+27+⎝ ⎛⎭⎪⎫-115; (4)(-2.125)+⎝ ⎛⎭⎪⎫+315+⎝ ⎛⎭⎪⎫+518+(-3.2);(5)(+6)+(+14)+(-3.3)+(+3)+(-6)+(+0.3)+(+8)+(+6)+(-16)+(-614).17. (1)若a 与2互为相反数,求|a +3|的值;(2)已知|a |=7,|b |=3,求a +b 的值.18. 分类讨论已知|a |=4,|b |=2,且|a +b |=a +b ,求a -b 的值.19. 模仿与迁移先阅读例题的计算方法,再根据例题的计算方法计算.例 计算:-556+⎝ ⎛⎭⎪⎫-923+1734+⎝ ⎛⎭⎪⎫-312.解:-556+⎝ ⎛⎭⎪⎫-923+1734+⎝ ⎛⎭⎪⎫-312=⎣⎢⎡⎦⎥⎤(-5)+⎝ ⎛⎭⎪⎫-56+⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12 =[(-5)+(-9)+17+(-3)]+[(-56)+ (-23)+34+(-12)]=0+⎝ ⎛⎭⎪⎫-54=-54.上面这种解题方法叫做拆项法.计算:⎝ ⎛⎭⎪⎫-201956+⎝ ⎛⎭⎪⎫-202023+404023+⎝ ⎛⎭⎪⎫-112.20. 阅读理解阅读材料:因为|x|=|x-0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1-x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x-2|=3的几何意义是什么?这里x的值是多少?(2)等式|x-4|=|x-5|的几何意义是什么?这里x的值是多少?(3)式子|x-1|+|x-3|的几何意义是什么?这个式子的最小值是多少?。
七年级数学1.3有理数的加减法练习题及答案
新人教数学有理数的加减法测试题一、填空题(每小题3分;共24分)1、+8与-12的和取___号;+4与-3的和取___号。
2、小华记录了一天的温度是:早晨的气温是-5℃;中午又上升了10℃;半夜又下降了8℃;则半夜的温度是____℃。
3、3与-2的和的倒数是____;-1与-7差的绝对值是____。
4、小明存折中原有450元;取出260元;又存入150元;现在存折中还有____元。
5、-0.25比-0.52大____;比-521小2的数是____。
6、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”)7、已知21,43,32-=-==c b a ;则式子=--+-)()(c b a _____。
8、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____。
二、选择题(每小题3分;共24分)1、已知胜利企业第一季度盈利26000元;第二季度亏本3000元;该企业上半年盈利(或亏本)可用算式表示为( )A 、)3000()26000(+++B 、)3000()26000(++-C 、)3000()26000(-+-D 、)3000()26000(-++2、下面是小华做的数学作业;其中算式中正确的是( ) ①74)74(0=+-;②417)417(0=--;③510)51(-=-+;④510)51(-=+- A 、①② B 、①③ C 、①④ D 、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元;存进5元;取出8元;存进12无;存进25元;取出1.25元;取出2元;这时银行现款增加了( )A 、12.25元B 、-12.25元C 、12元D 、-12元4、-2与414的和的相反数加上651-等于( ) A 、-1218 B 、1214- C 、125 D 、1254 5、一个数加上-12得-5;那么这个数为( )A 、17B 、7C 、-17D 、-76、甲、乙、丙三地的海拔高度分别为20米;-15米和-10米;那么最高的地方比最低的地方高( )A 、10米B 、15米C 、35米D 、5米7、计算:21)7()9()3()5(+---++--所得结果正确的是( ) A 、2110- B 、219- C 、218 D 、2123-8、若031=++-b a ;则21--a b 的值为( ) A 、214- B 、212- C 、211- D 、211 三、解答题(共52分)1、列式并计算:(1)什么数与125-的和等于87-? (2)-1减去5232与-的和;所得的差是多少?2、计算下列各式:(1))8()13(2)6(0+---+--(2))127(65)43(6513--+-- (3)4122)75.0()218()25.6()4317(-+---+-+3、下列是我校七年级5名学生的体重情况;(1)试完成下表:(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加;圆形表示减;结果小者获。
人教版七年级数学上册同步练习题 第一章有理数有理数的加减法(有答案)
人教版七年级数学上册同步练习题 第一章有理数 1.3有理数的加减法一、选择题1.飞机原在3800米高空飞行,现先上升150米,又下降200米,这时飞机飞行的高度是( ) A .3 650米 B .3750米 C .3850米 D .3950米 2.某地区的气温在一段时间里,从-8 ℃先上升了5 ℃,然后又下降了7 ℃,那么此时的气温是( ).A .10 ℃B .-10 ℃C .4 ℃D .-4 ℃3.33+(-32)+7+(-8)的结果为( ).A .0B .2C .-1D .+54.如果0,0<>b a ,0<+b a ,则下列大小关系正确的是( ).A .a b a b <<-<-B .a b a b <-<-<C .b a b a -<<<-D .b a a b -<<-<5.下列说法正确的是( )。
