数学新教材人教A版必修第一册 3.2.1 第1课时 函数的单调性 学案

合集下载

新教材人教A版必修第一册 3.2.1 第1课时 函数的单调性 课件(48张)

新教材人教A版必修第一册 3.2.1  第1课时 函数的单调性 课件(48张)

核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.
随堂水平达标
课后课时精练
2.做一做(请把正确的答案写在横线上) (1)已知函数 f(x)=x 的图象如图 1 所示,从左至右图象是上升的还是下降 的:________. (2)已知函数 y=f(x)的图象如图 2 所示,则该函数的单调递增区间是 ________,单调递减区间是________.
核心概念掌握
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
答案
金版点睛 定义法证明单调性的步骤
判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格 按照单调性的定义操作.
利用定义法判断函数的单调性的步骤为:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
注意:对单调递增的判断,当 x1<x2 时,都有 f(x1)<f(x2),也可以用一个 不等式来替代:
核心概念掌握
核心素养形成
随堂水平达标
课后课时精练
3.单调区间 (1)这个区间可以是整个定义域.如 y=x 在整个定义域(-∞,+∞)上单 调递增, y=-x 在整个定义域(-∞,+∞)上单调递减; (2)这个区间也可以是定义域的真子集.如 y=x2 在定义域(-∞,+∞) 上不具有单调性,但在(-∞,0]上单调递减,在[0,+∞)上单调递增. 4.函数在某个区间上单调递增(减),但是在整个定义域上不一定都是单 调递增(减).如函数 y=1x(x≠0)在区间(-∞,0)和(0,+∞)上都单调递减, 但是在整个定义域上不具有单调性.

新教材 人教A版高中数学选择性必修第一册全册优秀学案(知识点考点汇总及配套习题,含解析)

新教材 人教A版高中数学选择性必修第一册全册优秀学案(知识点考点汇总及配套习题,含解析)

