离散数学——讲义公式与解释

合集下载

离散数学 群

离散数学 群
定理7.1.4 任何一个循环半群(或含幺循环半群)都是可 交换半群(或含幺可交换半群)。 定理7.1.5 设<S, *>是一个半群,H 是S中任一元素的幂所 构成的集合,则<H,*>是<S, *>的子半群,且是个循环子 半群。 (该定理的证明自己练习)
5 半群同态
定义7.1.5 设U=<X,ο >和V=<Y, *>是两个半群,ο和*都是 二元运算,函数f:X→Y,若对任意的x,y∈X,有:
定理 群的运算表中每一行或每一列都是G中元素的双变换。 G中每个元素在每一行必出现且仅出现一次。
例 P198习题-18 若群<G,*>中每个元素的逆是其自身, 证该群是阿贝尔群。
证 只需证运算*可交换。 对任意的a,b∈G, a*b=a-1*b-1=(b*a)-1=b*a 故<G,*>是阿贝尔群。
= x*(a*b) 故 a*b∈C; ② 可逆性:若a∈C, 证a-1∈C。明显e∈C,对任x∈G,
a-1*x = a-1*x*a* a-1 = a-1*(x*a)* a-1 = a-1*(a*x)* a-1 = (a-1*a)*x* a-1 = x* a-1
故 a-1∈C;因此C是G的子群。 (习题-25与之类似)
阿贝尔群 设<G,*>是一个群,若*是可交换的, 则称 群 <G,*>为可交换群或阿贝尔群。
例 <R,×>不是群;而 <R-{0},×>是群。
例 7.2.1 <I,+>是阿贝尔群。
例 7.2.2 G={α,β,γ,δ},验证<G,*>是群。
可验证运算*是可结合的, * α β γ
δ

离散数学讲义

离散数学讲义

A
(1)
B
A
(2) A’ ) A’ )
B
A (3)
B
因此不能说(1.2)式与(3)式总是相等的.


AB = (A
(3)


AB = (A B’ )

(B B’ ) (B
(A
B)
(1.2)
§1.6集合成员表
前面定义的集合运算的交.并.补.显然对全集U运算 是封闭的.下面对这些概念以新的形式定义,使之数量 化.能够更新,更清晰,更具理论价值.先讨论基本成员表. a.集合A的补集可如下定义: A′的成员表
元素附加一个标号,以使描述这个元素在该集合中的
相应位置.如A={a,b,c}分别是一、二、三元素,在A 的子集中,常有一些元素出现,另一些元素不出现。
我们根据这一情况来指定集合中元素的次序,用
如下方式表示.如A的各子集表为: B000=φ, B 001={c}, B010={b}, B011={b,c}, B100={a},
全集因所讨论的问题不同可相异.例如:
讨论正整数范围内U可取作N;实数讨论问题U可取
作R. 定义2: 设A.B为二集合.属于A或B的所有元素构 成的集合称为A与B的并.记为A∪B.即 A∪B={u | u∈Aoru∈B}
既属于A又属于B的所有元素构成的集合称为A与
B的交. 记为A∩B.即 A∩B={u | u∈A且u∈B} 例 ( 略)
解: 如A={a,c }
B={b,c}
有A-B={a} , 2 A-B={φ,{a}}
2A={φ,{a},{c},{a,c}}
2B= {φ,{b},{c},{b,c}}
2A-2B= {{a},{a,c}} 与2A-B互不包含. 进一步可看到:

离散数学基本公式

离散数学基本公式

离散数学基本公式离散数学是数学的一个重要分支,它主要研究的是非连续的、分离的对象,如集合、图论、数论、逻辑等。

在这些领域中,一些基本的公式和定理是理解和应用离散数学的关键。

以下是一些离散数学的基本公式:1、德摩根定律德摩根定律是布尔代数中的基本公式之一,它表示对于任何逻辑运算,如果我们把所有的否命题和原命题结合在一起,我们就会得到一个恒等式。

用符号表示为:P ∧ Q) ∨(¬P ∧¬Q) ≡ P ∨ QP ∨ Q) ∧(¬P ∨¬Q) ≡ P ∧ Q2.集合论中的互补律在集合论中,互补律表示对于任何集合A和它的补集A',我们有:A ∪ A' = U,其中U是全集A ∩ A' = ∅,其中∅表示空集3.图论中的欧拉公式欧拉公式是图论中的一个基本公式,它表示对于一个连通无向图G,其顶点数v、边数e和欧拉数euler(G)之间有以下关系:euler(G) = v + e - 2其中euler(G)是图G的欧拉数,v是图G的顶点数,e是图G的边数。

这个公式在计算图的欧拉数或者判断一个图是否连通等方面都有重要应用。

4.数论中的费马小定理费马小定理是数论中的一个重要定理,它表示对于任何正整数n,如果它是质数p的幂次方,那么我们可以找到一个整数x,使得x的n 次方等于1(模p)。

用数学语言表示为:x^n ≡ x (mod p)其中n是正整数,p是质数,x是整数。

这个定理在密码学、计算机科学等领域都有广泛的应用。

5.逻辑中的排中律和反证法排中律是指对于任何命题P,P或非P必定有一个是真命题。

反证法则是通过假设相反的命题成立来证明原命题的一种方法。

在证明过程中,如果假设的相反命题成立会导致矛盾,那么原命题就一定是正确的。

这些公式和定理只是离散数学中的一小部分,但它们是理解和应用离散数学的基础。

在学习的过程中,我们还需要掌握更多的公式和定理,以及它们的应用方法。

离散数学公式资料讲解

离散数学公式资料讲解

离散数学公式资料讲解基本等值式1.双重否定律 A ?┐┐A2.幂等律 A ? A∨A, A ? A∧A3.交换律A∨B ? B∨A,A∧B ? B∧A4.结合律(A∨B)∨C ? A∨(B∨C) (A∧B)∧C ? A∧(B∧C)5.分配律A∨(B∧C) ? (A∨B)∧(A∨C) (∨对∧的分配律)A∧(B∨C) ? (A∧B)∨(A∧C) (∧对∨的分配律)6.德·摩根律┐(A∨B) ?┐A∧┐B ┐(A∧B) ?┐A∨┐B7.吸收律 A∨(A∧B) ? A,A∧(A∨B) ? A8.零律A∨1 ? 1,A∧0 ? 09.同⼀律A∨0 ? A,A∧1 ? A10.排中律A∨┐A ? 111.⽭盾律A∧┐A ? 012.蕴涵等值式A→B ?┐A∨B13.等价等值式A?B ? (A→B)∧(B→A)14.假⾔易位A→B ?┐B→┐A15.等价否定等值式 A?B ?┐A?┐B16.归谬论(A→B)∧(A→┐B) ?┐A求给定公式范式的步骤(1)消去联结词→、?(若存在)。

