误差理论与数据处理
误差理论及实验数据处理
可以设法减小或排除掉的,如对试验机和应变仪等定期校准和检验。又如单向拉伸时由于夹
具装置等原因而引起的偏心问题,可以用试样安装双表或者两对面贴电阻应变片来减少这种
误差。系统误差越小,表明测量的准确度越高,也就是接近真值的程度越好。
偶然误差是由一些偶然因素所引起的,它的出现常常包含很多未知因素在内。无论怎样
差出现的可能性小。
3)随着测量次数的增加,偶然误差的平均值趋向于零。
4)偶然误差的平均值不超过某一限度。
根据以上特性,可以假定偶然误差Δ 遵循母体平均值为零
的高斯正态分布,如图Ⅰ-1 所示。
f (Δ) =
1
− Δ2
e 2σ 2
σ 2π
图Ⅰ-1 偶然误差的正态频率曲线
·97·
材料力学实验指导与实验基本训练
Δ ≤ Δ1 + Δ2 [注]:上述法则对于两个相差甚大的数在相减时是正确的。但是对两个相互十分接近的 数,在相减时有效位数大大减少,上述结论就不适用。在建立运算步骤时要尽量避免两个接 近相等的数进行相减。 2)如果经过多次连乘除后要达到 n 个有效位数,则参加运算的数字的有效位数至少要 有 (n + 1) 个或 (n + 2) 个。例如,两个 4 位有效数的数字经过两次相乘或相除后,一般只能 保证 3 位有效数。 3)如果被测的量 N 是许多独立的可以直接测量的量 x1, x2,", xn 的函数,则一个普遍的 误差公式可表示为下列形式,即
控制实验条件的一致,也不可避免偶然误差的产生,如对同一试样的尺寸多次量测其结果的
分散性即起源于偶然误差。偶然误差小,表明测量的精度高,也就是数据再现性好。
实验表明,在反复多次的观测中,偶然误差具有以下特性:
误差理论与数据处理
nx
×100%
◆ (4)方差(Variance) 方差( 度量随机变量和其数学期望之间的偏离程度。 度量随机变量和其数学期望之间的偏离程度。
σ2 =
就是和中心偏离的程度。 就是和中心偏离的程度。在样本容 量相同的情况下,方差越大, 量相同的情况下,方差越大,说明 数据的波动越大, 数据的波动越大,越不稳定
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) ):结果的末位数字所在的位置应按各量中存 ◆加(减):结果的末位数字所在的位置应按各量中存 疑数字所在数位最少的一个为准来决定。 疑数字所在数位最少的一个为准来决定。
a. 30.4 + 4.325 = 34.725 → 34.7 b. 26.65 -3.905 = 22.745 → 22.74
106.25=1778279.41→1.8×106; pH=10.28→[H+]=5.2×10-11
2 数据处理
2.1 有效数字定义、运算规则
2.1.2 运算规则 (2)运算 ) 对数: ◆对数: lgx的有效数字位数由 的位数决定。 的有效数字位数由x的位数决定 的有效数字位数由 的位数决定。
1 误差理论
1.2 分类
1.2.2 系统误差、随机误差、过失误差
◆(3)过失误差 又称粗大误差和疏忽误差。 又称粗大误差和疏忽误差。是由过程中 的非随机事件如工艺泄漏、测量仪表失灵、 的非随机事件如工艺泄漏、测量仪表失灵、设备故障等引发的 测量数据严重失真现象, 测量数据严重失真现象,致使测量数据的真实值与测量值之间 出现显著差异的误差。 出现显著差异的误差。
2.1 有效数字定义、运算规则
2.1.1 定义
在一个近似数中,从左边第一个不是 的数字起 的数字起, 在一个近似数中,从左边第一个不是0的数字起,到精确到 的位数止,这中间所有的数字都叫这个近似数字的有效数字。 的位数止,这中间所有的数字都叫这个近似数字的有效数字。
对实验数值误差理论和数据处理
9 平均值的有效数字位数,通常和测量值相同。 当样本容量较大,在运算过程中,为减少舍 入误差,平均值可比单次测量值多保留一位 数。
3.3实验数据的初步整理
3.3.1实验数据的列表整理
1.数据的归类整理 2.数据的分组整理
3.3.2 分布规律判断的基本方法— —统计直方图
1.统计直方图 为了对某个随机变量的分布规律作出判断,
如0.0121×25.64×1.05782,其0.0121为三 位有效数字,故计算结果宜记0.328
5 在所有计算式中,常数π ,e的数值,以及,1/2等 系数的有效数字位数,可以认为无限制,需要几位 就可以取几位。
6 在对数计算中,所取对数位数,应与真数的有效数 字位数相等。例如,pH12.25 和 [H+]=5.6×10-13M;
3.误差与数据处理
3.1 误差及其表示方法
误差来源
设备误差 环境误差 人员误差 方法误差
误差分类
系统误差、 随机误差、 过失误差
(1)系统误差
系统误差是由某种确定的因素造成的,使测定 结果系统偏高或偏低;当造成误差的因素不存 在时,系统误差自然会消失。
当进行重复测量时,它会重复出现。系统误差 的大小,正负是可以测定的,至少在理论上说 是可以测定的,系统误差的最重要特性是它具 有‘‘单向性” 。
对于舍去的数据,在试验报告中应注明舍去的原因或所 选用的统计方法。
1).4d 法检验
根据测量值的正态分布可知,偏差大于3σ的测量 值出现的概率约为0.3%,此为小概率事件,而 小概率事件在有限次实验中是不可能发生的,如 果发生了则是不正常的。