人教A版高中数学选择性必修第一册全册学案第一章空间向量与立体几何........................................................................................................ - 2 -1.1空间向量及其运算......................................................................................................... - 2 -1.1.1空间向量及其线性运算...................................................................................... - 2 -1.1.2空间向量的数量积运算.................................................................................... - 16 -1.2空间向量基本定理....................................................................................................... - 29 -1.3空间向量及其运算的坐标表示................................................................................... - 38 -1.3.1空间直角坐标系................................................................................................ - 38 -1.3.2空间运算的坐标表示........................................................................................ - 46 -1.4空间向量的应用 .......................................................................................................... - 59 -1.4.1用空间向量研究直线、平面的位置关系........................................................ - 59 -第1课时空间向量与平行关系........................................................................ - 59 -第2课时空间向量与垂直关系........................................................................ - 69 -1.4.2用空量研究距离、夹角问题............................................................................ - 79 -章末总结 ............................................................................................................................... - 97 - 第二章直线和圆的方程............................................................................................................ - 113 -2.1直线的倾斜角与斜率................................................................................................. - 113 -2.1.1倾斜角与斜率 ................................................................................................. - 113 -2.1.2两条直线平行和垂直的判定.......................................................................... - 121 -2.2直线的方程 ................................................................................................................ - 131 -2.2.1直线点斜式方程.............................................................................................. - 131 -2.2.2直线的两点式方程.......................................................................................... - 137 -2.2.3直线的一般式方程.......................................................................................... - 145 -2.3直线的交点坐标与距离公式..................................................................................... - 154 -2.3.1两条直线的交点坐标...................................................................................... - 154 -2.3.2两点间的距离公式.......................................................................................... - 154 -2.3.3点到直线的距离公式...................................................................................... - 163 -2.3.4两条平行直线间的距离.................................................................................. - 163 -2.4圆的方程 .................................................................................................................... - 171 -2.4.1圆的标准方程 ................................................................................................. - 171 -2.4.2圆的一般方程 ................................................................................................. - 180 -2.5直线与圆、圆与圆的位置关系................................................................................. - 188 -2.5.1直线与圆的位置关系...................................................................................... - 188 -2.5.2圆与圆的位置关系.......................................................................................... - 199 -章末复习 ............................................................................................................................. - 208 - 第三章圆锥曲线的方程............................................................................................................ - 222 -3.1椭圆 ............................................................................................................................ - 222 -3.1.1椭圆及其标准方程.......................................................................................... - 222 -3.1.2椭圆的简单几何性质...................................................................................... - 234 -第1课时椭圆的简单几何性质...................................................................... - 234 -第2课时椭圆的标准方程及性质的应用...................................................... - 244 -3.2双曲线 ........................................................................................................................ - 256 -3.2.1双曲线及其标准方程...................................................................................... - 256 -3.2.2双曲线的简单几何性质.................................................................................. - 267 -3.3抛物线 ........................................................................................................................ - 281 -3.3.1抛物线及其标准方程...................................................................................... - 281 -3.3.2抛物线的简单几何性质.................................................................................. - 291 -章末复习 ............................................................................................................................. - 303 - 全书复习 ..................................................................................................................................... - 316 -第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算学习目标核心素养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点) 1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1图2如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称方向 模 记法 零向量任意 0 0 单位向量任意 1 相反向量相反 相等 a 的相反向量:-a AB →的相反向量:BA → 相等向量 相同 相等 a =b3.(1)向量的加法、减法空间向量的运算 加法 OB →=OA →+OC →=a +b减法 CA →=OA →-OC →=a -b 加法运算律 ①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算.当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍.②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考:向量运算的结果与向量起点的选择有关系吗?[提示] 没有关系.4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. (2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量. (2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”)(1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c .( ) (2)相等向量一定是共线向量.( ) (3)三个空间向量一定是共面向量.( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行.(2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD -A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________. -53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.]4.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD→+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |;③在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→ [(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确;对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确;对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向.(2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. [跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( )①长度相等、方向相同的两个向量是相等向量;②平行且模相等的两个向量是相等向量;③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算 1111为向量AC 1→的有( )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P -ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zP A →;②P A →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解.(1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.](2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(P A →+PC →)=PQ →-12PC →-12P A →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点,∴P A →+PC →=2PO →,PC →+PD →=2PQ →,∴P A →=2PO →-PC →,PC →=2PQ →-PD →,∴P A →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质. [跟进训练] 2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB → B .3MG →C .3GM →D .2MG →B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎨⎧ λ=7λk =k +6,解得k =1.] (2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM →=2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线.(1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ).(3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →, 所以A 1E →=23A 1D 1→,A 1F →=25A 1C →, 所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c , 所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如P A →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+ y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c .因为a ,b ,c 不共面,所以⎩⎨⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示,即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P 是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →),∴3CP →=P A →+2PB →,即P A →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面.[解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则 OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →, ∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎨⎧1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断? [解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1. ∴点P 与点A 、B 、C 不共面.解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( ) A .OM →=2OA →-OB →-OC → B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0 D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.] 2.已知正方体ABCD -A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB→-nAA 1→,则m ,n 的值分别为( )A .12,-12 B .-12,-12 C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .] 4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a ,b 满足|a |>|b |且a ,b 同向,则a >b ; ③不相等的两个空间向量的模必不相等; ④对于任何向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________.④ [对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,求k 的值. [解] ∵两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,∴k e 1+e 2=t (e 1+k e 2),则(k -t )e 1+(1-tk )e 2=0.∵非零向量e 1,e 2不共线,∴k -t =0,1-kt =0,解得k =±1.1.1.2 空间向量的数量积运算学习 目 标核心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2. ③cos 〈a ,b 〉=a ·b|a ||b |. (3)数量积的运算律(2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a|a |.(2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =k a ,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等. ( ) (2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC -A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos 〈AB 1,BC 1〉=122×2=14.故选B.]3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4 A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c 的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算【例1】 (1)如图,三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC=60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →) =OA →+13[(OB →-OA →)+(OC →-OA →)] =13OB →+13OC →+13OA →.∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2 =13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. (3)根据向量的方向,正确求出向量的夹角及向量的模. (4)代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系=OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ,又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →) =12⎣⎢⎡⎦⎥⎤12OA →+12(OB →+OC →) =14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b ) =14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0. ∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:P A ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又P A →=PD →+DA →,∴P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .夹角问题夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4; 由余弦定理,得:cos ∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14, 又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos 〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3. 即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2 注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC →+2BA →·CD →+2AC →·CD →=3+2×1×1×cos 〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角α-AB -β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角α-AB -β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC 的中点,则FG →·AB →=( )A .34B .14C .12D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.]2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b|a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________. 0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →) =AB →·(CD →-CA →)+AD →·(BC →+CA →) =AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角α-AB -β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →, ∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116, ∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线; (2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值. [解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°. (1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB → =12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0 ∴MN ⊥AB ,同理可证MN ⊥CD . ∴MN 为AB 与CD 的公垂线. (2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22]=14×2a 2=a 22.∴|MN →|=22a , ∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ=32a·32a ·cos θ=a 22. ∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23. 从而异面直线AN 与MC 所成角的余弦值为23.1.2 空间向量基本定理学 习 目 标核 心 素 养1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解.(难点)3.掌握在简单问题中运用空间三个不共面的向量作为基底表示其他向量的方法.(重点)1.通过基底概念的学习,培养学生数学抽象的核心素养.2.借助基底的判断及应用,提升逻辑推理、直观想象及数学运算的核心素养.(1)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对(x ,y ),使得p =x a +y b .(2)共面向量定理的推论:空间一点P 在平面MAB 内的充要条件是存在有序实数对(x ,y ),使得MP →=xMA →+yMB →,或对于空间任意一定点O ,有OP →=xOM →+yOA →+zOB →(x +y +z =1).今天我们将对平面向量基本定理加以推广,应用上面的几个公式我们可以解决与四点共面有关的问题,得出空间向量基本定理.1.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .。

函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT

函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT
探索点三 函数单调性的应用 【例 3】 【例 3】 (1)已知函数 f(x)=x2+2(a-1)x+2 在区间(-∞,4]
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.