(2)否定号的消去(利⽤双重否定律)或内移(利⽤德摩根律)。

(3)利⽤分配律:利⽤∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。

推理定律--重⾔蕴含式(1) A ? (A∨B) 附加律(2) (A∧B) ? A 化简律(3) (A→B)∧A ? B 假⾔推理(4) (A→B)∧┐B ?┐A 拒取式(5) (A∨B)∧┐B ? A 析取三段论(6) (A→B) ∧(B→C) ? (A→C) 假⾔三段论(7) (A?B) ∧(B?C) ? (A ? C) 等价三段论(8) (A→B)∧(C→D)∧(A∨C) ?(B∨D) 构造性⼆难(A→B)∧(┐A→B)∧(A∨┐A) ? B 构造性⼆难(特殊形式)(9)(A→B)∧(C→D)∧(┐B∨┐D) ?(┐A∨┐C)破坏性⼆难设个体域为有限集D={a1,a2,…,an},则有(1)?xA(x) ? A(a1)∧A(a2)∧…∧A(an)(2)?xA(x) ? A(a1)∨A(a2)∨…∨A(an)设A(x)是任意的含⾃由出现个体变项x的公式,则(1)┐?xA(x) ??x┐A(x)(2)┐?xA(x) ??x┐A(x)设A(x)是任意的含⾃由出现个体变项x的公式,B中不含x的出现,则(1)?x(A(x)∨B) ??xA(x)∨B x(A(x)∧B) ??xA(x)∧Bx(A(x)→B) ??xA(x)→Bx(B→A(x)) ? B→?xA(x)(2)?x(A(x)∨B) ??xA(x)∨Bx(A(x)∧B) ??xA(x)∧Bx(A(x)→B) ??xA(x)→Bx(B→A(x)) ? B→?xA(x)设A(x),B(x)是任意的含⾃由出现个体变项x的公式,则(1)?x(A(x)∧B(x)) ??xA(x)∧?xB(x)(2)?x(A(x)∨B(x)) ??xA(x)∨?xB(x)全称量词“?”对“∨”⽆分配律。

《离散数学》总复习上课讲义

《离散数学》总复习上课讲义
不是闭式的公式在某些解释下也可能是命题. 公式类型. 换名规则与代替规则
第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))

离散数学讲义(第6章)

离散数学讲义(第6章)

