高一函数的单调性练习题

合集下载

函数的单调性练习题含答案

函数的单调性练习题含答案

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔 〕A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,那么f (1)等于 〔 〕 A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,那么y =f (x +5)的递增区间是 〔 〕 A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,那么实数a 的取值范围是 〔 〕A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,那么方程f (x )=0在区间[a ,b ]内〔 〕 A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) 〔 〕 A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数 7.函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x+1)|<1的解集的补集是 〔 〕 A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞〕D .(-∞,-1)∪[2,+∞〕8.定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么以下式子一定成立的是 〔 〕 A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,那么实数a 的取值范围是〔 〕 A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,那么以下不等式中正确的选项是〔 〕 A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,那么 〔 〕 A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,那么()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,那么a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) 〔1〕求f (1)的值.〔2〕假设f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.函数f (x )=x ax x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f (x )的最小值;〔2〕假设对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,那么f (1)=0.②在等式中令x=36,y=6那么.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,那么f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,那么f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的表达.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,那么f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,那么f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

【高一】高一数学上册函数的单调性测试题(含答案)

【高一】高一数学上册函数的单调性测试题(含答案)

【高一】高一数学上册函数的单调性测试题(含答案)来函数的单调性检验姓名:得分:一、(每题5分,共5分)×12=60分)题号123456789101112答复1.在区间上为增函数的是:()a、 b。

C D2.已知函数,则与的大小关系是:()a、 >B.=C.<D.不确定3.下列命题:(1)若是增函数,则是减函数;(2)若是减函数,则是减函数;(3)若是增函数,是减函数,有意义,则为减函数,其中正确的个数有:()a、一,b、二,c、三,d、 04.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()a、(3,8)b.(-7,-2)c.(-2,3)d.(0,5)5.函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是()a、(0,)b.(,+∞)c、(-2,+∞)d、(-∞,-1)∪(1,+∞)6.已知定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()a、 f(-1)<f(9)<f(13)b.f(13)<f(9)<f(-1)c.f(9)<f(-1)<f(13)d.f(13)<f(-1)<f(9)7.如果已知该函数是区间上的减法函数,则实数的取值范围为()a.a≤3b.a≥-3c.a≤5d.a≥38.假设f(x)是区间(-上的增函数∞, + ∞), a、B∈ R和a+B≤ 0,以下不等式中正确的一个是()a.f(a)+f(b)≤-f(a)+f(b)]b.f(a)+f(b)≤f(-a)+f(-b)c、 f(a)+f(b)≥-f(a)+f(b)]d.f(a)+f(b)≥f(-a)+f(-b)9.定义在r上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则()a、 f(-1)<f(3)b.f(0)>f(3)c.f(-1)=f(-3)d.f(2)<f(3)10.已知函数在上是单调函数,则的取值范围是()a、不列颠哥伦比亚省。

高一数学函数的单调性练习题

高一数学函数的单调性练习题

高一数学函数的单调性练习题题型一:求函数的单调区间,常用以下四种方法。

1.定义法 【例1】 试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性.【例2】 证明函数3y x =在定义域上是增函数.【例3】 根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数.【例4】证明函数()f x =【例5】 讨论函数2()1x f x x =-(11)x -<<的单调性.【例6】 求函数f (x)=x+1x的单调区间。

典例分析【例7】 求证:函数()(0)a f x x a x=+>在)+∞上是增函数.【例8】 (2001春季北京、安徽,12)设函数f (x )=bx a x ++(a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性。

【例9】 (2001天津,19)设0a >,()x xe af x a e =+是R 上的偶函数。

(1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数。

【例10】 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )= f (x )+)(1x f ,讨论F (x )的单调性,并证明你的结论。

【例11】 已知函数()f x 对任意实数x ,y 均有()()()f x y f x f y +=+.且当x >0时,()0f x >,试判断()f x 的单调性,并说明理由.【例12】 已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()f x ≠0,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.2.图象法【例13】 如图是定义在区间[5,5]-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【例14】 求函数122y x x =++-的单调减区间【例15】 求下列函数的单调区间:⑴ |1|y x =-;⑵ 1y x x=+(0x >).【例16】 求下列函数的单调区间:⑴|1||24|y x x =-++;⑵ 22||3y x x =-++【例17】 作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【例18】 画出下列函数图象并写出函数的单调区间(1)22||1y x x =-++ (2)2|23|y x x =-++3.求复合函数的单调区间【例19】 函数21x y x =-(x ∈R ,1x ≠)的递增区间是( )A .2x ≥B .0x ≤或2x ≥C .0x ≤D .1x ≤x【例20】 已知()y f x =是偶数,且在[)0+∞,上是减函数,求()21f x -单调增区间。

函数单调性练习题高中

函数单调性练习题高中

函数单调性练习题高中一、选择题1. 设函数f(x) = x^3 3x,则下列结论正确的是()A. f(x)在(∞,+∞)上单调递增B. f(x)在(∞,0)上单调递减,在(0,+∞)上单调递增C. f(x)在(∞,1)上单调递减,在(1,+∞)上单调递增D. f(x)在(∞,1)上单调递增,在(1,1)上单调递减,在(1,+∞)上单调递增2. 已知函数f(x) = (1/2)^x,则下列结论正确的是()A. f(x)在(∞,+∞)上单调递增B. f(x)在(∞,0)上单调递减,在(0,+∞)上单调递增C. f(x)在(∞,+∞)上单调递减D. f(x)在(∞,0)上单调递增,在(0,+∞)上单调递减二、填空题1. 已知函数f(x) = x^2 2x,求f(x)的单调递增区间:______。

2. 已知函数f(x) = 3x^3 9x,求f(x)的单调递减区间:______。

三、解答题1. 已知函数f(x) = x^3 6x^2 + 9x,求f(x)的单调区间。

2. 已知函数f(x) = (1/3)^x 2x,求f(x)的单调区间。

3. 设函数f(x) = x^2 4x + 3,求f(x)的单调区间。

4. 已知函数f(x) = 2x^3 3x^2 12x + 5,求f(x)的单调区间。

5. 设函数f(x) = (1/2)^x + x^2 4x,求f(x)的单调区间。

6. 已知函数f(x) = x^4 4x^3 + 6x^2,求f(x)的单调区间。

7. 设函数f(x) = 3x^3 9x^2 + 5,求f(x)的单调区间。

8. 已知函数f(x) = (1/3)^x x^3 + 2x^2,求f(x)的单调区间。

9. 设函数f(x) = 2x^4 8x^3 + 12x^2,求f(x)的单调区间。

10. 已知函数f(x) = x^5 5x^4 + 10x^3,求f(x)的单调区间。

四、判断题1. 函数f(x) = x^2 + 2x在整个实数域上单调递增。

高一数学函数的单调性试卷(有详细答案)

高一数学函数的单调性试卷(有详细答案)