即偏差大于3σ的测量值在有限次检验中是不可能 的,如果出现则为异常值,为过失所致应舍弃。 (概率不超过5%的事件称为小概率事件)。
误差理论与数据处理知识总结
1.1.1 研究误差的意义为:1)正确认识误差的性质,分析误差产生的愿意,以消除或者减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或者选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
1.2.1 误差的定义:误差是测得值与被测量的真值之间的差。
1.2.2 绝对误差:某量值的测得值之差。
1.2.3 相对误差:绝对误差与被测量的真值之比值。
1.2.4 引用误差:以仪器仪表某一刻度点的示值误差为份子,以测量范围上限值或者全量程为分母,所得比值为引用误差。
1.2.5 误差来源: 1)测量装置误差 2)环境误差 3)方法误差 4)人员误差1.2.6 误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。
1.2.7 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或者在条件改变时,按一定规律变化的误差为系统误差。
1.2.8 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。
1.2.9 粗大误差:超出在规定条件下预期的误差称为粗大误差。
1.3.1 精度:反映测量结果与真值接近程度的量,成为精度。
1.3.2 精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3) 精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。
1.4.1 有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那末从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不管是零或者非零的数字,都叫有效数字。
1.4.2 测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。
1.4.3 数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:1)若舍去部份的数值,大于保留部份的末位的半个单位,则末位加一2)若舍去部份的数值,小于保留部份的末位的半个单位,则末位不变3)若舍去部份的数值,等于保留部份的末位的半个单位,则末位凑成偶数。
误差理论与数据处理
误差理论与数据处理1. 绪论1.1 数据测量的基本概念1.1.1 基本概念(1)物理量物理量是反映物理现象的状态及其过程特征的数值量。
一般物理量都是有因次的量,即它们都有相应的单位,数值为1的物理量称为单位物理量,或称为单位;同一物理量可以用不同的物理单位来描述,如能量可以用焦耳、千瓦小时等不同单位来表述。
(2)量值一般由一个数乘以测量单位所表示的特定量的大小。
无量纲的SI单位是“1”。
(3)测量以确定量值为目的的一组操作,操作的结果可以得到真值,即得到数据,这组操作称为测量。
例如:用米尺测得桌子的长度为1.2米。
(4)测量结果测量结果就是根据已有的信息和条件对被测物理量进行的最佳估计,即是物理量真值的最佳估计。
在测量结果的完整表述中,应包括测量误差,必要时还应给出自由度及置信概率。
测量结果还具有重复性和重现性。
重复性是指在相同的测量条件下,对同一被测物理量进行连续多次测量所得结果之间的一致性。
相同的测量条件即称之为“重复性条件”,主要包括:相同的测量程序、相同的测量仪器、相同的观测者、相同的地点、在短期内的重复测量、相同的测量环境。
若每次的测量条件都相同,则在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量服从同一分布。
重现性是指在改变测量条件下,对被测物理量进行多次测量时,每一次测量结果之间的一致性,即在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量值服从同一分布。
(4)测量方法测量方法是指根据给定的测量原理,在测量中所用的并按类别描述的一组操作逻辑次序和划分方法,常见的有替代法、微差法、零位法、异号法等。
总之,数据测量就是用单位物理量去描述或表示某一未知的同类物理量的大小。
1.1.2 数据测量的分类数据测量的方法很多,下面介绍常见的三种分类方法,即按计量的性质、测量的目的和测量值的获得方法分类。
(1)按计量的性质分可分为:检定、检测和校准。
检定:由法定计量部门(或其他法定授权组织),为确定和证实计量器是否完全满足检定规程的要求而进行的全部工作。
误差理论与数据处理期末_简答汇编
1)误差的定义及其表示法。
(1) 绝对误差:绝对误差=测得值-真值;(2) 相对误差:相对误差=绝对误差/真值≈绝对误差/测得值;(3) 引用误差:引用误差=示值误差/测量范围上限;2)误差的基本概念。
所谓误差就是测得值与被测量的真值之间的差。
误差=测得值-真值3)误差的来源。