18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f

c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26

《离散数学》讲义笔记

《离散数学》讲义笔记

《离散数学》课时一 命题逻辑的基本概念1. 命题判定给定句子是否为命题,应该分两步:① 首先判定它是否为陈述句. ② 其次判断它是否有唯一真值.题1.下列语句中,下面哪一个选项是命题?( )你今天有空吗? 请勿随地吐痰! 我正在说谎.是偶数.答案:考点重要程度 分值题型 1.命题 ★★★ 选择、填空2.命题联结词 ★★★★★ 填空3.命题公式及其赋值★★★★解答1) 命题:能判断其真值的陈述句. 2) 真值:真、假. (1、0) 3) 真命题:真值为真的命题. 4) 假命题:真值为假的命题.5) 原子命题(简单命题):不能再被分解成更简单的命题. 6) 复合命题:由简单命题通过联结词联结而成的命题.2.命题联结词联结词符号化真值表否定0 11 0合取0 0 00 1 01 0 01 1 1析取0 0 00 1 11 0 11 1 1蕴涵0 0 10 1 11 0 01 1 1等价0 0 10 1 01 0 01 1 1 优先顺序:题1.将下列命题符号化. 1.4不是素数. 2.小智和小红是学生. 3.小智和小红是同学. 4.小智是江苏人或者江西人. 5.小红喜欢唱歌或跳舞.6.①只要能被4整除,则一定能被2整除. ②只有能被4整除,则才能被2整除. ③能被4整除,仅当能被2整除.7.的充要条件是是无理数.答案:1.是素数.符号化为2.小智是学生.小红是学生.符号化为3.小智和小红是同学.符号化为4.小智是江苏人. 小智是江西人.符号化为5.小红喜欢唱歌. 小红喜欢跳舞.符号化为6.能被整除. 能被整除. 符号化为符号化为7.是无理数. 符号化为:自然语言中的“既……,又……”“不但……,而且……”“虽然……,但是……” “一面……,一面……”等.:“只要,就”,“因为,所以”,“仅当”,“只有才”,“除非才”,“除非,否则非”等等,符号化为.:“当且仅当”,“……充要条件”等.3. 命题公式及其赋值题1.写出下列公式的真值表,并求它们的成真赋值和成假赋值.的真值表1) 命题变元:取值1(真)或0(假)的变元.2) 合式公式:将命题变元用联结词或圆括号按一定逻辑关系联结起来的符号串. 3) 设是出现在公式中的全部命题变元,给各指定一个真值,称为对的一个赋值,若指定的一组值使为1,则称这组值为的成真赋值;若使为0,则称这组值的成假赋值.设为任一命题公式1) 若在它的各种赋值下取值均为真,则称为重言式或永真式. 2) 若在它的各种赋值下取值均为假,则称为矛盾式或永假式. 3) 若不是矛盾式,则称为可满足式.课时一练习题1.指出下列语句哪些是命题,哪些不是.如果是命题,指出它的真值.(1)计算机有视觉吗?(2)明天我去看球赛.(3)请勿大声喧哗!(4)不存在最大的质数.2.下列语句是命题的有().明天下午开会吗?2014年元旦是星期六.. 请保持安静!3.下列句子中有()个命题.(1)我是老师. (2)禁止吸烟! (3)蚊子是鸟类动物.(4)我正在说谎. (5)月亮比地球大.4.将下列命题符号化.(1)王强身体很好,成绩也很好.(2)小静只能挑选或房间.(3)如果和是偶数,则是偶数.5.(判断题)记:小李今天18岁,:小李今年19岁,则“小李今年18岁或19岁”可以翻译成. ()6.设:我听课,:我做课堂笔记.命题“我一边听课,一边做课堂笔记”符号化为____.7.设表示“天下大雨”,表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为().8.个命题变元组成的命题公式共有__________种不同真值指派情况.9.命题公式中成真赋值的个数为().10.下列命题公式中,哪个是永真式().11.求命题公式的真值表.课时二命题逻辑等值演算考点重要程度分值常见题型1.等值式★★★★★证明、解答2.析取范式与合取范式★★★★解答3.主析取范式与主合取范式必考填空、解答4.联结词的完备集★★判断、选择1.等值式设是两个命题公式,若构成的等价式为重言式,则称与是等值的,记作.常见等值式:1)双重否定律2)幂等律3)交换律4)结合律5)分配律(对的分配律)(对的分配律)6)德摩根律7)吸收律8)零律9)同一律10)排中律题1.推断公式类型.因此,该公式是一个重言式或者永真式.题2.用等值演算法证明. 得证.11) 矛盾律12)蕴涵等值式13)等价等值式14)假言易位15)等价否定等值式16)归谬论证明:证明:2.析取范式与合取范式题1:用等值演算法求取求下列公式:的合取范式和析取范式.解:(1)先求合取范式(2)再求析取范式1)文字:命题变元及其否定.2)简单析取式:仅由有限个文字构成的析取式.3)简单合取式:仅由有限个文字构成的合取式.4)析取范式:由有限个简单合取式的析取构成的命题式.,其中是简单合取式.5)合取范式:由有限个简单析取式的合取构成的命题式.,其中是简单析取式.3.主析取范式与主合取范式设与是命题变元含的极小项和极大项,则所有简单合取式都是极小项的析取范式称为主析取范式.所有简单析取式都是极大项的合取范式称为主合取范式.在含有个命题变元的简单合取式(简单析取式)中,若每个命题变元和它的否定式恰好出现一个且仅出现一次,而且命题变元或它的否定式按照下标从小到大顺序排列,称这样的简单合取式(简单析取式)为极小项(极大项).表1 含的极小项与极大项极小项极大项公式成真赋值名称公式成假赋值名称表2 含的极小项与极大项极小项极大项公式成真赋值名称公式成假赋值名称题1.利用真值表法,按顺序求命题公式:的主析取范式. 解:因此,该命题公式的主析取范式是.题2.含个命题变项的命题公式的主合取范式为,则它的主析取范式为___________(表示成的形式).答案:题3.求命题公式的主析取范式和主合取范式.因此,该命题公式的主析取范式是,解:主合取范式是.4. 联结词的完备集题1.(判断)命题联结词集是联结词完备集. ( ) 答案:正确.设是一个联结词集合,如果一个命题公式都可以由仅含中的联结词构成的公式表示,则称是一个联结词完备集. 设是两个命题,复合命题“与的否定式”称作的与非式,记作.即,“”称作与非联结词.复合命题“或的否定式”称作的或非式,记作.即,“”称作或非联结词.以下都是联结词完备集课时二练习题1.下列哪个公式是永假式().2.下列是重言式的为().3.求解的公式类型?(永真、永假、可满足)4.给定命题公式:,与之逻辑等价的是().5.用等值演算法证明等值式.6.任意两个不同大项的析取为________式,全体大项的合取式为________式.7.合式公式的主合取范式为().8.含个命题变项的命题公式的主析取范式为,则它的主合取范式________.9.构造命题公式的真值表,并由此写出它的主析取范式和主合取范式.10.已知命题公式,求主析取范式(要求通过等值演算推出).11.某电路中有个灯泡和个开关、、.已知在且仅在下述种情况下灯亮:1)的扳键向上,、的扳键向下;2)的扳键向上,、的扳键向下;3)、的扳键向上,的扳键向下;4)、的扳键向上,的扳键向下.设表示灯亮,分别表示、、扳键向上,求的主析取和主合取范式.12.下面的联结词集合不是完备集的是________.(表示与非)13.联结词组中,下面哪一个选项是命题公式的最小联结词组().课时三 命题逻辑的推理理论考点重要程度 分值常见题型 1.推理的相关公式 ★★★★★选择、填空2.