函数的单调性区间、判定一.选择题1.函数的单调递减区间为()2.函数的单调递减区间为( D )C3.函数y=|x﹣3|的单调递减区间为( C )5.函数的递增区间为( D )单调递增的单调增区间是(﹣∞,))8.下列函数中,在区间(0,2)上为增函数的是()9.下列函数中,在区间(0,+∞)上是减函数的是()的导数10.已知函数f(x)=ax2+(a3﹣a)x+1在(﹣∞,﹣1]上递增,则a的取值范围是( D )解:由题意,本题可以转化为解得的取值范围是11.函数f(x)=﹣x2+2(a﹣1)x+2在(﹣∞,4)上是增函数,则a的范围是(A )12.已知函数是R上的增函数,则a的取值范围是()解:∵函数==∴∴13.函数f(x)=x2+(3a+1)x+2a在(﹣∞,4)上为减函数,则实数a的取值范围是()4≤二.填空题15.函数y=﹣(x﹣3)|x|的递增区间是[0,] .],16.函数y=x|x﹣2|的单调递增区间是(﹣∞,1),(2,+∞).2|=17.函数f(x)在[﹣3,3]上是减函数,且f(m﹣1)﹣f(2m﹣1)>0,则m的取值范围是(0,2] .即18.已知函数f(x)=x2+2ax+2,x∈[﹣5,5],若y=f(x)在区间[﹣5,5]上是单调函数.则实数a的取值范围(﹣∞,﹣5]∪[5,+∞).19.已知函数f(x)是定义在(﹣∞,+∞)上的单调递增函数,且f(2m+1)<f(m﹣3).则m的取值范围是m<﹣4 .三;解答题20.已知函数f(x)=a﹣.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.﹣)﹣(<,则21.已知函数f(x)对任意的a、b∈R都有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f (x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2﹣m﹣2)<3..24.判断函数f(x)=﹣x3+1在(﹣∞,+∞)上的单调性;)25.已知函数.(1)求f(f(2))的值;(2)判断函数在(﹣1,+∞)上单调性,并用定义加以证明.)∵函数)=﹣<。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

函数的单调性练习题(含标准答案)

函数的单调性练习题(含标准答案)

函数的单调性练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2- - 3函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞- -4C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.- -520.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为 单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.- - 6参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则- -7f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.- - 8(2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

高一数学函数的单调性试卷有详细答案

高一数学函数的单调性试卷有详细答案

高一数学函数的单调性试卷一.选择题1.函数的单调递减区间为()A.(﹣∞,﹣1] B.(﹣∞,1] C.[1,+∞)D.(3,+∞)考点:函数的单调性及单调区间。

专题:计算题。

分析:要求函数的单调递减区间,只要求解函数t=x2﹣2x﹣3在定义域[3,+∞)∪(﹣∞,﹣1]上的单调递减区间即可解答:解:由题意可得函数的定义域为[3,+∞)∪(﹣∞,﹣1]结合二次函数t=x2﹣2x﹣3的性质可知,函数f(x)在(﹣∞,﹣1]单调递减,在[3,+∞)单调递增故选:A点评:本题主要考查了复合函数的单调区间的求解,解题中要注意函数定义域的考查,本题解答中容易漏掉考虑定义域而错选为B2.函数的单调递减区间为(D)A.B.C.D.考点:函数的单调性及单调区间。

专题:计算题。

分析:本题先要求出函数的定义域,然后利用复合函数的单调性概念,求出内函数的单调区间,复合函数求单调区间时要对内外函数的增减关系加以注意,即“同增异减”,本题先求出定义域为,而内函数u=﹣3x2+2x+1=﹣3(x﹣)2+,从而得内函数单调减区间为[,+∞).解答:解:由已知:﹣3x2+2x+1≥0,所以3x2﹣2x﹣1≤0,得:所以函数的定义域为设u=﹣3x2+2x+1=﹣3(x﹣)2+,则因为是增函数,所以由u=﹣3x2+2x+1=﹣3(x﹣)2+的单调减区间为[,+∞)又因为函数的定义域为,所以函数的单调减区间为故应选:D点评:本题考查了函数的定义域及其求法,二次不等式解集的求法,复合函数单调性的判断,单调区间的求法..A.(﹣∞,+∞)B.[3,+∞)C.(﹣∞,3] D.[0,+∞)考点:函数的单调性及单调区间。

专题:数形结合。

分析:由图象来求函数的单调区间,图象上升为增区间,图象下降为减区间.要画函数y=|x ﹣3|的图象,先画函数y=x的图象,把y=x的图象在x轴下方的图象翻折到x轴上方,就得到函数y=|x|的图象,再把y=|x|的图象向右平移3个单位长度,就得到函数y=|x﹣3|.解答:解:函数y=|x﹣3|的如右图,从图象可判断单调减区间为(﹣∞,3],故选C点评:本题考查了函数单调区间的求法,其中运用图象来求,是比较直观的方法,应当掌握函数图象的做法.4.函数的单调增区间是()A.(﹣∞,﹣1)B.(﹣1,+∞)C.(﹣∞,﹣1)∪(﹣1,+∞)D.(﹣∞,﹣1)和(﹣1,+∞)考点:函数的单调性及单调区间。

高一函数单调性精品练习题

高一函数单调性精品练习题

高一函数单调性精品练习题一.选择题(共17小题)1.已知函数f(x)=,则该函数的单调递增区间为()A.(﹣∞,1]B.[3,+∞)C.(﹣∞,﹣1]D.[1,+∞)2.函数f(x)=的单调增区间是()A.(﹣∞,1)B.(1,+∞)C.(﹣∞,1),(1,+∞)D.(﹣∞,﹣1),(1,+∞)3.已知f(x)是定义在[0,+∞)上单调递增的函数,则满足的x取值范围是()A.B.C.D.4.函数y=的单调递增区间是()A.(﹣∞,1)B.(﹣2,1)C.(1,4) D.(1,+∞)5.函数y=x2﹣2|x|+1的单调递减区间是()A.(﹣1,0)∪(1,+∞) B.(﹣1,0)和(1,+∞) C.(﹣∞,﹣1)∪(0,1)D.(﹣∞,﹣1)和(0,1)6.下列区间是函数f(x)=1﹣的递增区间的是()A.(1,2) B.[1,2]C.(0,+∞)D.(﹣∞,2)7.若函数在区间(﹣∞,4)上是增函数,则有()A.a>b≥4 B.a≥4>b C.4≤a<b D.a≤4<b8.函数y=|x﹣3|的单调递减区间为()A.(﹣∞,+∞)B.[3,+∞)C.(﹣∞,3]D.[0,+∞)9.已知定义在R的奇函数f(x),在[0,+∞)上单调递减,且f(2﹣a)+f(1﹣a)<0,则a的取值范围是()A. B.C. D.10.函数y=的单调减区间和图象的对称中心分别为()A.(﹣∞,0),(0,+∞),(1,1) B.(﹣∞,﹣1),(﹣1,+∞),(1,0)C.(﹣∞,1),(1,+∞),(1,0) D.(﹣∞,1),(1,+∞),(1,1)11.若函数f(x)在区间(a,b)上是增函数,在区间(b,c)上也是增函数,则函数f(x)在区间(a,b)∪(b,c)上()A.必是增函数B.必是减函数C.是增函数或减函数D.无法确定单调性12.函数f(x)是定义在R上的奇函数,对任意两个正数x1,x2(x1<x2)都有x2f(x1)>x1f(x2),记a=f(2),b=f(1),c=﹣f(﹣3),则a,b,c之间的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.a>c>b13.已知函数y=f (x)是偶函数,且函数y=f (x﹣2)在[0,2]上是单调减函数,则()A.f (﹣1)<f (2)<f (0)B.f (﹣1)<f (0)<f (2)C.f (2)<f (﹣1)<f (0)D.f (0)<f (﹣1)<f (2)14.已知函数f(x)为奇函数,且在(0,+∞)上单调递增,则以下结论正确的是()A.函数|f(x)|为偶函数,且在(﹣∞,0)上单调递增B.函数|f(x)|为奇函数,且在(﹣∞,0)上单调递增C.函数f(|x|)为奇函数,且在(0,+∞)上单调递增D.函数f(|x|)为偶函数,且在(0,+∞)上单调递增15.已知奇函数f(x)是定义在(﹣2,2)上的减函数,则不等式f()+f(2x﹣1)>0的解集是()A.(﹣∞,) B.[﹣,+∞)C.(﹣6,﹣)D.(﹣,)16.已知函数f(x)=是R上的增函数,则a的取值范围是()A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<017.函数f(x)=在区间(﹣2,+∞)上单调递增,则实数a的取值范围是()A.(0,)B.(,+∞)C.(﹣2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二.填空题(共10小题)18.若f(x)=是R上的单调减函数,则实数a的取值范围为.19.已知函数f(x)=x2+2(a﹣1)x+2在[4,+∞)上是增函数,则实数a的取值范围是.20.函数y=|x2﹣4|的单调增区间为.21.设函数,则f(x)的单调增区间是.22.函数y=﹣(x﹣5)|x|的递增区间是.23.已知函数f(x)=4x2﹣kx﹣8在[2,10]上具有单调性,则实数k的取值范围是.24.若函数f(x)的图象关于原点对称,且在(0,+∞)上是增函数,f(﹣3)=0,则不等式xf(x)<0的解集是.25.已知函数f(x)=是(﹣∞,+∞)上的减函数,那么a的取值范围为.26.函数f(x)=满足对于任意x1<x2时都有>0成立,则a的取值范围.27.函数y=在(﹣1,+∞)上单调递减,则实数a的取值范围是.高一函数单调性精品练习题答案一.选择题(共17小题)1.B;2.C;3.C;4.B;5.D;6.A;7.C;8.C;9.D;10.D;11.D;12.B;13.D;14.D;15.D;16.B;17.B;二.填空题(共10小题)18.[,+∞);19.[﹣3,+∞);20.[﹣2,0]和[2,+∞);21.[1,2);22.;23.(﹣∞,16]∪[80,+∞)⊥;24.(﹣3,0)∪(0,3);25.(﹣,1];26.[﹣,0);27.﹣5<a≤﹣1;。