(1) 测量装置误差; (2) 环境误差; (3) 方法误差; (4)人员误差; (5)被测量对象变化误差;4)误差分类:(1) 系统误差:在相同条件下,多次测量同一量值时,该误差的绝对值和符号保持不变,或者在条件改变时,按某一确定规律变化的误差。
(2) 随机误差:在相同测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差。
(3) 粗大误差:指明显超出统计规律预期值的误差。
又称为疏忽误差、过失误差或简称粗差。
5)测量的精度。
① 准确度:表征测量结果接近真值的程度。
系统误差大小的反映②精密度:反映测量结果的分散程度(针对重复测量而言)。
表示随机误差的大小③ 精确度:表征测量结果与真值之间的一致程度。
系统误差和随机误差的综合反映6)有效数字答: (1)有效数字:含有误差的任何近似数,若其绝对误差界是最末位数的半个单位,则从这个近似数左方起的第一个非零数字称为第一位有效数字。
且从第一位有效数字起到最末一位数止的所有数字,无论是零还是非零的数字,都叫有效数字。
论是零还是非零的数字,都叫有效数字1 .若舍去部分的数值大于保留末位的 0.5,则末位加 1 , (大于 5 进) ;2 .若舍去部分的数值小于保留末位的 0.5 ,则末位不变, (小于 5 舍) ;3 .若舍去部分的数值恰等于保留末位的 0.5,此时:①若末位是偶数;则末位不变,②若末位是奇数,则末位加 1 , (等于 5 奇进偶不进) 。
1 -1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
误差理论与数据处理第七版
误差理论与数据处理第七版简介《误差理论与数据处理第七版》是由Taylor J.R.所著,是一本针对误差理论和数据处理方法的经典教材。
本书的内容主要围绕了测量和数据处理中的误差分析、不确定度评定以及数据处理方法。
通过本书的学习,读者可以掌握正确的实验设计与数据处理方法,从而提高测量数据的精度和可靠性。
目录1.误差分析基本概念2.误差传播3.误差偏差4.误差控制方法5.不确定度评定6.数据处理方法7.统计处理方法8.随机误差处理9.系统误差处理10.实验设计与方差分析11.实例与案例分析1. 误差分析基本概念本章介绍了误差分析的基本概念,包括误差的定义、分类以及误差的来源和影响因素。
误差分析是任何测量或实验的基础,通过对误差的分析,可以了解测量结果的可靠性和精度。
2. 误差传播本章讨论了误差传播的原理和方法。
误差传播是指在多个测量量进行组合时,误差如何传递到最终结果中。
通过了解误差传播的方法,可以更准确地评估多个测量结果的不确定度,并进行合理的处理。
3. 误差偏差本章主要介绍了误差偏差的概念和处理方法。
误差偏差是指测量结果相对于真实值的系统性偏离,它可以由各种因素引起,如仪器误差、环境条件等。
了解误差偏差的影响和处理方法对于提高测量结果的准确性至关重要。
4. 误差控制方法本章介绍了误差控制的方法和技巧。
误差控制是通过合理的设计和操作,减小和控制各种误差来源,从而提高测量结果的可靠性和精度。
通过本章的学习,读者可以了解到一些常用的误差控制方法和实践经验。
5. 不确定度评定本章主要介绍了不确定度评定的理论和方法。
不确定度是对测量结果的范围进行估计,用于描述测量结果的可信度。
本章重点介绍了不确定度的计算方法和评定准则,使读者能够正确评估测量结果的不确定度,并进行合理的处理和判断。
6. 数据处理方法本章介绍了常用的数据处理方法,包括数据平滑、拟合和插值等。
通过对数据的处理,可以使数据更加平滑、易于分析和解释。
误差理论与数据处理总结
误差理论与数据处理总结三、误差分类三、数据运算规则在有效数据后多保留一位参考(安全)数字。
第一章绪论 (1)近似加减运算。
结果应与小数位数最少的数据小数位数按误差的特点和性质,误差可分为系统误差、随机误差(也相同。
称偶然误差)和粗大误差三类。
第一节研究误差的意义 (2)近似乘除运算。
运算以有效位最少的数据位数多取一 (一)系统误差一、研究误差的意义位,结果位数相同。
在相同条件下,多次测量同一量值时,该误差的绝对值和符号保 1、正确认识误差的性质,分析误差产生的原因,以消除或减少(3)近似平方或开方运算。
按乘除运算处理。
持不变,或者在条件改变时,按某一确定规律变化的误差—系统误差。
(4)对数运算。
n位有效数字的数据该用n 位对数表,或误差。
如标准量值不准、一起刻度不准确引起的误差。
2、正确处理测量和实验数据,合理计算所得结果,以便在一定—曲线上拐点A的横坐标—曲线右半部面积重,(n+1)位对数表。
, 系统误差又可按下列分类: ''''''''条件下得到更接近于真值的数据。
(5)三角函数。
角度误差 10.10.01101、按对误差掌握的程度分心B的横坐标 3、正确组织实验过程,合理设计仪器或选用仪器和测量方法,(1)已定系统误差:指误差的绝对值和符号已确定函数值位数 5 6 78 ,—右半部面积的平分线的横坐标。
以便在最经济条件下,得到最理想结果。
(2)未定系统误差:指误差的绝对值和符号未确定,但可的出4、研究误差可促进理论发展。
(如雷莱研究:化学方法、空气误差范围。
第二章误差的基本性质与处理三、算术平均值分离方法。
制氮气时,密度不同,导致后人发现惰性气体。