自然推理系统必考证明1. 推理的相关公式1) 设和是两个命题公式,当且仅当是重言式时,称从可推出或是前提的有效结论,记为.2) 命题公式推出的推理正确当且仅当为重言式.3) 推理的形式结构:前提: 结论:① 附加律②化简律③ 假言推理④拒取式 ⑤ 析取三段论⑥ 假言三段论 ⑦等价三段论⑧ 构造性二难构造性二难(特殊形式)⑨破坏性二难题1.求函数命题公式推的推理正确当且仅当__________为重言式. 答案:题2.下面不正确的是________.答案:2.自然推理系统题1:构造下面推理的证明.前提:结论:证明:①前提引入②前提引入③①②拒取式④前提引入⑤③④假言推理⑥前提引入⑦⑤⑥拒取式⑧前提引入⑨⑦⑧析取三段论得证是有效结论.题2.在自然推理系统中,构造并证明下列推理.(命题逻辑推理证明)如果小王是理科生,则他的数学成绩一定很好.如果小王不是文科生,则他一定是理科生.小王的数学成绩不好.所以,小王是文科生.解:设简单命题:小王是理科生.:小王的数学成绩很好.:小王是文科生.前提:结论:证明:①前提引入②前提引入③①②拒取式④前提引入⑤③④拒取式得证是有效结论.题3.用推理的形式结构证明:前提:结论:证明:①附加前提引入②①附加律③前提引入④②③假言推理⑤④化简律⑥⑤附加律⑦前提引入⑧⑥⑦假言推理得证是有效结论.题4.在自然推理系统中构造下面推理的证明.如果小张守第一垒并且小李向队投球,则队取胜;或者队未取胜,或者队成为联赛第一名;队没有成为联赛的第一名;小张守第一垒.因此,小李没向队投球.解:设简单命题:小张守第一垒.:小李向队投球.:队取胜.:队成为联赛第一名.前提:结论:证明:用归谬法①结论的否定引入②前提引入③前提引入④前提引入⑤④⑤拒取式⑥⑥置换⑦前提引入⑧⑦⑧析取三段论⑨①⑨合取由于最后一步,即,所以推理正确.课时三练习题1.若推理正确,则推理的结论一定是正确的.()判断2.判断以下结论是否有效:前提是::,结论是:.________(填“是”或“否”)3.下列个推理中,不正确的是().4.在自然推理系统中,用构造法证明下面推理.前提:结论:5.如果小张去看电影,则当小王去看电影时,小李也去.小赵不去看电影或小张去看电影.小王去看电影.所以当小赵去看电影时,小李也去.6.使用命题逻辑中的推理理论构造下面推理的证明:前提:结论:7.构造下面推理的证明:前提:,结论:.8.公安机关正在调查一宗盗窃案,现获得事实如下:(1)或盗窃了文物;(2)若盗窃了文物,则作案时间不可能在午夜前;(3)若证词正确,则在午夜前屋里灯光未灭;(4)若证词不正确,则作案时间发生在午夜前;(5)午夜时屋里灯光灭了.试问谁是盗窃犯?试写出推导过程.设:“盗窃了文物”,:“盗窃了文物”,:“作案时间发生在午夜前”,:“午夜前屋里灯光灭了”,:“证词正确”.课时四 谓词逻辑基本概念考点重要程度 分值常见题型 1.谓词逻辑命题符号化 ★★★★ 选择、填空2.谓词逻辑公式及其解释 ★★★选择1. 谓词逻辑命题符号化题1.将下列命题在谓词逻辑中用谓词符号化,并讨论它们的真值. (1) 只有是素数,才是素数. (2) 如果大于,则大于. 解:(1)设元谓词:是素数,命题可符号化为由于此蕴涵式的前件为假,所以命题为真. (2)设元谓词:,命题可符号化为由于为真,而为假,所以命题为假.个体词、谓词和量词是谓词逻辑命题符号化的个基本要素. 1) 个体词个体词是指所研究对象中可以独立存在的具体的或抽象的客体.将表示具体或特定的客体的个体词称作个体常项.而将表示抽象或泛指的个体词称作个体变项.并称个体变项的取值范围为个体域(或称作论域).全总个体域:由宇宙间一切事物组成的个体域. 2) 谓词:刻画个体词性质及个体词之间相互关系的词.题2:命题“所有的人都长着黑头发”,令:是人;:长着黑头发.则该命题符号化为().答案:.题3.令:是人;:登上过月球.则命题“有的人登上过月球.”符号化().答案:题4.设有命题:是火车,:是汽车,:跑得比快,那么命题“有的汽车比一些火车跑得快”的逻辑表达式是__________.答案:.题5.设:是运动员,:是大学生,命题“不是所有的运动员都是大学生.”谓词符号化为__________.答案:或注:当多个量词出现时,它们的顺序一般不能随意调换.3)量词:表示个体之间数量关系的词全称量词:符号,表示个体域中“所有的”.“一切的”“所有的”“每一个”“任意的”“凡”“都”等.存在量词:符号,表示个体域中有一个个体.“存在”“有一个”“有的”“至少有一个”等.2.谓词逻辑公式及其解释题 1.指出下列各公式中的指导变元,各量词的辖域,自由出现以及约束出现的个体变项.解:是指导变元,量词的辖域.在中,是约束出现,而且约束出现两次,和均为自由出现,各自由出现一次.公式中含个量词,前件上的量词的指导变元为,的辖域,其中是约束出现,是自由出现.后件中的量词的指导变元为,的辖域为,其中是约束出现,均为自由出现.在整个公式中,约束出现一次,自由出现两次,自由出现一次,约束出现一次,自由出现一次.题2.设论域,与公式等价的命题公式是().答案:在公式和中,称为指导变元,为量词的辖域.在和的辖域中,的所有出现都称作约束出现,中不是约束出现的其他变项均称作自由出现.设为一公式,若在任何情况下的任何赋值下均为真,则称为永真式或逻辑有效式;若在任何情况下的任何赋值下均为假,则称为矛盾式或永假式.若至少存在一个情况下的一个赋值使为真,则称是可满足式.课时四练习题1.命题的意义是().对任何均存在使得;对任何均存在使得;存在对任何均使得;存在对任何均使得;2.设:是学生;:喜欢英语.则命题“有些学生喜欢英语”的符号化为_____.3.设:是人,:犯错误,命题“没有不犯错误的人”符号化为().4.令:是人,:是花,:喜欢,则命题“有些人喜欢所有的花”可符号化为_________.5.令:是火车,:是汽车,:比快,则命题“每列火车都比某些汽车快”在谓词逻辑中命题符号化为_________.6.试把下列语句翻译为谓词演算公式.(1)某些人喜欢所有明星; (2)并非“所有人均喜欢某些某些电脑游戏”.7.设个体域,消去公式中的量词为:___________.8.谓词公式中量词的辖域为(),量词的辖域为().课时五 谓词逻辑等值演算与推理考点重要程度 分值常见题型 1.谓词逻辑等值式与置换规则 ★★★选择、填空 2.谓词逻辑前束范式 ★★★★ 选择、解答3.谓词逻辑推理理论 必考证明1. 谓词逻辑等值式与置换规则设是谓词逻辑中任意两个公式,若是永真式,则称与等值,记作,称是等值式.下面给出谓词逻辑中的基本等值式. 1) 量词否定等值式 设公式含自由出现的个体变项,则2) 量词辖域收缩与扩张等值式 设公式含自由出现的个体变项,不含的自由出现,则题1.设个体域,将下列公式的量词消去.解:消去量词,得先缩小量词辖域,再消去量词,得3)量词分配等值式设公式含自由出现的个体变项,则4)命题逻辑中的重言式的代换实例都是谓词逻辑中的永真式.例如:先消去,得再消去,得题2.设是不含变元的公式,谓词公式等价于().答案:.题3.谓词公式的真值为,其中,:,定义域:. 答案:先消去,得再消去,得因此,的真值为1.2.谓词逻辑前束范式(前束范式存在定理)谓词逻辑中的任何公式都存在等值的前束范式.具有如下形式的谓词逻辑公式称作前束范式,其中为或,为不含量词的公式. 例,是前束范式不是前束范式题1:下列哪项为前束范式().答案:题2.求下列各式的前束范式.解:转化方法:1)把条件或双条件联结词转化;2)利用量词否定公式,把否定深入到命题变元和谓词公式的前面;3)换名;4)利用量词作用域的扩张和收缩等价式,把量词提到前面.3.