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案

函数的单调性(一)一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y=2x +1 B .y=3x2+1 C .y=x2D .y=2x2+x +1 2.函数f(x)=4x2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于 ( ) A .-7 B .1 C .17 D .253.函数f(x)在区间(-2,3)上是增函数,则y=f(x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5)4.函数f(x)=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f(x)在区间[a ,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f(x)=8+2x -x2,如果g(x)=f( 2-x2 ),那么函数g(x) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f(x)是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f(x)在区间(-∞,5)上单调递减,对任意实数t ,都有f(5+t)=f(5-t),那么下列式子一定成立的是 ( ) A .f(-1)<f(9)<f(13) B .f(13)<f(9)<f(-1) C .f(9)<f(-1)<f(13) D .f(13)<f(-1)<f(9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f(x)在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f(a)+f(b)≤-f(a)+f(b)]B .f(a)+f(b)≤f(-a)+f(-b)C .f(a)+f(b)≥-f(a)+f(b)]D .f(a)+f(b)≥f(-a)+f(-b)12.定义在R 上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x +2)图象的对称轴是x=0,则( )A .f(-1)<f(3)B .f (0)>f(3)C .f (-1)=f (-3)D .f(2)<f(3) 二、填空题:13.函数y=(x -1)-2的减区间是____. 14.函数y=x -2x -1+2的值域为_____. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为.16、函数f(x) = ax2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__. 三、解答题:17.f(x)是定义在( 0,+∞)上的增函数,且f(yx) = f(x)-f(y) (1)求f(1)的值.(2)若f(6)= 1,解不等式 f( x +3 )-f(x1) <2 . 18.函数f(x)=-x3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f(x)=21x -在区间[-1,1]上的单调性.20.设函数f(x)=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f(x)在0,+∞)上为单调函数.21.已知f(x)是定义在(-2,2)上的减函数,并且f(m -1)-f(1-2m)>0,求实数m 的取值范围.22.已知函数f(x)=xax x ++22,x ∈[1,+∞](1)当a=21时,求函数f(x)的最小值;(2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞,⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f(1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f[x(x +3)]<f(36), 又f(x)在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f(x)在R 上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞), x1<x2 ,则f(x1)=-x13+1, f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x12+x1x2+x22)=(x2-x1)[(x1+22x )2+43x22].∵x1<x2,∴x2-x1>0而(x1+22x )2+43x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数.19.解析: 设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x2-x1>0,222111x x -+->0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f(x2).故f(x)=21x -在区间[-1,0]上是增函数,f(x)=21x -在区间[0,1]上是减函数.20.解析:任取x1、x2∈0,+)∞且x1<x2,则f(x1)-f(x2)=121+x -122+x -a(x1-x2)=1122212221+++-x x x x -a(x1-x2)=(x1-x2)(11222121++++x x x x -a)(1)当a ≥1时,∵11222121++++x x x x <1,又∵x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴a ≥1时,函数f(x)在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x1=0,x2=212aa-,满足f(x1)=f(x2)=1 ∴0<a <1时,f(x)在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x1|≥x1;122+x >x2;③从a 的范围看还须讨论0<a <1时f(x)的单调性,这也是数学严谨性的体现.21.解析: ∵f(x)在(-2,2)上是减函数∴由f(m -1)-f(1-2m)>0,得f(m -1)>f(1-2m)∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a=21时,f(x)=x +x21+2,x ∈1,+∞) 设x2>x1≥1,则f(x2)-f(x1)=x2+1122121x x x --=(x2-x1)+21212x x x x -=(x2-x1)(1-2121x x ) ∵x2>x1≥1,∴x2-x1>0,1-2121x x >0,则f(x2)>f(x1) 可知f(x)在[1,+∞)上是增函数.∴f(x)在区间[1,+∞)上的最小值为f(1)=27. (2)在区间[1,+∞)上,f(x)=xax x ++22>0恒成立⇔x2+2x +a >0恒成立设y=x2+2x+a,x∈1,+∞),由y=(x+1)2+a-1可知其在[1,+∞)上是增函数,当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时函数f(x)>0恒成立.故a>-3.。