) 2、按误差出现规律分(1)不变系统误差:(指绝对值和符号一定)相当于以定系统误第一节随机误差第二节误差基本概念 ,,,lLL1、公理:一系列等精度测量,则。
—真值差。
ii00nnn(2)变化系统误差:(指绝对值和符号为变化)相当于未定系统随机误差的代数和 ,,,,,lLlnL,,,,,iii00定义:在相同条件下多次重复测量同一量时,以不可预定的一、误差定义及表示方法误差,但变化规律可知,如线性、周期性等。
误差理论与数据处理简答题及答案
误差理论与数据处理简答题及答案基本概念题1. 误差的定义是什么?它有什么性质?为什么测量误差不可避免?答: 误差=测得值-真值。
误差的性质有:(1)误差永远不等于零;(2)误差具有随机性;(3)误差具有不确定性;(4)误差是未知的。
由于实验方法和实验设备的不完善, 周围环境的影响, 受人们认识能力所限, 测量或实验所得数据和被测量真值之间不可避免地存在差异, 因此误差是不可避免的。
2. 什么叫真值?什么叫修正值?修正后能否得到真值?为什么?答: 真值: 在观测一个量时, 该量本身所具有的真实大小。
修正值: 为消除系统误差用代数法加到测量结果上的值, 它等于负的误差值。
修正后一般情况下难以得到真值。
因为修正值本身也有误差, 修正后只能得到较测得值更为准确的结果。
3. 测量误差有几种常见的表示方法?它们各用于何种场合?答: 绝对误差、相对误差、引用误差绝对误差——对于相同的被测量, 用绝对误差评定其测量精度的高低。
相对误差——对于不同的被测俩量以及不同的物理量, 采用相对误差来评定其测量精度的高低。
引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。
4. 测量误差分哪几类?它们各有什么特点?答: 随机误差、系统误差、粗大误差随机误差: 在同一测量条件下, 多次测量同一量值时, 绝对值和符号以不可预定方式变化着的误差。
系统误差: 在同一条件下, 多次测量同一量值时, 绝对值和符号保持不变, 或在条件改变时, 按一定规律变化的误差。
粗大误差:超出在规定条件下预期的误差。
误差值较大, 明显歪曲测量结果。
5. 准确度、精密度、精确度的涵义分别是什么?它们分别反映了什么?答: 准确度: 反映测量结果中系统误差的影响程度。
精密度: 反映测量结果中随机误差的影响程度。
精确度: 反映测量结果中系统误差和随机误差综合的影响程度。
准确度反映测量结果中系统误差的影响程度。
精密度反映测量结果中随机误差的影响程度。
误差理论与数据处理-实验报告
误差理论与数据处理-实验报告本实验旨在研究误差理论与数据处理方法。
通过实验可了解如何在实验中处理数据以及如何评定实验误差。
本次实验的主要内容为分别在天平、游标卡尺、万能表等实验仪器上取数,计算出测量数值的平均值与标准偏差,并分析误差来源。
1. 实验步骤1.1 天平测量将一块铁片置于天平盘上,进行三次称量,记录每次的质量值。
将数据带入Excel进行平均值、标准偏差等计算。
1.2 游标卡尺测量1.3 万能表测量2. 实验结果及分析对于天平测量、游标卡尺测量和万能表测量所得的测量值进行平均值、标准偏差的计算,结果如下:表1. 测量数据统计表| 项目 | 测量数据1 | 测量数据2 | 测量数据3 | 平均值 | 标准偏差 || :---: | :---: | :---: | :---: | :---: | :---: || 天平质量测量 | 9.90g | 9.89g | 9.92g | 9.90g | 0.015g || 游标卡尺测厚度 | 1cm | 1cm | 1cm | 1.00cm | 0.002cm || 万能表测电阻| 575Ω | 577Ω | 578Ω | 577Ω | 1.00Ω |从数据统计表中可以看出,三次实验所得数据相近,平均数与标准偏差较为准确。
天平测量的数据波动较小,标准偏差仅为0.015g,说明该仪器测量精确度较高;游标卡尺测量的数据也相比较准确,标准偏差仅为0.002cm,说明该仪器测量稳定性较好;万能表测量的数据较为不稳定,标准偏差较大,为1.00Ω,可能是由于接线不良,寄生电容等误差较大造成。
3. 实验结论通过本次实验,学生可掌握误差理论与数据处理方法,对实验数据进行统计、分析,得出各项指标,如标准偏差、最大值、最小值等。
在实际实验中,应注重数据精度和测量误差的评估,保证实验数据的准确性和可靠性。
除此之外,应加强对实验仪器的了解,并合理利用其特性,提高实验的成功率和准确性。
误差理论与数据处理
误差理论与数据处理
1误差理论
误差(error)理论是科学测量中一项重要的理论,它描述了测量结
果与理论结果之间的差异,以及这种差异的大小和方向。
当一项测量
结果与理论相符时,这种差异就会减少到一定的程度,从而减少测量
不确定性,使测量结果更精确和准确。
误差分析也是一种重要的测量方法,它主要是根据实际测量结果
来估算实际测量数据与理论测量数据之间的差异,从而决定测量后的
数据处理方式[1]。
通过分析误差,可以有效估算测量数据的有效位数,进而使测量结果更加准确。
2数据处理
数据处理是控制实验测量的一个重要步骤,它可以改善实验测量
的精确程度。
通过数据处理,可以提供准确可靠的实验结果,这对于