谓词逻辑的推理理论在谓词逻辑中,从前提出发推出结论的推理的形式结构,依然采用如下的蕴涵式形式若上式为永真式,则推理正确,否则称推理不正确.①命题逻辑推理定律的代换实例.例如:②由基本等值式生成的推理实例.例如:由双重否定律可生成由量词否定等值式可以生成③一些常用的重要推理定律.④4条消去量词和引入量词的规则.全称量词消去规则:,不在中约束出现或,为任意个体常量.存在量词消去规则:,为使得为真的特定的个体常量.全称量词引入规则:,中无变元.前提:结论:证明:①前提引入②①③②化简律④②化简律⑤前提引入⑥⑤⑦③⑥假言推理⑧④⑦合取⑨⑧得证是有效结论.前提:结论:证明:①附加前提引入②置换③②④前提引入⑤④⑥③⑤析取三段论⑦⑥得证是有效结论.题3.证明下列各式.(简明注明使用等值式名称或推理定理名称)所有北极熊都是白色的,没有棕熊是白色的,所以北极熊不是棕熊.解:命题符号化:是北极熊. :是白色的. :是棕熊.前提:结论:证明:用归谬法①结论的否定引入②①置换③②④③化简律⑤③化简律⑥前提引入⑦⑥⑧④⑦假言推理⑨⑤⑧合取⑩⑨由于最后一步与前提中矛盾,所以推理正确.课时五练习题1.下列四个公式正确的有().2.在个体域中,若,,谓词有,,,,求的真值.3.下列等价关系正确的是().4.设个体域,消去公式中的量词.①②5.下列谓词公式中是前束范式的是().6.的前束范式为_________.7.求合式公式的前束范式____________.8.求谓词公式的前束范式.9.设个体域为,并对设定为,,,,其真值为的公式为__________.10.证明题前提:;结论:11.在自然推理系统中构造下面推理再证明.前提:,结论:12.先将下列推理符号化,再利用推理规则证明推理的正确性.所有的大一学生都要学习英语;并非所有的大一学生都要学习离散数学;故有些学习英语的不学习离散数学.假设谓词如下::是大一学生;:要学习英语;:要学习离散数学.课时六 集合代数考点重要程度 分值常见题型 1.集合的基本概念 ★★ 选择、填空2.集合的运算 ★★★ 选择、填空3.有穷集的计数 ★★★ 解答4.集合恒等式 ★★★证明1. 集合的基本概念题1.,将的子集分类.元子集,也就是空集:; 元子集:; 元子集:; 元子集:;1) 把一些事物汇集到一起组成一个整体就称作集合,而这些事物就是这个集合的元素或成员.元素和集合之间的关系是隶属关系,即属于或不属于,属于记作,不属于记作.例:,2) 设为集合,如果中的每个元素都是中的元素,则称是的子集,记作,如果不被包含,记作.3) 设为集合,如果且,则称与相等,记作.4) 设为集合,如果且,则称是的真子集,记作.5) 不含任何元素的集合称作空集,记作.空集是一切集合的子集.6) 含有个元素的集合简称为元集,它的含有个元素的子集称作它的元子集.题2.设,则下列正确的是().答案:.题3.已知集合,则的幂集合___________.元子集:元子集:元子集:元子集:答案:.2.集合的运算8)若是元集,则有个元素.9)在一个具体问题中,如果所涉及的集合都是某个集合的子集,则称这个集合为全集,记作.7)设为集合,把的全体子集构成的集合称作的幂集,记作.1)并运算:2)交运算:3)差运算:4)对称差:5)的绝对补集定义如下:题1:设,,则差集 ,而对称差.答案:.题2.设全集的子集为,,,. 答案:,.3. 有穷集的计数题1.对名会外语的科技人员进行掌握外语情况的调查.其统计结果如下:会英、日、德和法语的人分别是和人,其中同时会英语和日语的有人,会英、德、和法语中任两种语言的都是人.已知会日语的人既不懂法语也不懂德语,分别求只会一种语言(英、德、法、日)的人数和会种语言的人数. 解:令分别表示会英、法、德、日语的人的集合,根据题意画出文氏图如下图所示.设同时会种语言的有人,只会英、法或德语一种语言的分别为和人.将和填入图中相应的区域,然后依次填入其他区域的人数.根据已知条件列出方程组解,得.因此,只会英语、德语、法语、日语的人数 为,会种语言的人数为.包含排斥原理:题2.请用集合计数的包含排斥原理,计算之间既不能被和,也不能被整除的数的个数.解:设可被整除可被整除可被整除用表示有穷集的元素数,表示小于等于的最大整数,则有4. 集合恒等式下面的恒等式给出了集合运算的主要算律,其中代表任意的集合.幂等律结合律交换律分配律同一律零律排中律矛盾律吸收律德摩根律题1.证明.证:除了以上算律以外,还有一些关于集合运算性质的重要结果.例如:课时六练习题1.下面是真命题的是().2.若集合的元素个数,则其幂集的元素个数___________.3.设集合,则__________.4.设是集合,若,则().5.设集合被整除,,被整除,,则__________,___________.6.,求__________.7.计算机班的名学生中,有人在第一次考试中得,人在第次考试中得,已知有人两次考试均未得,则两次考试都得的学生人数为__________人.8.某班有个学生,会语言的人,会语言的人,会语言的人,以上三门都会的人,都不会的没有,请问仅会两门的有几人?(要求写出求解过程)9.某大学计算机专业名学生中,语言课有人优秀,数据结构课有人优秀,离散数学课有人优秀.并且语言和数据结构两门课都优秀的有人;语言和离散数学两门课都优秀的有人;数据结构和离散数学两门课都优秀的有人.此外,还有人一门优秀都没得到.如果获得门优秀者可得奖学金元,获得门优秀者可得奖学金元,仅获得一门优秀者可得奖学金元,问为该专业学生发奖学金需多少元?10.设是三集合,已知,则一定有.()11.集合的运算满足结合律,吸收律.()12.证明.13.设是任意集合,证明等式.课时七 二元关系(1)考点重要程度 分值常见题型 1.有序对与笛卡尔积 ★★★ 填空、解答2.二元关系 ★★★★★ 选择、填空3.关系的运算 ★★★★填空、解答1. 有序对与笛卡尔积题1.设,求.若,则.由两个元素和按照一定顺序排列而成的二元组称作一个有序对或序偶,记作,其中是它的第一元素,是它的第二元素.设为集合,用中元素为第一元素,中元素为第二元素构成有序对,所有这样的有序对组成的集合称作和的笛卡尔积,记作,符号化表示为笛卡尔积运算具有以下性质:1) 对任意集合,根据定义有.2) 一般地说,笛卡尔积运算不满足交换律,即(当时)3) 笛卡尔积运算不满足结合律,即 (当时)4)笛卡尔积运算对并和交运算满足分配律,即2.二元关系1)如果一个集合满足以下条件之一:a)集合非空,且它的元素都是有序对;b)集合是空集.则称该集合为一个二元关系,记作,二元关系也可简称为关系.对于二元关系,如果,则记作.2)设为集合,的任何子集所定义的二元关系称作从到的二元关系,特别当时称作上的二元关系.3)若,那么,的子集就有个,每一个子集代表一个上的二元关系,因此上有个不同的二元关系.题1.设集合,设关系为上的小于关系,则 .答案:.题2.设为集合,且,则上最多可定义个不同的二元关系.答案:.题1.,则的关系矩阵是 .答案:.题5.已知集合上的二元关系的关系矩阵,那么 .答案:.上的特殊关系:空关系,全域关系,恒等关系.空关系:空集全域关系:恒等关系:给出一个关系的方法有种:集合表达式、关系矩阵和关系图.设,是上的关系,的关系图记作,有个顶点,若,在中就有一条从到的有向边.3.关系的运算设是二元关系1)中所有有序对的第一元素构成的集合称作的定义域,记作,形式化表示为2)中所有有序对的第二元素构成的集合称作的值域,记作,形式化表示为3)的定义域和值域的并集称作的域,记作,形式化表示为题1.,求.4)设是二元关系,的逆关系,简称为的逆,记作,其中5)设为二元关系,对的右复合记作,其中题2.设,,求.。