高一数学函数的单调性测试题及答案

高一数学函数的单调性测试题及答案

1.函数f(x)(-2≤x≤2)的图象如下图所示,则函数的最大值、最小值分别为( )A .f(2),f(-2)B .f(12),f(-1)C .f(12),f(-32)D .f(12),f(0) 【解析】 根据函数最值定义,结合函数图象知,当x =-32时,有最小值f(-32);当x =12时,有最大值f(12). 【答案】 C2.y =2x在区间[2,4]上的最大值、最小值分别是( ) A .1,12 ,1 ,14 ,12【解析】 因为y =2x在[2,4]上单调递减, 所以y max =22=1,y min =24=12. 【答案】 A3.函数y =ax +1在区间[1,3]上的最大值为4,则a =________.【解析】 若a<0,则函数y =ax +1在区间[1,3]上是减函数,则在区间左端点处取得最大值,即a +1=4,a =3不满足a<0;若a>0,则函数y =ax +1在区间[1,3]上是增函数,则在区间右端点处取得最大值,即3a +1=4,a =1,满足a>0,所以a =1.【答案】 14.已知函数y =-x 2+4x -2,x∈[0,5].(1)写出函数的单调区间;(2)若x∈[0,3],求函数的最大值和最小值.【解析】 y =-x 2+4x -2=-(x -2)2+2,x∈[0,5].所以(1)此函数的单调区间为[0,2),[2,5];(2)此函数在区间[0,2)上是增函数,在区间[2,3]上是减函数,结合函数的图象知: 当x =2时,函数取得最大值,最大值为2;又x =3时,y =1,x =0时,y =-2,所以函数的最小值为-2.一、选择题1.函数y=|x-1|在[-2,2]上的最大值为( )A .0B .1C .2D .3【解析】 函数y =|x -1|的图象,如右图所示可知y max =3.【答案】 D2.函数f(x)=⎩⎪⎨⎪⎧ 2x +6 x∈[1,2]x +8 x∈[-1,1],则f(x)的最大值、最小值为( )A .10,7B .10,8C .8,6D .以上都不对【解析】 本题为分段函数最值问题,其最大值为各段上最大值中的最大值,最小值为各段上最小值中的最小值.当1≤x≤2时,8≤2x+6≤10,当-1≤x≤1时,7≤x+8≤9.∴f(x)min =f(-1)=7,f(x)max =f(2)=10.【答案】 A3.函数f(x)=x 2+3x +2在区间(-5,5)上的最大值、最小值分别为( )A .42,12B .42,-14C .12,-14D .无最大值,最小值-14【解析】 f(x)=x 2+3x +2=(x +32)2-14, ∵-5<-23<5, ∴无最大值f(x)min =f(-32)=-14. 【答案】 D4.已知函数f(x)=-x 2+4x +a(x∈[0,1]),若f(x)有最小值-2,则f(x)的最大值为( )A .-1B .0C .1D .2【解析】 函数f(x)=-x 2+4x +a 的图象开口向下,对称轴为直线x =2,于是函数f(x)在区间[0,1]上单调递增,从而f(0)=-2,即a =-2,于是最大值为f(1)=-1+4-2=1,故选C.【答案】 C二、填空题(每小题5分,共10分)5.函数y =-3x,x∈(-∞,-3]∪[3,+∞)的值域为________. 【解析】 y =-3x在(-∞,-3]及[3,+∞)上单调递增,所以值域为(0,1]∪[-1,0). 【答案】 (0,1]∪[-1,0)6.已知二次函数f(x)=ax 2+2ax +1在区间[-2,3]上的最大值为6,则a 的值为________.【解析】 f(x)=ax 2+2ax +1=a(x +1)2+1-a ,对称轴x =-1,当a >0时,图象开口向上,在[-2,3]上的最大值为f(3)=9a +6a +1=6,所以a =13, 当a <0时,图象开口向下,在[-2,3]上的最大值为f(-1)=a -2a +1=6,所以a =-5.【答案】 13或-5 三、解答题(每小题10分,共20分)7.求函数y =2x -1在区间[2,6]上的最大值和最小值. 【解析】设x1、x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)= -== .由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,f(x1)-f(x2)>0,即f(x1)>f(x2). 所以,函数y= 是区间[2,6]上的减函数.如上图.因此,函数y= 在区间[2,6]的两个端点上分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是.8.求f(x)=x 2-2ax +2在[2,4]上的最小值.【解析】 f(x)=(x -a)2+2-a 2,当a≤2时,f(x)min =f(2)=6-4a ;当2<a<4时,f(x)min =f(a)=2-a 2;当a≥4时,f(x)min =f(4)=18-8a.综上可知,f(x)min =⎩⎪⎨⎪⎧ 6-4a (a≤2)2-a 2 (2<a<4)18-8a (a≥4)9.(10分)某市一家报刊摊点,从该市报社买进该市的晚报价格是每份元,卖出价格是每份元,卖不掉的报纸以每份元的价格退回报社.在一个月(按30天计算)里,有18天每天可卖出400份,其余12天每天只能卖出180份.摊主每天从报社买进多少份,才能使每月获得最大利润(设摊主每天从报社买进的份数是相同的)【解析】 若设每天从报社买进x(180≤x≤400,x∈N )份,则每月(按30天计算)可销售(18x +12×180)份,每份获利元,退回报社12(x -180)份,每份亏损元,建立月纯利润函数,再求它的最大值.设每天从报社买进x 份报纸,每月获利为y 元,则有y =(18x +12×180)-×12(x-180)=-+1 188,180≤x≤400,x∈N .函数y =-+1 188在区间[180,400]上是减函数,所以x =180时函数取最大值,最大值为y =-×180+1 188=1 080.即摊主每天从报社买进180份时,每月获得的利润最大,最大利润为1 080元.。

数学必修一《函数的单调性》精选练习(含答案解析)

数学必修一《函数的单调性》精选练习(含答案解析)

数学必修一《函数的单调性》精选练习(含答案解析)一、选择题1.对于函数y=f(x),在给定区间上有两个数x1,x2,且x1<x2,使f(x1)<f(x2)成立,则y=f(x) ( )A.一定是增函数B.一定是减函数C.可能是常数函数D.单调性不能确定2.下列函数中,在区间(0,1)上是增函数的是( )A.y=|x|B.y=3-xC.y=D.y=-x2+43下列函数中,在区间(0,2)上为增函数的是( )①y=-x+1;②y=-;③y=x2-4x+5;④y=.A.①B.②C.③D.④4.函数f(x)在区间(-2,3)上是增函数,则y=f(x+4)的递增区间是( )A.(2,7)B.(-2,3)C.(-6,-1)D.(0,5)5.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不正确的是( )A.>0B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)<f(x1)<f(x2)<f(b)D.>06.函数f(x)=x2-2(a-1)x+1在区间[5,+∞)上是增函数,则实数a的取值范围是( )A.[6,+∞)B.(6,+∞)C.(-∞,6]D.(-∞,6).7.函数f(x)=2x2-mx+3,当x∈(-∞,-2]时是减函数,x∈[-2,+∞)时是增函数,则f(1)等于( )A.-3B.13C.7D.由m而定的常数8.设函数f(x)在(-∞,+∞)上为减函数,则( )A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)二、填空题9.函数f(x)=的减区间是.10.设函数f(x)满足:对任意的x1,x2∈R都有(x1-x2)[f(x1)-f(x2)]>0,则f(-3)与f(-π)的大小关系是.11.已知函数f(x)在R上是减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式-2<f(x)<2的解集为.12.函数y=在(-2,+∞)上为增函数,则a的取值范围是.13.f(x)是定义在[0,+∞)上的减函数,则不等式f(x)<f(-2x+8)的解集是.三、解答题14.如图分别为函数y=f(x)和y=g(x)的图象,试写出函数y=f(x)和y=g(x)的单调增区间.15.已知函数f(x)=.(1)求f(x)的定义域.(2)判断函数f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.16.设函数f(x)是R上的单调增函数,F(x)=f(x)-f(2-x).求证:函数F(x)在R上是单调增函数.17.定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m,n∈R恒成立.当x>0时,f(x)>2.(1)证明f(x)在R上是增函数.(2)已知f(1)=5,解关于t的不等式f(t-1)≤8.参考答案与解析1【解析】选D.由单调性定义可知,不能用特殊值代替一般值.【误区警示】本题易错选A,原因是对增函数概念理解不到位,用特殊值代替一般值,因而是错误的.2【解析】选A.B在R上为减函数;C在(-∞,0)和(0,+∞)上为减函数;D在(-∞,0)上为增函数,在(0,+∞)上为减函数.3【解析】选B.结合函数的图象可知②在区间(0,2)上为增函数,而①③④在区间(0,2)上均为减函数.4【解析】选C.函数y=f(x+4)是函数f(x)向左平移4个单位得到,因为函数f(x)在区间(-2,3)上是增函数,所以y=f(x+4)的增区间为(-2,3)向左平移4个单位,即增区间为(-6,-1).5【解析】选C.由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B,D正确;对于C,若x1<x2时,可能有x1=a或x2=b,即f(x1)=f(a)或f(x2)=f(b),故C不成立.6【解析】选C.函数f(x)的对称轴x=a-1,因为函数f(x)在[5,+∞)上是增函数,所以a-1≤5,所以a≤67【解析】选B.由题意知=-2,所以m=-8,所以f(x)=2x2+8x+3,f(1)=2+8+3=13. 8【解析】选D.因为a2+1-a=+>0,所以a2+1>a,又因为函数f(x)在(-∞,+∞)上为减函数,所以f(a2+1)<f(a).9【解题指南】本题可先作出函数图象,由图象观察减区间.【解析】函数f(x)的图象如图所示.则减区间是(0,1].答案:(0,1]10【解析】由(x1-x2)[f(x1)-f(x2)]>0,可知函数f(x)为增函数,又因为-3>-π,所以f(-3)>f(-π).答案:f(-3)>f(-π)11【解析】因为A(0,-2),B(-3,2)在函数y=f(x)的图象上,所以f(0)=-2,f(-3)=2,故-2<f(x)<2可化为f(0)<f(x)<f(-3),又f(x)在R上是减函数,因此-3<x<0. 答案:(-3,0)【解析】因为y==1-,所以函数的单调增区间为(-∞,-a),(-a,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a,即a≥2.答案:a≥213【解析】依题意,得不等式组解得<x≤4.答案:【误区警示】解答本题时易忽视函数定义域而出错.14【解题指南】根据函数的图象写出函数的单调区间,主要是观察图象,找到最高点或最低点的横坐标,便可得到一个单调区间,由图象的上升或下降的趋势确定是递增还是递减的区间.【解析】由题意,确定函数y=f(x)和y=g(x)的单调增区间,即寻找图象中呈上升趋势的一段图象.由图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的.由图(2)可知,在和内,y=g(x)是单调递增的.15【解析】(1)由x2-1≠0,得x≠±1,所以函数f(x)=的定义域为{x∈R|x≠±1}.(2)函数f(x)=在(1,+∞)上是减函数.证明:任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=-=.因为x2>x1>1,所以-1>0,-1>0,x2-x1>0,x2+x1>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=在(1,+∞)上是减函数.16【证明】任取x1,x2∈R,且x1<x2,因为函数f(x)是R上的单调增函数,所以f(x1)<f(x2),f(2-x1)>f(2-x2),即f(x1)-f(x2)<0,f(2-x1)-f(2-x2)>0,所以F(x1)-F(x2)=[f(x1)-f(2-x1)]-[f(x2)-f(2-x2)]=[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)]<0,即F(x1)-F(x2)<0,所以F(x1)<F(x2).所以函数F(x)在R上是单调增函数.17【解析】(1)对任意x1,x2∈R,且x1<x2,所以x2-x1>0,所以f(x2-x1)>2,f(x1)-f(x2)=f(x1)-f(x2-x1+x1)=f(x1)-f(x2-x1)-f(x1)+2=2-f(x2-x1)<0,所以f(x1)<f(x2),所以f(x)在R上是增函数.(2)因为f(1)=5,所以f(2)=f(1)+f(1)-2=8,由f(t-1)≤8得f(t-1)≤f(2).因为f(x)在R上为增函数,所以t-1≤2,即t≤3, 故不等式的解集为{t|t≤3}.。