建立精确的模型以及验证理论,都有着重要的意义。
数据处理有很多种方法,但最重要的一点是要确定准确的误差结果。
通常可以采用统计方法,如均值、标准差和变异系数,对实验数
据进行精确的数据分析,从而估算实验数据的有效位数和有效位数之
间的差值。
一旦变值较大,就可以采取一定的措施进行纠偏,使实验
数据趋于稳定,从而提高实验数据的准确性。
数据处理本身也可以用于处理和优化测量误差,从而提高测量精度。
这一过程通常包括:编辑测量误差数据,对某些超出预想范围的测量数据进行排除处理,将误差分布情况用图表展示出来,并从中分析出结论性结果。
综上所述,误差理论和数据处理在科学测量中起着非常重要的作用,准确的误差分析可以令实验结果更加有效可靠,而精确的数据处理也可以改善测量精度,可以提供准确的实验数据,为理论的验证和模型的建立提供有力支撑。
误差理论与数据处理
第2章 误差的基本性质与处理
第一节 随机误差
一、随机误差产生的原因
当对同一测量值进行多次等精度的重复测量时,得到一 系列不同的测量值(常称为测量列),每个测量值都含有 误差,这些误差的出现没有确定的规律,即前一个数据出 现后,不能预测下一个数据的大小和方向。但就误差整体 而言,却明显具有某种统计规律。 随机误差是由很多暂时未能掌握或不便掌握的微小因 素构成,主要有以下几方面: ① 测量装置方面的因素 零部件变形及其不稳定 ② 环境方面的因素 ③ 人为方面的因素
测量环 境误差
测量方 法误差
测量人 员误差
测量设备误差
以固定形式复现标准量值的器具, 如标准电阻、标准量块、标准砝 码等等,他们本身体现的量值, 不可避免地存在误差。一般要求 标准器件的误差占总误差的 1/3~1/10。 测量装置在制造过程中由于设计、制 造、装配、检定等的不完善,以及在 使用过程中,由于元器件的老化、机 械部件磨损和疲劳等因素而使设备所 产生的误差。 测量仪器所 带附件和附 属工具所带 来的误差。
−∞ +∞
(2-4) (2-5)
其平均误差为: ρ 此外由 ∫− ρ f ( δ ) d δ
θ =
∫
+∞
−∞
| δ | f (δ ) d δ ≈
=
1 2
4 σ 5
(2-6)
2 σ 3
可解得或然误差为 :
ρ = 0 . 6745 σ ≈
(2-7)
由式(2-2)可以推导出: ① 有 f ( ± δ ) > 0 , f (+δ ) = f (−δ ) 可推知分布具有对称性,即绝对值相 等的正误差与负误差出现的次数相等,这称为误差的对称性; ② 当δ=0时有 f max (δ ) = f (0) ,即 f (±δ ) < f (0) ,可推知单峰性,即绝对值 小的误差比绝对值大的误差出现的次数多,这称为误差的单峰性; ③ 虽然函数 f (δ ) 的存在区间是[-∞,+∞],但实际上,随机误差δ只 是出现在一个有限的区间内,即[-kσ,+kσ],称为误差的有界性; n ④ 随着测量次数的增加,随机误差的算术平均值趋向于零: → ∞ lim n 这称为误差的补偿性。
误差理论与数据处理
L2 L L1
第4节 最佳测量方案的确定
【解】测量中心距L有下列三种方法:
方法一 :测量两轴直径 d1、d2 和外尺寸 L1,其函数式及误差为
d d L=L − 1 − 2 1 2 2
1 1 σL = 0.8 + 0.52 + 0.72 = 0.91µm 2 2
第4节 最佳测量方案的确定
当测量结果与多个测量因素有关时,采用 什么方法确定各个因素,才能使测量结果的 误差最小?
随机误差 考虑因素 系统误差 已定系统误差
采用修正消除
未定系统误差
第4节 最佳测量方案的确定
函数的标准差:
∂f ∂f ∂f 2 2 σy = σx1 + σx2 +L+ σxn2 ∂x1 ∂x2 ∂xn
第3节 误差分配
【解】计算体积V0 π D2 0
3.1416×202 ×50 =15708m 3 V0 = h0 = m 4 4
体积的绝对误差:
δV =V0 ×1%=15708mm3 ×1%=157.08mm3
一、按等影响分配原则分配误差 得到测量直径 D 与高度 h 的极限误差:
δD =
δV 1
第4节 最佳测量方案的确定
选择最佳函数误差公式原则: 选择最佳函数误差公式原则:
间接测量中如果可由不同的函数公式来表示,则 包含直接测量值最少的函数公式。 应选取包含直接测量值最少 包含直接测量值最少 不同的数学公式所包含的直接测量值数目相同, 误差较小的直接测量值的函数公式。 则应选取误差较小的直接测量值 误差较小的直接测量值
三、验算调整后的测量极限误差
误差理论与数据处理课件(全)
个数K 46 41 33 21 16 13 5 2 0 177
+△ 频率K/n 0.128 0.115 0.092 0.059 0.045 0.036 0.014 0.006
0 0.495
(K/n)/d△ 0.640 0.575 0.460 0.295 0.225 0.180 0.070 0.030 0
(四)复杂规律变化的系统误差
(一)实验对比法 (二)残余误差观测法
(五)计算数据比较法
(一)从产生误差根源上消除系统误差 (二)用修正方法消除系统误差 (三)不变系统误差消除法 1。替代法 2。抵消发 3。交换法
一、粗大误差产生的原因 (1)测量人员的主观原因 (2)客观外界条件的原因
第一节:研究误差的意义 1、始终存在着误差 意义:
1)正确认识误差的性质,分析误差产生 的原因,以消除和减少误差。
2)正确处理测量和实验数据 3)正确组织实验过程
由于误差的存在,使测量数据之间产生矛 盾。
( )实际 180
( )理论 180
测量仪器:i角误差、2c误差 观测者:人的分辨力限制 外界条件:温度、气压、大气折光等
……
2.40~2.60 >2.60
和
个数K 40 34 31 25 20 16 …… 1 0 210
—△ 频率K/n 0.095 0.081 0.074 0.059 0.048 0.038
(4)( AT )1 ( A1)T
(5)对称矩阵的逆仍为对称矩阵。
(6)对角矩阵的逆仍为对角矩阵且:
A1 (diag (a11, a22,ann ))1 diag( 1 , 1 1 )
a11 a22 ann
(1)伴随矩阵法:
设Aij为A的第i行j列元素aij的代数余子式,则由 n*n个代数余子式构成的矩阵为A的伴随矩阵 的转置矩阵A*称为A的伴随矩阵。
第三章误差理论与数据处理测量误差的传递
第三章测量误差的传递在间接测量中,待求量通过间接测量的方程式y = f (x 1,x 2^ , x n )获得。
通过测量获得量X i ,X 2,…,X n 的数值后,即可由上面的函数关系计算出待求量y 的数值。
那么测量数据的误差怎样作用于间接量y ,即给定测量数据X i ,X 2,…,X n 的测量误差,怎样求出所得间接量y 的误差值?对于更一般的情形,测量结果的误差是测量方法各环节的诸误差因素共同作用的结 果。
这些误差因素通过一定的关系作用于测量结果。
现研究怎样确定这一传递关系,即怎样由诸误差因素分量计算出测量的总误差。
研究测量误差的传递规律有重要意义,它不仅可直接用于已知系统误差的传递计算, 并且是建立不确定度合成规则的依据,因而是精度分析的基础①。
3.1 按定义计算测量误差现在按测量误差的定义给出测量结果的误差,这是研究误差传递关系的基本出发点。
若对量Y 用某种方法测得结果 y ,则按测量误差的定义,该数据的测量误差应为、y =y -Y (3-1) 设有如下测量方程y = f (X 1,X 2,X n )式中y ――间接测量结果;X i ,X 2, , X n ——分别为各直接测得值。
直接量的测量数据 X 1,X 2/ ,X n 的测量误差分别为式中,X 1 , %,•••, X n 分别为相应量的实际值(真值)。
则间接测量结果的误差可写为y 二 y -丫 二 f X 1,X 2,,召 一 f X 1,X 2, ,X .二 f X 1X 1,X 2 %, ,X n X n - f X"?, X (3-2)上式给出了由测量数据的误差计算间接量 y 的误差的传递关系式,这一误差关系是 准确无误的。
直接按定义计算测量结果误差的方法在误差传递计算中经常使用,特别是在单独分 析某项误差因素对测量结果的影响时,若这一影响关系不便或不能化成简单的线性关系, 则这一方法更常使用。
因此直接按定义作误差传递计算的方法不能完全用下面所述的线二 X n - X nV =性化的误差传递方法代替。
误差理论与数据处理期末报告范文
误差理论与数据处理期末报告范文一、引言在科学实验和数据处理中,误差是一个不可避免的因素。
误差的存在会影响到数据的准确性和可靠性,因此正确理解误差是非常重要的。
误差理论作为一门独立的学科,主要研究在实验测量和数据处理中各种类型误差的产生、传递和处理的方法。
在本次报告中,我们将对误差理论的基本概念和数据处理方法进行介绍和分析。
二、误差理论的基本概念1. 误差的分类在实验测量和数据处理中,误差可以分为系统误差和随机误差两种基本类型。
系统误差是由某种固定原因引起的,通常具有一定的方向性和大小;而随机误差是由众多偶然因素造成的,其大小和方向是随机的,无法准确预测。
另外,在实际应用中还会遇到仪器误差、人为误差等其他类型的误差。
2. 误差的传递在实验测量过程中,误差会随着测量数据的传递而累积。
例如,测量仪器的精度、环境条件、操作者技术等因素都会对最终结果产生影响。
因此,在数据处理过程中需要考虑到误差的传递规律,采取相应的措施来减小误差的影响。
3. 误差的表示与估计误差通常通过误差限、标准差、置信度等指标来表示和估计。
误差限表示了测量结果的准确性,标准差表示了数据的离散程度,置信度则表示了对测量结果的信赖程度。
这些指标可以帮助我们更准确地评估测量数据的质量,从而做出科学合理的判断。
三、数据处理方法1. 数据整理在实验测量过程中,可能会出现各种原始数据,需要对其进行整理和筛选。
通常可以采用平均值、中值、众数等方法来处理数据,消除异常值和噪声。
2. 数据分析数据分析是对收集到的数据进行统计和推断的过程。
通过统计方法,可以得出数据的分布特征、相关性和趋势等信息,从而进行科学分析和判断。
3. 数据模型数据模型是描述数据之间关系和规律的数学模型。
通过建立数据模型,可以预测未来趋势、探索潜在规律、优化决策等。
常见的数据模型包括线性回归、非线性回归、时间序列分析等。
四、实例分析为了更好地理解误差理论与数据处理的原理和方法,我们通过一个实例来进行分析。
《误差理论与数据处理》答案