离散数学部分概念和公式总结(考试专用)

离散数学部分概念和公式总结(考试专用)

命题:称能判断真假的陈述句为命题。

命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。

命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。

给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。

若指定的一组值使A的值为真,则称成真赋值。

真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。

将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。

命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。

(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。

(3)若A至少存在一组赋值是成真赋值,则A是可满足式。

主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。

主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。

命题的等值式:设A、B为两命题公式,若等价式A↔B是重言式,则称A与B是等值的,记作A<=>B。

约束变元和自由变元:在合式公式∀x A和∃x A中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。

一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。

前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Q k…x k B,称A为前束范式。

集合的基本运算:并、交、差、相对补和对称差运算。

笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。

二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。

离散数学公式

离散数学公式

离散数学公式
离散数学是一门利用数学原理研究离散复杂系统的科学,是一门多维而全面的学科,其研究范围涵盖了计算机科学、逻辑学、概率论和组合数学等领域。

关系公式:若集合X和Y之间存在一对一的函数关系,则X到Y的映射关系可以用公式f:X→Y表示,其中•x∈X表示x是X集合中的一个元素,•f(x)∈Y表示f(x)是Y集合中的一个元素,•f:X→Y表示Y集合的每个元素都可以通过函数f映射回X集合中的一个元素。

函数关系公式:若集合X和Y之间存在可定义的函数关系,则可以用f:X→Y表示,其中•f:X→Y表示函数f把X集合中的元素映射到Y集合中,•f(x)表示x在X集合中的元素映射到Y集合中的元素。

算数逻辑公式:若集合X和Y之间存在逻辑关系,则可以用公式
x∈X⊃y∈Y表示,其中•x∈X表示x是X集合中的一个元素,•y∈Y表示y是Y集合中的一个元素,•x∈X⊃y∈Y表示若x属于X集合,则y属于Y集合。

离散数学知识点

离散数学知识点

离散数学知识点摘要:离散数学是计算机科学和数学的一个分支,它专注于非连续结构的研究。

本文旨在概述离散数学的核心知识点,包括集合论、逻辑、关系、函数、图论、组合数学和递归等。

1. 集合论- 集合的基本概念:集合是离散数学的基础,它是一组明确的、无重复的对象的集合。

- 集合运算:包括并集、交集、差集、补集等。

- 幂集:一个集合所有子集的集合。

- 笛卡尔积:两个集合所有可能的有序对的集合。

2. 逻辑- 命题逻辑:研究命题(声明的真值)和它们之间的关系,如合取、析取、否定等。

- 谓词逻辑:使用量词(如全称量词和存在量词)来表达更复杂的逻辑关系。

- 逻辑推理:包括直接证明、间接证明和归谬法等。

3. 关系- 关系的定义:一个集合到另一个集合的有序对的集合。

- 关系的类型:自反性、对称性和传递性等。

- 关系的闭包:在给定关系下,集合的最小闭包。

4. 函数- 函数的定义:一个集合到另一个集合的映射,每个元素有唯一的像。

- 函数的类型:单射、满射和双射。

- 复合函数:两个函数可以组合成一个新的函数。

5. 图论- 图的基本概念:由顶点(节点)和边组成的结构。

- 图的类型:无向图、有向图、连通图、树等。

- 图的算法:如最短路径、最小生成树、图的着色等。

6. 组合数学- 排列和组合:从n个不同元素中取出r个元素的不同排列和组合的数量。

- 二项式定理:描述了二项式的幂展开的系数。

- 生成函数:一种编码序列的方法,用于解决复杂的计数问题。

7. 递归- 递归定义:一个对象通过引用比自己更小的版本来定义。

- 递归函数:在计算机程序中,一个函数调用自身来解决问题。

结论:离散数学为理解和设计计算机系统提供了基础工具和理论。

它的知识点广泛应用于算法设计、数据结构、编程语言理论和数据库等领域。

掌握离散数学对于任何希望在计算机科学领域取得进展的人来说都是至关重要的。

本文提供了一个简洁的离散数学知识点概述,每个部分都直接针对一个主题,避免了不必要的背景信息和解释。

《离散数学》讲义 - 3

《离散数学》讲义 - 3

离散数学
2
1、集合概念及表示
(1)集合 ①概念 一般地说,把具有相同性质的一些东西,汇集成 一个整体,就形成一个集合。 例如:教室内的桌子;全国的高等学校;自然数的 全体;直线上的点。 ②分类 有限集:集合的元素个数是限的。 无限集:集合的元素个数是无限的。
离散数学 3
(2)表示
①集合:A~Z;元素(集合中的事物):a~z。 ② I 元素a属于集合A, 记作:aA II 元素a不属于集合A, 记作:aA
离散数学
8
(2)应用
定理3-1.1 集合A和B相等的充分必要条件是这两 个集合互为子集。
离散数学
9
4、真子集
定义3-1.3 如果集合A的每一个元素都属于B,但 集合B中至少有一个元素不属于A,则称A为B的真 子集。 记作:AB。 即:AB(AB)(AB) AB(x)(xAxB)(x)(xBxA)
离散数学 46
(2)相等
定义3-4.1 两个序偶相等, <x,y>=<u,v>,iff x=u,y=v。 注意: ①序偶<a,b>中的两个元素可以属于不同的集合, 可代表不同类型的事物。 ②在序偶<a,b>中,a称第一元素,b称第二元素。
离散数学
47
(3)推广
三元组是一个序偶,其第一元素也是一个序偶。 形如: <<x,y>,z> <<x,y>,z>=<<u,v>,w>,iff<x,y>=<u,v>,z=w 即:x=u,y=v,z=w。 约定:三元组<<x,y>,z>记作<x,y,z> 注意: 当xy时,<x,y,z><y,x,z> <<x,y>,z><x,<y,z>> 其中:<x,<y,z>>不是三元组。 同理:四元组第一元素是三元组 四元组:<<x,y,z>,w> 四元组相等: <<x,y,z>,w>=<<p,q,r>,s> (x=p)(y=q)(z=r)(w=s)

离散数学(一)知识梳理

离散数学(一)知识梳理

离散数学(一)知识梳理逻辑和证明部分命题逻辑题型命题符号化问题将自然语言转为符号化逻辑命题用命题变量来表示原子命题用命题联结词来表示连词命题公式的类型判断判断命题公式是否是永真式、矛盾式、可能式利用真值表判断利用已知的公式进行推理判断利用主析取和合取范式判断定理:A为含有n个命题变元的命题公式,若A的主析取范式含有2^n个极小项,则A为重言式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为矛盾式;若A的主合取范式含有2^n个极大项,则A为矛盾式,若极小项在0到2^n之间,则为可满足式,若含有0个极小项,则A为重言式翻译:一个命题公式化成主范式后,若所有项都分布在主析取范式中(主合取范式为1)则为重言式;若所有项都分布在主合取范式中(主析取范式为0)则为矛盾式;若均有分布,则为可满足式。