函数的单调性·基础练习

函数的单调性·基础练习

函数的单调性·基础练习函数的单调性(一)选择题[ ]A .增函数B .既不是增函数又不是减函数C .减函数D .既是增函数又是减函数2.函数(1) ,(2) ,(3) ,(4) 中在上围增函数的有[ ]A .(1)和(2)B .(2)和(3)C .(3)和(4)D .(1)和(4)3.若y =(2k -1)x +b 是R 上的减函数,则有[ ]A 、B 、C 、D 、4.如果函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,那么实数a 的取值范围是[ ]A .a ≥-3B .a ≤-3C .a ≤5D .a ≥35.函数y =3x -2x 2+1的单调递增区间是[ ]1y ().函数=-在区间-∞,+∞上是x 2x y =x x y =x x y 2-=x xx y +=)0,(-∞21>k 21<k 21->k 21-<kA 、B 、C 、D 、6.若y =f (x )在区间(a ,b)上是增函数,则下列结论正确的是[ ]A .在区间上是减函数B .y =-f (x )在区间(a ,b)上是减函数C .y =|f (x )|2在区间(a ,b)上是增函数D .y =|f (x )|在区间(a ,b)上是增函数7.设函数f (x )是(-∞,+∞)上的减函数,则[ ]A .f (a)>f(2a)B .f (a 2)<f (a)C .f (a 2+a)<f (a)D .f (a 2+1)<f (a)(二)填空题1.(1)函数的单调区间是 (2)函数的单调区间是 2.函数y =4x 2-m x +5,当x ∈(-2,+∞)时,是增函数,当x ∈(-∞,-2)时是减函数,则f (1)=________.3.(1)函数的增区间是(2)函数的减区间是 ⎥⎦⎤ ⎝⎛∞-43,⎪⎭⎫⎢⎣⎡+∞,43⎦⎤ ⎝⎛-∞-43,⎪⎭⎫⎢⎣⎡+∞-,43)(1x f y =()b a ,xy -=11xx y +-=11245x x y --=322-+=x x y4.函数f (x +1)=x 2-2x +1的定义域是[-2,0],则f (x )的单调递减区间是________.5.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与之间的大小关系是 。

函数的单调性练习题含答案

函数的单调性练习题含答案

函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .(21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( )A .(-1,2)B .(1,4)3C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f (a )+f (b )≤-f (a )+f (b )]B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y )4(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取5值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx618.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2).当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;7③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。