《误差理论与数据处理》第一章 绪论1—1.研究误差的意义是什么?简述误差理论的主要内容.答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等. 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。
1—3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了",只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少. (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1—6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0。
001mm ,测件的真实长度L0=L -△L =50-0。
001=49.999(mm )1—7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
服从正态分布的随机误差具有以下特征:
①单峰性。绝对值小的误差出现的概率比绝对值大的误差出现的概率大。
②对称性。绝对值相等的正、负误差出现的概率相等。
③有界性。绝对值很大的误差出现的概率很小,甚至趋近于零。
④抵偿性。随机误差的算术平均值随着测量次数的增加而越来越趋于零,即
1
lim n n
n
xi
i 1
计分布规律,可以用统计学方法估算随机误差。
3.异常数据的剔除
剔除测量列中异常数据的标准有 3 准则、肖维准则、格拉布斯准则等。
统计理论表明,测量值的偏差超过 3 的概率已小于 1%。因此,可以认为偏差超过 3
的测量值是由于其它因素(实验装置故障、测量条件的意外变化、较强的外界干扰)或过
失造成的异常数据,应当剔除。方法是用偏差 xi
Sx
(xi x)2 n 1
(7)
S x 的统计意义: S x 小,说明随机误差的分布范围窄,小误差占优势,各测量值的离 散性小,重复性好。反之, S x 大,各测量值的离散性大,重复性差。
一般情况下,在多次测量后,是以算术平均值表达测量结果的,而算术平均值本身也
是随机量,也有一定的分散性,可用平均值的标准偏差 S 来表征这一分散性: x
不确定度(Uncertainty)是指由于测量误差的存在而对被测量值不能肯定的程度,用
符号U 表示。通过不确定度可以对被测量的真值所处的量值范围做出评定,而被测量的真
值将以一定的概率(例对于标准不确定度 P=68.3%)落在这个范围内;同时不确定度大小 反映了测量结果可信程度的高低,不确定度越小,测量结果与被测量的真值越接近。
为了能更直观地反映测量结果的优劣,需要引入相对不确定度 E ,即
E U 100% X
(9)
1. 4. 2 直接测量结果的不确定度估算 不确定度按其数值的评定方法可归并为两类分量:即多次测量用统计方法评定的 A 类
分量U A ;用其它非统计方法评定的 B 类分量U B 。
1.A 类分量
对于多次重复测量,用算术平均值 x 表示测量结果,则可用算术平均值的标准偏差(式
(xi
x) 和
3
比较,若
x
' i
3
,
则该测量值应该剔除掉。
1.2. 3 仪器量程 精密度 准确度
量程是指仪器所能测量的范围。对量程的选择要适当,当被测量超过仪器的量程时会 损坏仪器,但也不应一味选择大量程,因为如果仪器的量程比测量值大很多时,测量误差 往往会比较大。
精密度是指仪器所能分辨物理量的最小值,一般与仪器的最小分度值一致,最小分度 值越小,所测物理量的位数就越多,精密度越高。同时仪器精密度的大小反映了各次测量 结果的离散程度。
修正测量数据和采用适当的测量方法(如交换法、补偿法、替换法、异号法等)予以减小或
消除;③合理评定系统误差分量大致对应的 B 类不确定度。
2.随机误差
在多次测量同一被测量的过程中,绝对值和符号以不可预知的方式变化着的误差分量
称为随机误差。在采取措施消除或修正一切明显的系统误差之后,对被测量进行多次测量
数据 x1 , x2 , x3 xn 称为测量列。严格的等精度测量是不存在的,当某些条件的变化对
测量结果影响不大或可以忽略时,可视为等精度测量。在物理实验中要求多次测量的均指 等精度测量,对测量误差与数据处理的讨论,都是以等精度测量为前提的。
(2)非等精度测量。是指在测量过程中由于仪器的不同、方法的差异、测量条件的改 变以及测量者的原因而造成测量结果的变化,这样的测量称为非等精度测量。非等精度测 量通常用在科学研究实验中。
素的局限,任何测量结果总存在着误差。进行误差分析对科学实验有极其重要的指导意义: 一是通过分析误差来源及其性质,采用合理的方法减少或消除误差,并对实验结果作出合 理的评价;二是通过误差分析优化实验方法、选择测量仪器和测量条件、拟定实验步骤和 数据处理方法等,获得合理的实验结果。
3. 误差的表示方法 误差的表示方法一般有两种,即绝对误差和相对误差。
明 P f (x)dx 68.3% 。
这说明任一次测量,随机误差落在 ( , ) 区间的概率为 68.3% 。区间 ( , ) 称为置信区间,相应的概率称为置信概率。置信区间分别取 (2 ,2 ) 、(3 ,3 ) 时, 相应的置信概率为 P(2 ) 95.4% 、 P(3 ) 99.7% 。
x
图 1 随机误差的正态分布
f (x) 2 1