【思想来源:真值表法求主范式】一个质析取式是重言式的充要条件是其同时含有某个命题变元及其否定式;一个质合取式是矛盾式的充要条件是其同时含有某个命题变元及其否定式一个析取范式是矛盾式当且仅当它的每项都是矛盾式;一个合取范式是重言式当且仅当它的每项都是重言式求(主)析取或合取范式等值演算法1. 利用条件恒等式消除条件(蕴含和双条件)联结词,化简得到一个范式2. 在缺项的质项中不改变真值地添加所缺项,化简得到一个主范式3. 找出包含所有命题变元排列中剩余项,凑出另一个主范式(思想上类似于真值表法)真值表法1. 画出命题公式真值表2. 根据真值表结果求出主范式主析取范式:真值为1的所有项,每一项按对应01构成极小项主合取范式:真值为0的所有项,每一项按对应01构成极大项形式证明与命题推理利用推理规则构造一个命题公式的序列,证明结论形式证明:命题逻辑的论证是一个命题公式的序列,其中每个公式或者是前提,或者是由它之前的公式作为前提推得的结论,序列的最后一个是待证的结论,这样的论证也称为形式证明。

核心方法把非条件语句全部转为条件语句利用条件的逆否命题和双条件的拆分利用重言式/矛盾式来不改变真值地添项蕴含证明规则:A1,A2, …, An⇒ A → B 等价于A1,A2, …,An,A⇒ B【意义:使用结论的前提时应标为附加前提】(适用:结论为条件语句)反证法:若要证A1,A2, …, An⇒ B,将ØB加入前提,通过证明:A1,A2, …, An, ØB⇒ C, ØC完成证明。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

离散数学复习资料

离散数学复习资料

离散数学复习资料第1章命题逻辑本章重点:命题与联结词,公式与解释,真值表,公式的类型及判定, (主)析取(合取)范式,命题逻辑的推理理论.一、重点内容1. 命题命题表述为具有确定真假意义的陈述句。

命题必须具备二个条件:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2. 六个联结词及真值表h“”否定联结词,P是命题,P是P的否命题,是由联结词和命题P组成的复合命题.P取真值1,P取真值0,P取真值0,P取真值1. 它是一元联结词.h “”合取联结词,P Q是命题P,Q的合取式,是“”和P,Q组成的复合命题. “”在语句中相当于“不但…而且…”,“既…又…”. P Q取值1,当且仅当P,Q均取1;P Q取值为0,只有P,Q之一取0.h “”析取联结词,“”不可兼析取(异或)联结词, P Q是命题P,Q的析取式,是“”和P,Q组成的复合命题. P Q是联结词“”和P,Q组成的复合命题. 联结词“”或“”在一个语句中都表示“或”的含义,前者表示相容或,后者表示排斥或不相容的或. 即“P Q”“(P Q)(P Q)”. P Q取值1,只要P,Q之一取值1,P Q取值0,只有P,Q都取值0.h “”蕴含联结词, P Q是“”和P,Q组成的复合命题,只有P取值为1,Q取值为0时,P Q取值为0;其余各种情况,均有P Q的真值为1,亦即10的真值为0,01,11,00的真值均为1. 在语句中,“如果P则Q”或“只有Q,才P,”表示为“P Q”.h “” 等价联结词,P Q是P,Q的等价式,是“”和P,Q组成的复合命题. “”在语句中相当于“…当且仅当…”,P Q取值1当且仅当P,Q真值相同.3. 命题公式、赋值与解释,命题公式的分类与判别h命题公式与赋值,命题P含有n个命题变项P1,P2,…,P n,给P1,P2,…,P n各指定一个真值,称为对P的一个赋值(真值指派). 若指定的一组值使P的真值为1,则这组值为P的真指派;若使P的真值为0,则称这组值称为P的假指派.h命题公式分类,在各种赋值下均为真的命题公式A,称为重言式(永真式);在各种赋值下均为假的命题公式A,称为矛盾式(永假式);命题A不是矛盾式,称为可满足式;判定命题公式类型的方法:其一是真值表法,任给公式,列出该公式的真值表,若真值表的最后一列全为1,则该公式为永真式;若真值表的最后一列全为0,则该公式是永假式;若真值表的最后一列既非全1,又非全0,则该公式是可满足式.其二是推导演算法. 利用基本等值式(教材的十六个等值式或演算律),对给定公式进行等值推导,若该公式的真值为1,则该公式是永真式;若该公式的真值为0,则该公式为永假式.既非永真,也非用假,成为非永真的可满足式.其三主析取(合取)范式法,该公式的主析取范式有2n个极小项(即无极大项),则该公式是永真式;该公式的主合取范式有2n个极大项(即无极小项),则该公式是永假式;该公式的主析取(或合取)范式的极小项(或极大项)个数大于0小于2n,,则该公式是可满足式.h等值式A B,命题公式A,B在任何赋值下,它们的真值均相同,称A,B等值。