高一《函数单调性的证明》练习题

高一《函数单调性的证明》练习题

高一《函数单调性的证明》练习题一.选择题1.函数y=f(x)对于任意x、y∈R,有f(x+y)=f(x)+f(y)﹣1,当x>0时,f(x)>1,且f(3)=4,则()A.f(x)在R上是减函数,且f(1)=3 B.f(x)在R上是增函数,且f(1)=3 C.f(x)在R上是减函数,且f(1)=2 D.f(x)在R上是增函数,且f(1)=2二.解答题2.已知函数y=f(x)在(0,+∞)上为增函数,且f(x)<0(x>0).试判断F(x)=在(0,+∞)上的单调性并给出证明过程.3.已知函数y=f(x)在(0,+∞)上为减函数,且f(x)<0(x>0),试判断f(x)=在(0,+∞)上的单调性,并给出证明过程.4.已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=﹣.(1)求f(0);(2)求证:f(x)在R上是减函数;(3)求f(x)在[﹣3,3]上的最大值和最小值.5.函数f(x)对任意a,b∈R,有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f(x)>1.(Ⅰ)求证:f(x)是R 上的增函数;(Ⅱ)若f(﹣4)=5,解不等式f(3m2﹣m﹣3)<2.6.函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,并且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.7.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)﹣1,并且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(2)=3,解不等式f(m﹣2)<3.8.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>﹣1;(Ⅰ)求:f(0)的值,并证明f(x)在R上是单调增函数;(Ⅱ)若f(1)=1,解关于x的不等式;f(x2+2x)+f(1﹣x)>4.9.定义在R上的函数y=f(x)对任意的x、y∈R,满足条件:f(x+y)=f(x)+f(y)﹣1,且当x>0时,f(x)>1.(1)求f(0)的值;(2)证明:函数f(x)是R上的单调增函数;(3)解关于t的不等式f(2t2﹣t)<1.10.定义在R上的函数y=f(x)对任意的x,y∈R,满足条件:f(x+y)=f(x)+f(y)﹣2,且当x>0时,f(x)>2(1)求f(0)的值;(2)证明:函数f(x)是R上的单调增函数;(3)解不等式f(2t2﹣t﹣3)﹣2<0.11.已知f(x)是定义在R上的恒不为零的函数,且对于任意的x,y∈R都满足f(x)•f(y)=f(x+y).(1)求f(0)的值,并证明对任意的x∈R,有f(x)>0;(2)设当x<0时,都有f(x)>f(0),证明:f(x)在(﹣∞,+∞)上是减函数.参考答案与试题解析一.选择题1.【解答】解:设x1>x2,则f(x1)﹣f(x2)=f(x1﹣x2+x2)﹣f(x2)=f(x1﹣x2)+f(x2)﹣1﹣f(x2)=f(x1﹣x2)﹣1>1﹣1=0,即f(x1)>f(x2),∴f(x)为增函数.又∵f(3)=f(1)+f(2)﹣1=f(1)+f(1)+f(1)﹣1﹣1=3f(1)﹣2=4,∴f(1)=2.故选:D.二.解答题2.【解答】解:函数F(x)=为(0,+∞)上减函数,证明如下:任设x1,x2∈(0,+∞)且x1<x2,∵y=f(x)在(0,+∞)上为增函数,∴f(x1)<f(x2),f(x1)<0,f(x2)<0,F(x1)﹣F(x2)=﹣=,∵f(x1)<f(x2),∴f(x2)﹣f(x1)>0,∵f(x1)<0,f(x2)<0,∴f(x1)•f(x2)>0,∴F(x1)﹣F(x2)>0,即F(x1)>F(x2),则F(x)为(0,+∞)上的减函数.3.【解答】解:函数为(0,+∞)上增函数,证明如下:任设x1,x2∈(0,+∞)且x1<x2,∵y=f(x)在(0,+∞)上为减函数,∴f(x1)>f(x2),f(x1)<0,f(x2)<0,=,∵f(x1)>f(x2),∴f(x2)﹣f(x1)<0,∵f(x1)<0,f(x2)<0,∴f(x1)•f(x2)>0,∴g(x1)﹣g(x2)<0,∴为(0,+∞)上的增函数.4.【解答】解:(1)令x=y=0,则f(0)=0;(2)令y=﹣x,则f(﹣x)=﹣f(x),在R上任意取x1,x2,且x1<x2,则△x=x2﹣x1>0,△y=f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1)∵x2>x1,∴x2﹣x1>0,又∵x>0时,f(x)<0,∴f(x2﹣x1)<0,即f(x2)﹣f(x1)<0,由定义可知函数f(x)在R上为单调递减函数.(3)∵f(x)在R上是减函数,∴f(x)在[﹣3,3]上也是减函数.又f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×(﹣)=﹣2,由f(﹣x)=﹣f(x)可得f(﹣3)=﹣f(3)=2,故f(x)在[﹣3,3]上最大值为2,最小值为﹣2.5.【解答】解:(Ⅰ)证明:设x1<x2,则x2﹣x1>0,∵当x>0时,f(x)>1,∴f(x2﹣x1)>1.又函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)﹣1,∴f(x2)=f(x2﹣x1+x1)=f(x2﹣x1)+f(x1)﹣1>1+f(x1)﹣1=f(x1),∴f(x2)>f(x1),∴f(x)在R上是增函数;(Ⅱ)令a=b=﹣2,则f(﹣2﹣2)=f(﹣2)+f(﹣2)﹣1=5,解得f(﹣2)=3,再令a=b=﹣1,则f(﹣1﹣1)=f(﹣1)+f(﹣1)﹣1=3,解得f(﹣1)=2.不等式f(3m2﹣m﹣3)<2.化为f(3m2﹣m﹣3)<f(﹣1).由(1)可得:f(x)在R上是增函数.∴3m2﹣m﹣3<﹣1,解得﹣<m<1.∴不等式f(3m2﹣m﹣3)<2的解集为(﹣,1).6.【解答】解:(1)证明:任取x1<x2,∴x2﹣x1>0.∴f(x2﹣x1)>1.∴f(x2)=f[x1+(x2﹣x1)]=f(x1)+f(x2﹣x1)﹣1>f(x1),∴f(x)是R上的增函数.(2)∵f(4)=f(2)+f(2)﹣1=5,∴f(2)=3.∴f(3m2﹣m﹣2)<3=f(2).又由(1)的结论知,f(x)是R上的增函数,∴3m2﹣m﹣2<2,3m2﹣m﹣4<0,∴﹣1<m<.7.【解答】解:(1)证明:任取x1<x2,∴x2﹣x1>0.∴f(x2﹣x1)>1.∴f(x2)=f[x1+(x2﹣x1)]=f(x1)+f(x2﹣x1)﹣1>f(x1),∴f(x)是R上的增函数.(2)∵f(2)=3.∴f(m﹣2)<3=f(2).又由(1)的结论知,f(x)是R上的增函数,m﹣2<2,m<4∴解不等式f(m﹣2)<3的解集为:(﹣∞,4).8.【解答】解:(Ⅰ)令x=y=0∵f(x+y)=f(x)+f(y)+1,∴f(0)=f(0)+f(0)+1∴f(0)=﹣1,在R上任取x1>x2,则x1﹣x2>0,∵当x>0时,f(x)>﹣1,∴f(x1﹣x2)>﹣1则f(x1)=f[(x1﹣x2)+x2],=f(x1﹣x2)+f(x2)+1>f(x2),∴f(x)在R上是单调增函数.(Ⅱ)由f(1)=1得:f(2)=3,f(3)=5,则关于x的不等式;f(x2+2x)+f(1﹣x)>4可化为关于x的不等式;f(x2+2x)+f(1﹣x)+1>5,即关于x的不等式;f(x2+x+1)>f(3),由(Ⅰ)的结论知f(x)在R上是单调增函数,故x2+x+1>3,解得:x<﹣2或x>1,故原不等式的解集为:(﹣∞,﹣2)∪(1,+∞).9.【解答】解:(1)根据题意,在f(x+y)=f(x)+f(y)﹣1中,令x=y=0可得:f(0)=f(0)+f(0)﹣1,解可得:f(0)=1,(2)证明:设x1>x2,则x1=x2+(x1﹣x2),且x1﹣x2>0,则有f(x1)=f[(x1﹣x2)+x2]=f(x2)+f(x1﹣x2)﹣1,即f(x1)﹣f(x2)=f(x1﹣x2)﹣1,又由x1﹣x2>0,则有f(x1﹣x2)>1,故有f(x1)﹣f(x2)=f(x1﹣x2)﹣1>0,即函数f(x)为增函数;(3)根据题意,f(2t2﹣t)<1,又由f(0)=1且函数f(x)为增函数,则有2t2﹣t<0,解可得0<t<.10.【解答】解:由题意:函数y=f(x)定义在R上对任意的x,y∈R满足条件:f(x+y)=f(x)+f(y)﹣2,∴令x=y0,由f(x+y)=f(x)+f(y)﹣2,可得:f(0)=f(0)+f(0)﹣2,解得:f(0)=2.故f(0)的值为:2.(2)证明:设x1<x2,x1、x2∈R,则x2﹣x1>0,由(1)可得f(x2﹣x1)>2.因为对任意实数任意的x,y∈R,都有f(x+y)=f(x)+f(y)﹣2,所以f(x2)=f(x2﹣x1+x1)=f(x2﹣x1)+f(x1)﹣2>f(x1)所以函数f(x)是R上的单调增函数.(3)解:由(1)(2)可知函数f(x)是R上的单调增函数.且f(0)=2;不等式f(2t2﹣t﹣3)﹣2<0,变形得f(2t2﹣t﹣3)<2,转化为f(2t2﹣t﹣3)<f(0).故得:2t2﹣t﹣3<0解得:,所以原不等式的解集是(﹣1,).11.【解答】解:(1)可得f(0)•f(0)=f(0)∵f(0)≠0∴f(0)=1又对于任意又,∴f(x)>0(2)设x1,x2∈R且x1<x2,则f(x1)﹣f(x2)=f[(x1﹣x2)+x2]﹣f(x2)=f(x2)[f (x1﹣x2)﹣1]∵x1﹣x2<0∴f(x1﹣x2)>f(0)=1∴f(x1﹣x2)﹣1>0对f(x2)>0∴f(x2)f[(x1﹣x2)﹣1]>0∴f(x1)>f(x2)故f(x)在R上是减函数。