A .两个数的和一定比两个数的差大B .两个数的差小于被减数C .相等的两个有理数之差为零D .绝对值相等的两个有理数之差为零6.某单位第一季度账面结余-1.3万元,第二季度每月收支情况为(收入为正):+4.1万元,+3.5万元,-2.4万元,则至第二季度末账面结余为( )A .-0.3万元B .3.9万元C .4.6万元D .5.7万元7.如果一个有理数与-7的和是正数,那么这个有理数一定是( )A .负数B .零C .7D .大于7的正数 8.下列四组数中,互为相反数的组合有( )①()3++与()3+-; ②()3--与()3-+;③3++与3--;④3+-与3-+; A .1组 B .2组 C .3组 D .4组9.如果a+b+c <0,那么( ).A .三个数中最少有两个负数B .三个数中有且只有一个负数C .三个数中两个是正数或者两个是负数D .三个数中最少有一个负数10.下列变化正确的是( )A .(-12)+(+18)+(-28)=[(-12)+(+28)]+(-18)B .(-12)+(+18)+(-28)=[(-18)+(+12)]+(-28)C .(-12)+(+18)+(-28)=[(-12)+(-28)]+(+18)D .以上变化都不对二、填空题11.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高____ m .12.直接填得数:(1)()11.215⎛⎫-++ ⎪⎝⎭=_______;(2)13(3)(2)44-+-=_______; (3)13()34+-=_______;(4)25(3)(2)77+-=_______. 13.已知两个数556和283-,这两个数的相反数的和是____________. 14.101﹣102+103﹣104+…+199﹣200=______.15.已知从 1,2,…,9 中可以取出 m 个数,使得这 m 个数中任意两个数之 和不相等,则 m 的最大值为______.三、解答题16.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A 地的哪一边?距A 地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.17.一振子从点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动的记录为(单位:mm):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求该振子停止时所在的位置距A 点多远?(2)如果每毫米需用时间0.02 s ,则完成8次振动共需要多少秒?18.计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232(3)(2)(1)( 1.75)343-----+.19.计算(1)414)21(32)65(41-+-+-+-; (2)2111()()3642-+----; (3)74324.773276.3----; (4).25.032581413125.0-+-+ 20.已知|x +2|+|y -16|=0,求x ,y 的值.21.计算下列各题:(1)(-51)+(+12)+(-7)+(-11)+(+36)+(+17);(2)37.5+(+2857)+[(-4612)+(-2517)]. 22.计算:(1)2141232(0.2)13355⎡⎤⎛⎫-------- ⎪⎢⎥⎝⎭⎣⎦; (2)3311148824--+-. 23.某粮店有10袋玉米准备出售,称得的质量如下(单位:千克):182,178,177,182.5,183,184,181,185,178.5,180.(1)选一个数为基准数,用正、负数表示这10袋玉米的质量与它的差.(2)试计算这10袋玉米的总质量是多少千克?(3)若每千克玉米售价为0.9元,则这10袋玉米能卖多少元?【参考答案】1.B 2.B 3.A 4.D 5.C 6.B 7.D 8.D 9.D 10.C11.3512.0 6- 512-47 13.17614.-5015.516.(1)检修小组在A 地东边,距A 地48千米;(2)出发到收工检修小组耗油24.8升.17.(1) 该振子停止时距A 点右侧5.5 mm ;(2) 1.23 s. 18.(1)-12;(2)3.6(3)-15;(4)-1. 19.(1)615-; (2)1312- ; (3)-17 ; (4)283 20.x =-2,y =16.21.(1)-4(2)-53722.(1)4715;(2)1223.(1)+2,-2,-3,+2.5,+3,+4,+1,+5,-1.5,0; (2)1 811千克;(3)1 629.9元;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学有理数的加法同步练习
一、填空题
1.m+0=_______,-m+0=_______,-m+m=_______.
2.16+(-8)=_______,(-)+(-)=_______.
3.若a=-b,则a+b=_______.
4.若|a|=2,|b|=5,则|a+b|=_______.
5.用算式表示:温度-10℃上升了3℃达到_______.
二、判断题
1.若a>0,b<0,则a+b>0.()
2.若a+b<0,则a,b两数可能有一个正数. ()
3.若x+y=0,则|x|=|y|.()
4.有理数中所有的奇数之和大于0. ()
5.两个数的和一定大于其中一个加数. ()
三、选择题
1.有理数a,b在数轴上对应位置如图所示,则a+b的值为
[ ]
A.大于0
B.小于0
C.等于0
D.大于a
2.下列结论不正确的是 [ ]
A.若a>0,b>0,则a+b>0
B.若a<0,b<0,则a+b<0
C.若a>0,b<0,则|a|>|b|,则a+b>0
D.若a<0,b>0,且|a|>|b|,则a+b>0
3.一个数大于另一个数的绝对值,则这两个数的和是 [ ]
A.负数
B.正数
C.非负数
D.非正数
4.如果两个数的和为正数,那么 [ ]
A.这两个加数都是正数
B.一个数为正,另一个为0
C.两个数一正一负,且正数绝对值大
D.必属于上面三种之一
四、解答题
一辆货车从货场a出发,向东走了2千米到达批发部b,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.
(1)用一个单位长度表示1千米,以东为正方向,以货场为原点,画出数轴并在数轴上标明货场a,批发部b,商场C,超市D的位置.
(2)超市D距货场a多远?
(3)货车一共行驶了多少千米?
*自我陶醉
编写一道自己感兴趣并与本节内容相关的题,解答出来.
测验评价结果:_______________; 对自己想说的一句话是:
_______________________.
参考答案
一、1.m-m 0 2.8 - 3.0 4.7或3 5.-10℃+3℃
二、1.× 2.√ 3.√ 4.× 5.×
三、1.b 2.D 3.b 4.D
四、(1)
(2)2 km(3)11 km。