离散数学知识点全归纳

离散数学知识点全归纳

离散数学知识点全归纳离散数学是数学的一个分支,研究的是离散对象和离散结构。

在计算机科学、信息技术以及其他领域中,离散数学具有重要的应用价值。

以下是离散数学的一些重要知识点的全面总结。

1. 集合论和逻辑- 集合:基本概念、运算、包含关系、并集、交集、差集、幂集等。

- 命题逻辑:命题、命题的连接词、真值表、逻辑等价、析取范式、合取范式等。

- 谓词逻辑:谓词、量词、逻辑推理、存在量词和全称量词等。

2. 证明方法- 直接证明:利用已知事实和逻辑推理,直接得出结论。

- 对证法:从假设的反面出发,利用矛盾推理得出结论。

- 数学归纳法:证明基础情况成立,再证明递推步骤成立。

3. 图论- 图的基本概念:顶点、边、路径、回路、度、连通性等。

- 图的表示:邻接矩阵、邻接表等。

- 最短路径:Dijkstra算法、Floyd-Warshall算法等。

- 最小生成树:Prim算法、Kruskal算法等。

4. 关系与函数- 关系及其性质:自反性、对称性、传递性、等价关系等。

- 函数及其性质:定义域、值域、单射、满射、双射等。

- 逆函数和复合函数:求逆函数、复合函数的定义和性质。

5. 组合数学- 排列和组合:排列、组合的计算公式和性质。

- 递归关系:递推公式、递归算法等。

- 图的着色:色数、四色定理等。

6. 代数系统- 半群、幺半群、群、环、整环和域的定义和性质。

- 同态:同态映射、同构等。

- 应用:编码理论、密码学等。

以上是离散数学的一些重要知识点的概括。

深入理解和掌握这些知识,对于解决实际问题和在相关领域中取得成功非常重要。

在学习过程中,建议结合实际例子和习题进行练习,加深对知识的理解和应用能力。

离散数学19.谓词公式与翻译

离散数学19.谓词公式与翻译
谓词合式公式也叫谓词公式,简称ห้องสมุดไป่ตู้式.
下面都是合式公式: P,(P→Q),(Q(x)∧P),(x)(A(x)→B(x)),(x)C(x)
而下面都不是合式公式: xyP(x) ,P(x)∧Q(x)x.
为了方便,最外层括号可以省略,但是若量词后边 有括号,则此括号不能省. 注意:公式(x)(A(x)→B(x))中x后边的括号不是最外 层括号,所以不可以省略.
谓词公式与翻译
一、谓词合式公式
定义:称n元谓词A(x1,x2,...,xn)为原子谓词公式,其 中x1,x2,...,xn 是客体变元。
例如 Q, A(x) , A(x,y), A(x,f(x)), B(x,y,z), B(x,a,b) 都 是原子谓词公式。
定义:谓词合式公式递归定义如下: 1)原子谓词公式是合式公式; 2)如果A是合式公式,则A也是合式公式; 3)如果A、B是合式公式,则(A∧B)、(A∨B)、(A→B)、 (AB)都是合式公式; 4)如果A是合式公式,X是A中的任何客体变元,则(X) A和 (X) A也是合式公式; 5)只有经过有限次地应用规则(1)-(4)所得的公式是合式公式.
P(|x-a|,0))→Q(|f(x)-b|, )).
例1 在谓词逻辑中将下列命题符号化. (1)凡正数都大于零. (2)存在小于2的素数. (3)没有不能表示成分数的有理数. (4)并不是所有参加考试的人都能取得好成绩.
解:(1)令F(x): x是正数.M(x):x大于零. 则符号化为:(x)(F(x)M(x)).
(2)令E(x): x小于2. S(x):x是素数.则符号化为: (x)(E(x)∧S(x)).
6
例2 对任意小的正数,存在一个正数,使得当
0<|x-a|<时,有|f(x)-b|<.此时称 lim f x b . xa 解:令P(x,y)表示“x大于y”, Q(x,y)表示“x小于y”,故 lim f x b 可命题符号化为: xa ( )( ) (x)(((P(,0)→P(,0))∧Q(|x-a|,)∧

离散数学公式范文

离散数学公式范文

离散数学公式范文离散数学是研究离散对象及其性质、结构和相互关系的一门数学学科。

它是数学中的一个重要分支,广泛应用于计算机科学、信息科学、金融、工程和其他领域。

离散数学的内容丰富多样,其中包括了许多重要的公式。

本文将介绍一些与离散数学相关的公式,帮助读者更好地理解和应用离散数学。

1.排列组合公式:排列公式表示从n个不同元素中取r个元素所能组成的不同排列的个数,记作P(n,r)。

组合公式表示从n个不同元素中取r个元素所能组成的不同组合的个数,记作C(n,r)。

它们的计算公式如下:P(n,r)=n!/(n-r)!C(n,r)=n!/(r!*(n-r)!)2.容斥原理公式:容斥原理是一种计数方法,用于计算多个集合的交集和并集中的元素个数。

假设A1,A2,...,An是n个集合,容斥原理公式如下:A1∪A2∪...∪An,=Σ(,Ai,)-Σ(,Ai∩Aj,)+Σ(,Ai∩Aj∩Ak,)-...+(-1)^(n-1)*,A1∩A2∩...∩An3.递推关系公式:递推关系是一种数列的定义方式,通过前几项的关系来递推出后面的项。

其中最著名的递推关系是斐波那契数列的定义,即F(n)=F(n-1)+F(n-2),其中F(0)=0,F(1)=14.二项式定理公式:二项式定理是代数中一种重要的展开公式,用于计算(x+y)^n的展开式。

它的公式如下:(x+y)^n=Σ(C(n,r)*x^(n-r)*y^r),其中r取值范围为0到n。

5.欧拉欧系数公式:欧拉欧系数是用于描述图的性质的一种算子。

对于一个图G的顶点集V和边集E,欧拉欧数E(G)定义为:E(G)=,E,-,V,+16.布尔代数公式:布尔代数是一种逻辑代数,用于描述和操作命题的真值。

其中的一些重要公式包括德摩根定律、分配律、吸收定律等。

7.图论中的公式:图论是离散数学中的一个重要分支,用于研究图的性质和结构。

其中一些重要的公式包括图的度数和、握手定理、树的性质等。

离散数学32一阶逻辑基本公式及解释1

离散数学32一阶逻辑基本公式及解释1
定义4.4 一阶语言F的合式公式定义如下:
(1)原子公式是合式公式。
(2)若A是合式公式,则(┐A)也是合式公式。
(3)若A,B是合式公式,则(A∧B),(A∨B),(A→B), (A? B) 也是合式公式。
(4)若A是合式公式,则? xA,? xA也是合式公式。
(5)只有有限次的应用(1)-(4)构成的符号串是合式公式。
例题4.8
? (1) F(f(x,y),g(x,y))
?
公式被解释成“x+y=x·y”,这不是命题。
? (2) F(f(x,a),y)→F(g(x,y),z)
?
公式被解释成“(x+0=y)→(x·y=z)”,这也不是命
题。
? (3) ┐F(g(x,y),g(y,z))
?
公式被解释成“x·y≠y·z”,同样不是命题。
? (4) ? x F(g(x,y),z)
?
公式被解释成“? x(x·y=z)”,不是命题。
例题4.8
? (5) ? x F(g(x,a),x)→F(x,y)
?
公式被解释成“? x(x·0=x)→(x=y)”,由于前件
为假,所以被 解释的公式为真。
? (6) ? x F(g(x,a),x)
?
公式被解释成“? x(x·0=x)”,为假命题。
结 ?闭式在给定的解释中都变成了命题。如(6)? (8)。 论 ?不是闭式的公式在某些解释下也可能变为命题。如(5)。 定理4.1 封闭的公式在任何解释下都变成命题。
一阶公式的分类
定义4.8 永真式、永假式、可满足式
? 设A为一个公式,若A在任何解释下
均为真,则称A为永真式(或称逻辑有效式)。
? 设A为一个公式,若A在任何解释下均为假,则称A为矛盾式 (或永假式)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档