高一数学函数单调性试题

高一数学函数单调性试题

函数的性质测试一、选择题:1.在区间(0,+∞)上不是增函数的函数是〔〕A.y=2x+1B.y=3x2+1C.y=2D.y=2x2+x+1f x x 2-x2.函数()=4+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,mx那么f(1)等于〔〕A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,那么y=f(x+5)的递增区间是〔〕A.(3,8)B.(-7,-2)C.(-2,3)D.(0,5)4.函数f(x)=ax 1在区间(-2,+∞)上单调递增,那么实数a的取值范围是〔〕x2A.(0,1)B.(1,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)2 25.函数在实数集上是增函数,那么〔〕A .B .C .D.6 .函数在和都是增函数,假设,且那么〔〕A .B .C.D.无法确定7.函数f(x)=8+2x-x2,如果g(x)=f(2-x2),那么函数g(x)〔〕A.在区间(-1,0)上是减函数B.在区间(0,1)上是减函数C.在区间(-2,0)上是增函数D.在区间(0,2)上是增函数8.函数f(x)|x|和g(x)x(2x)的递增区间依次是〔〕A.(,0],(,1]B.(,0],[1,)C.[0,D),(,1][0,),[1,)9.函数f x x22a1x2在区间,4上是减函数,那么实数a的取值范围是〔〕A.a≤3B.a≥-3C.a≤5D.a≥310.奇函数f(x)在R上递减,对于实数a有,那么a的取值范围是〔〕A.〔-∞,-1〕B .〔1,+∞〕C .〔0,1〕D .〔-1,0〕二、填空题:11.函数是单调函数时,的取值范围___ .12.函数在R上为奇函数,且,那么当,.13、设y f x是R上的减函数,那么y f x 3的单调递减区间为.14、函数f(x)=ax2+4(a+1)x-3在[2,+∞]上递减,那么a的取值范围是__215、二次函数f(x)=ax+2ax+1在区间[-2,3]上的最大值为6,那么a的值为.________.三、解答题:16.是奇函数,且x∈[-1,1],试判断它的单调性,并证明你的结论。

必修一函数的单调性易错习题

必修一函数的单调性易错习题

函数的单调性一、选择题1.下列函数中,在区间(0,2)上为增函数的是…………………………………( )A.y =3-xB.y =x 2+1C.y =-x 2D.y =x 2-2x -3 2.若函数y =(a +1)x +b ,x ∈R 在其定义域上是增函数,则…………………( )A.a >-1B.a <-1C.b >0D.b <03.若函数y =kx +b 是R 上的减函数,那么…………………………………( )A.k<0B.k>0C.k ≠0D.无法确定4.函数f(x)=⎩⎨⎧ 2x +6x +7x ∈[1,2]x ∈[-1,1],则f(x)的最大值、最小值为……( )A.10,6B.10,8C.8,6D.以上都不对5.下列四个函数在()-0∞,上为增函数的有( )(1)y x = (2)x y x = (3)2x y x =- (4)xy x x=+A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4) 6.设()f x 是(),-∞+∞上的减函数,则( )7.设函数()()21f x a x b =-+在R 上是严格单调减函数,则( ) 8.下列函数中,在区间(0,2)上为增函数的是( )9.已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若2(2)()f a f a ->,则实数a 的取值范围是( ) 10.已知()f x 为R 上的减函数,则满足()11f f x ⎛⎫> ⎪⎝⎭的实数x 的取值范围是( )11.函数 的增区间是(?? )。