随机误差落在 x, x d(x)区间内的概率
1
为 f (x) d(x) ,显然误差出现在 (,) 范围
0
x
图 2 不同 的概率密度曲线
内的概率为百分之百, f (x) d(x) 1 。
误差出现在 ( , ) 内的概率 P 就是图 1.3.1 中该区间内 f (x) 曲线下的面积,可以证
(4)人为误差。由于测量人员主观因素和操作技术所引入的误差。 系统误差又可以分为已定系统误差和未定系统误差。已定系统误差的符号和绝对值可 以确定。未定系统误差的符号和绝对值不能确定,实验中常用估计误差限的方法得出。 大学物理实验要重视对系统误差的分析,尽量减小它对测量结果的影响,一般采用的
—5—
方法是:① 对已定系统误差进行修正;②通过校准测量仪器、改进实验方案和实验装置、
电表内阻的影响,用单摆测重力加速度时取 sin 带来的误差等。
(2)仪器误差。由于仪器本身不完善而产生的误差,包括仪器的零值误差、示值误差、 机构误差和测量附件误差等,如天平不等臂带来的误差。
(3)环境误差。由于实际环境条件与规定条件不一致引起的误差,如标准电池是以 20 ℃ 时的电动势作为标称值的,若在 30℃条件下使用时,如不加以修正就引入了系统误差。
0
(6)
—7—
1.3.2 测量结果最佳值——算术平均值 在测量不可避免地存在随机误差的情况下,每次测量都有差异,那么接近真值的最佳
值是什么呢? 我们可以利用随机误差的统计特性来判断实验结果的最佳值。
设对某一物理量进行了 n 次等精度测量,所得测量列为: x1 , x2 , x3 xn 。测量
结果的算术平均值为
1 n
x n i1 xi
根据误差的定义有
xi xi x0
1
n
n i 1
xi
1 n
n i 1
xi
x0
x x0
随着测量次数的增加,测量列的算术平均值越来越趋近于真值。
随机误差的抵偿性,当 n 时 1
n
xi 0 ,因此 x x0 。
所以,测量列的算术平均值 x 是真值 x0 的最佳估计值。
1.3 测量结果的最佳值与随机误差的估算
随机误差与系统误差的来源和性质不同,所以处理的方法也不同。
—6—
1.3. 1 随机误差的分布规律
实践证明,等精度测量中,当测量次数 n 很
大时,测量列的随机误差多服从正态分布。正态 分布的曲线如图 1 所示,图中横坐标表示随机误
差 x (xi x0 ) ,纵坐标为对应的误差出现的 概率密度函数 f (x) 。应用概率论方法可导出
测量得到的实验数据应包含测量值的大小和单位,二者缺一不可。
1. 1. 2 测量的分类
在实验中会遇到各种类型的测量,可以从不同的角度对测量进行分类,按测量方法可 分为直接测量和间接测量;按测量的条件可分为等精度测量和非等精度测量。
1. 直接测量和间接测量 (1)直接测量。用测量仪器或仪表与待测量进行比较,直接测出被测量结果的测量。 例如用米尺测量物体长度,用天平测量物体的质量等都是直接测量。 (2)间接测量。利用几个直接测量的量按照一定的函数关系得到待测量的大小。例如 通过测量体积和质量得到物体的密度,通过测量单摆的摆长和周期测定重力加速度等。 2. 等精度测量和非等精度测量 (1)等精度测量。是指在相同条件下对同一个物理量进行的多次测量。所得到的一组
第 1 章 误差理论与数据处理
本章介绍测量的概念,误差分析与数据处理的初步知识,给出一些结论和简化的计算 方法,希望同学们结合每一个具体实验,通过运用加以掌握。
1.1 测量
1. 1. 1 测量 物理实验中为了找出有关物理量之间的定量关系,必须进行定量的测量。测量是物理
实验中及其重要的一个组成部分。测量就是把待测量直接或间接地与另外一个选作计量标 准的同类物理量进行比较的过程。
1.3. 3 随机误差的估算——标准偏差
算术平均值作为真值的最佳估计值,在实际测量中,测量结果的随机误差究竟有多大? 如何来估算呢?
各次测量值与算术平均值之差 xi (xi x) 称为偏差(残差)。
当测量次数有限时,随机误差引起测量值的离散性可用单次测量的标准偏差来表示,
用 S x 表示,它是 的一个估算值,在有限次测量中可用由以下贝塞尔公式计算:
1. 2. 2 误差的分类
误差根据其来源和性质可分为系统误差和随机误差两大类。 1. 系统误差 系统误差是指在同一条件下(方法、仪器、环境、人员),多次测量同一被测量的过 程中误差的大小和符号保持不变,或当条件改变时按某一规律变化的误差分量。 系统误差主要来源有以下几方面: (1)方法误差。由于实验原理或方法的近似性带来的误差,如用伏安法测电阻没有考虑
准确度是表示测量结果与真值接近的程度,因而它是系统误差的反映。由于测量目的 不同,对仪器准确程度的要求也不同。按国家规定,电气仪表的准确度等级 a 分为 0.1、0.2、 0.5、1.0、1.5、2.5、5.0 共七级,在规定条件下使用时,其示值 x 的最大绝对误差为
x 量程×准确度等级 %
(3)
例如, 0.5 级电压表量程为 3 V 时, U 3 0.5% 0.015V。 对仪器准确度的选择要适当,在满足测量要求的前提下尽量选择准确度等级较低的仪
器。当待测物理量为间接测量时,各直接测量仪器准确度等级的选择,应根据误差合成和 误差均分原理,视直接测量的误差对实验最终结果影响程度的大小而定,影响小的可选择 准确度等级较低的仪器,否则应选择准确度等级较高的仪器。