A . ? B .C . ?D .12. 在 上是减函数,则a 的取值范围是(? )。

A .? B . ? C .? D .13.当 时,函数 的值有正也有负,则实数a 的取值范围是(?? )A . ?B . ?C . ?D .14、已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则( )A.-2B.2C.-98D.9815、设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫=⎪+⎝⎭的所有x 之和为( ) A .3- B .3 C .8- D .816、若函数(1)()y x x a =+-为偶函数,则a =( )A .2-B .1-C .1D .217、设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( )(A)13 (B)2 (C)132 (D)21318、设函数()y f x =()x R ∈的图象关于直线0x =及直线1x =对称,且[0,1]x ∈时,2()f x x =,则3()2f -=( )(A )12 (B )14 (C )34 (D )9419.已知函数f (x)在R 上是增函数,若a + b >0,则( ) A .f (a) + f (b)>f (-a) + f(-b) B .f (a) + f(b)>f (-a) – f(-b) C .f (a) + f (-a)>f (b) + f (-b) D .f (a) + f (-a)>f (b) – f (-b)20.函数()223f x x mx =-+当[)2,x ∈-+∞时为增函数,当(],2x ∈-∞-是减函数,则()1f 等于( )A .1B .9C .3-D .13二、填空题1. 若f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则xf (x )<0的解集为_________.2、如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),试比较f (31),f (32),f (1)的大小关系_________________________.3.若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = .2.函数 ,当时,是增函数,当 时是减函数,则.4.已知 是常数),且,则的值为_______.5.? 函数 在 上是减函数,则 的取值范围是_______.6.设,是增函数,和,是减函数,则是_______函数;是________函数; 是_______函数.7、函数y =x 2-2x 的单调减区间是 ,单调增区间是 .8.函数 []()2()230,3f x x x x =-++∈的最大值为 ,最小值为9.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是10.已知()y f x =在定义域(-1,1)上是减函数,且2(1)(1)f a f a -<-,则a 的取值范围为11.(1)已知函数2)1(2)(2+-+=x a x x f 在区间]3,(-∞上是减函数,则实数a 的取值范围 是 ;(2)已知2)1(2)(2+-+=x a x x f 的单调递减区间是]3,(-∞,则实数a 的取值范围 是 . 12、已知函数()f x 在区间[],a c 上单调递减,在区间[],c b 上单调递增,则()f x 在区间[],a b 上有最 值是 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性一、选择题:1在区间(0,+^ )上不是增函数的函数是( )A . y=2x+ 1 B. y=3x2+ 12 2 dC. y=D. y=2x2+ x + 1x2.函数f(x)=4x2—mx+ 5在区间[—2, 上是增函数,在区间(—a, —2)上是减函数,则f(1)等于A . —7B . 1D . 25( )C . 173.函数f(x)在区间(一2, 3)上是增函数,贝U y=f(x+ 5)的递增区间是( )A . (3, 8)B . (—7,—2)C . (—2, 3)D . (0, 5)4.函数axf(x)=11在区间(一2,+^ )上单调递增,则实数a的取值范围是( )x21 1 、A . (0,-)B . ( -,+m)22C . (—2,+' oo )D . ( — a, —1) U (1 , +a )5.已知函数f(x)在区间[a, b]上单调,且f(a)f(b) v 0,则方程f(x)=0在区间[a, b]内( )A .至少有一实根B.至多有一实根C .没有实根D.必有唯一的实根6 .已知函数f(x)=8 + 2x—x2,如果g(x)=f( 2 —x2),那么函数g(x)( ) A .在区间(一1 , 0)上是减函数B.在区间(0, 1)上是减函数C.在区间(一2, 0)上是增函数D.在区间(0 , 2)上是增函数7 . 已知函数f(x)是R上的增函数,A(0 , —1)、B(3 , 1)是其图象上的两点,那么不等式|f(x + 1)|v 1的解集的补集是( ) A. (—1, 2) B . (1 , 4)C . ( — a, —1) U [4 ,+o)D . ( — a,—1) U [2 ,+o)&已知定义域为R的函数f(x)在区间(一o,5)上单调递减,对任意实数t,都有f(5 + t)= f(5—t),那么下列式子一定成立的是( )A . f( —1) v f(9) v f(13) B. f(13) v f(9) v f(—1)C. f(9) v f(—1) v f(13)D. f(13) v f( —1) v f(9)9.函数f(x) |x|和g(x) x(2 x)的递增区间依次是( )A. ( ,0],( ,1] B . ( ,0],[1,)C . [0, ),( ,1] D[0, ),[1,)10•已知函数f X X22 a 1 x 2在区间,4上是减函数,贝U实数a的取值范围是( )A • a w 3B • a>—3 C. a< 5 D • a> 311.已知f(x)在区间(一a, +s)上是增函数,a、b€ R且a+b W0,则下列不等式中正确的是( )A . f(a) + f(b)w—f(a) + f(b): B. f(a) + f(b)w f(—a)+ f( —b)C. f(a) + f(b)>—f(a) + f(b)] D . f(a) + f(b)> f(—a) + f(—b)12 .定义在R上的函数y=f(x)在(―汽2)上是增函数,且尸f(x+2)图象的对称轴是x=0,贝U ( )A . f( —1) v f(3)B . f (0)> f(3)C . f (—1)=f (—3)D . f(2) v f(3)二、填空题:13 . 函数y=(x—1)-2的减区间是_ _.14 .函数y=x—2(1 x + 2 的值域为_______________________________ .15、设y f x是R上的减函数,贝y y f x 3的单调递减区间为______________________________ .16、函数f(x) = ax2+ 4(a+ 1)x—3在[2 , ]上递减,则a的取值范围是__________________ .三、解答题:x17 . f(x)是定义在(0,+a )上的增函数,且f( ) = f(x)—f(y)y(1 )求f(1)的值.1(2 )若f(6)= 1,解不等式f( x+ 3 ) —f( — ) v 2 .x18 .函数f(x)= —x3+ 1在R上是否具有单调性?如果具有单调性,它在R上是增函数还是减函数?试证明你的结论.19 •试讨论函数f(x)= / x2在区间[—1, 1]上的单调性.20. 设函数f(x)= ・.x21 —ax, (a> 0),试确定:当a取什么值时,函数f(x)在0,+^ )上为单调函数.21. 已知f(x)是定义在(一2,2)上的减函数,并且f(m —1) —f(1 —2m)>0,求实数m的取值范围.x 2x a22.已知函数f(x)= , x€[ 1 ,+s]x1(1)当a= 时,求函数f(x)的最小值;2(2)若对任意x€ [1,+^ ) , f(x) >0恒成立,试求实数a的取值范围.参考答案、选择题:CDBBD ADCCA BA、填空题:13. (1,+^ ), 14. (— a, 3), 15. 3,三、解答题:17.解析:①在等式中 令x y 0,则f(1)=0.②在等式中令 x=36, y=6 则 f (36) f (36) f(6), f(36) 2f(6) 2. 6故原不等式为:f (x 3) f (^) f (36),即 f[x(x + 3)] v f(36),X又f(x)在(0,+a )上为增函数,故不等式等价于:0 x(x 3)36f(X 2)= — X 23 + 1 .x 3 f(X 1) — f(X 2)=X 23— X 13=(X 2 — X 1)(X 12+ X 1X 2 + X 22)=(X 2 — X 1)[ (X 1 + - )2+ X 22]. 2420.解析:任取 X 1、X 2 € 0, + 且 X 1 v X 2,则153 3218.解析:f(x)在R 上具有单调性,且是单调减函数,证明如下:设 X 1、X 2€ ( —m,+m ) , X 1 V X 2,贝f(X 1)= — X 13 + 1 ,• X 1 v X 2,・.X 2 — X 1> 0 而(X 1 + ―2)2+ — X 22> 0 , • f(X 1)>f(X 2).- 4)上是减函数.1]且 X 1 V X 2,即一1< X 1 V X 2< 1.—2(1 X 12) (1 X 22) 2 •函数 f(x)= — X 3 + 1 在( — m,+m 19 .解析:设 X 1、X 2 € — 1 ,f(X 1) — f(X 2)= . 1 X 12X 12. 1 X 22(X 2 Xj(X 2 X 1) 1 2X1• x 2 — X 1 > 0 , "J 1 X 1 1 X 22> 0, • ••当 X 1> 0 , X 2> 0 时,x 1 + X 2> 0,那么 f(X 1)> f(X 2).当 X 1< 0, X 2V 0 时,X 1 + X 2V 0,那么 f(X 1) V f(X 2). 故f(x)= d X 2在区间[—1, 0]上是增函数,f(x)= d x 2在区间[0, 1]上是减函数.—a(x 1 — x 2)f(X 1) — f(X 2)= , X 121 — a(x 1 —X )=2 X2.X 221可知f(X)在]1,+^ )上是增函数.••• f(X)在区间[1 ,+^ )上的最小值为f(1)=-.2X设 y=x 2+ 2X + a , X € 1 ,+^ ),由 y=(x + 1)2+ a — 1 可知其在[1 , +^)上是增函数, 当x=1时,y min =3 + a ,于是当且仅当 y min =3 + a >0时函数f(x)>0恒成立.故a >— 3.X 1 x 22 , 22(1)当 a > 1 时,T 一22< 1,讽 1识21又X 1 — X 2< 0,二 f(X 1)— f(X 2)> 0, 即卩 f(X 1)>f(X 2)⑵当0< a < 1时,在区间]0,+^]上存在X 1=0,X 2= 2a 2,满足 f(x 1)=f(x 2)=11 a• 0 < a < 1时,f(X)在]0,+上不是单调函数注:①判断单调性常规思路为定义法; ②变形过程中収21x 1 x 2 2 2< 1 利用了 X 121 > |X 1|> X 1;X 221 >X 2;1 '③从a 的范围看还须讨论 0< a < 1时f(x)的单调性,这也是数学严谨性的体现.21.解析:•/ f(x)在(— 2, 2)上是减函数••由 f(m — 1) — f(1 — 2m) >0,得 f(m — 1)> f(1 — 2m)m 1 22 1 2m 2,即 I 11 2m1 12 2 m - 33 33解得22 1 23,• m的取值范围是(—乙)22.解析:(1)当a=〔时,2f(x)=x + 2X + 2,x € 1 ,+^ )设 X 2> X 1 > 1 , 则 f(X 2) — f(X 1)=X 2+ — 2X 2X i1 =(X2 — X 1) 2x 1x 1 x 2 2x 1 x 2 1=(X2—X1)(1—嬴) T X 2> X 1> 1 ,1.• X 2 — X 1> 0, 1 —2X 1X 2> 0,则 f(X 2)> f(X 1)y 2 2x a(2)在区间[1,+s ) 上, f(x)=>0恒成立 x 2 + 2x + a >0恒成立。

相关文档
最新文档