新教材2020-2021学年高中数学人教A版第一册学案:3.2.1 第1课时函数的单调性含解析

新教材2020-2021学年高中数学人教A版第一册学案:3.2.1 第1课时函数的单调性含解析

新教材2020-2021学年高中数学人教A版必修第一册学案:3.2.1 第1课时函数的单调性含解析3.2函数的基本性质3.2。

1单调性与最大(小)值第1课时函数的单调性[目标]1.记住函数的单调性及其几何意义,会证明简单函数的单调性;2。

会用函数的单调性解答有关问题;3.记住常见函数的单调性.[重点] 函数的单调性定义及其应用;常见函数的单调性及应用;函数单调性的证明.[难点]函数单调性定义的理解及函数单调性的证明.知识点一增函数与减函数的定义[填一填]一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1〈x2时,都有f(x1)〈f(x2),那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数.如果∀x1,x2∈D,当x1<x2时,都有f(x1)〉f(x2),那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数.[答一答]1.在增函数与减函数的定义中,能否把“∀x1,x2∈D"改为“∃x1,x2∈D”?提示:不能,如图所示:虽然f(-1)〈f(2),但原函数在[-1,2]上不是增函数.2.设x1、x2是f(x)定义域某一个子区间M上的两个变量,如果f(x)满足以下条件,该函数f(x)是否为增函数?(1)对任意x1〈x2,都有f(x1)<f(x2);(2)对任意x1,x2,都有[f(x1)-f(x2)](x1-x2)〉0;(3)对任意x1、x2都有错误!>0.提示:是增函数,它们只不过是增函数的几种等价命题.3.由2推广,能否写出减函数的几个等价命题?提示:减函数(x1,x2∈M)⇔任意x1<x2,都有f(x1)>f(x2)⇔错误! <0⇔[f(x1)-f(x2)]·(x1-x2)〈0.知识点二函数的单调性与单调区间[填一填]如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.[答一答]4.函数的单调区间与其定义域是什么关系?提示:函数的单调性是对函数定义域内的某个子区间而言的,故单调区间是定义域的子集.5.函数f(x)=错误!的单调减区间是(-∞,0)∪(0,+∞)吗?提示:不是.例如:取x1=1,x2=-1,则x1>x2,这时f(x1)=f (1)=1,f(x2)=f(-1)=-1,故有f(x1)〉f(x2).这样与函数f(x)=错误!在(-∞,0)∪(0,+∞)上单调递减矛盾.事实上,f(x)=错误!的单调减区间应为(-∞,0)和(0,+∞).知识点三常见函数的单调性[填一填]1.设一次函数的解析式为y=kx+b(k≠0),当k〉0时,函数y =kx+b在R上是增函数;当k<0时,函数y=kx+b在R上是减函数.2.设二次函数的解析式为y=ax2+bx+c(a≠0).若a>0,则该函数在错误!上是减函数,在错误!上是增函数.若a<0,则该函数在错误!上是增函数,在错误!上是减函数.3.设反比例函数的解析式为y=错误!(k≠0).若k〉0,则函数y=错误!在(-∞,0)上是减函数,在(0,+∞)上也是减函数;若k 〈0,则函数y=错误!在(-∞,0)上是增函数,在(0,+∞)上也是增函数.[答一答]6.函数y=x2-x+2的单调区间如何划分?提示:函数在错误!上是减函数,在错误!上是增函数.类型一判断或证明函数的单调性[例1]证明:函数y=x+错误!在(0,3]上递减.[证明]设0<x1<x2≤3,则有y1-y2=错误!-错误!=(x1-x2)-错误!=(x1-x2)错误!。

新教材高中数学3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性课件新人教A版必修第一册

新教材高中数学3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性课件新人教A版必修第一册
证明 ∀x1,x2∈R,且 x2>x1, 则 x2-x1>0, ∵当 x>0 时,f(x)<0,∴f(x2-x1)<0, ∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)<0, ∴f(x)为减函数.
答案
题型四 复合函数的单调性 例 4 求函数 f(x)=8-21x-x2的单调区间.
[证明] (1)根据题意,令 m=0,可得 f(0+n)=f(0)·f(n). ∵f(n)≠0,∴f(0)=1. (2)由题意知 x>0 时,0<f(x)<1, 当 x=0 时,f(0)=1>0, 当 x<0 时,-x>0,∴0<f(-x)<1. ∵f[x+(-x)]=f(x)·f(-x), ∴f(x)·f(-x)=1, ∴f(x)=f-1 x>0. ∴∀x∈R,恒有 f(x)>0.
数(decreasing function).
知识点三
单调区间
如果函数 y=f(x)在区间 D 上__□0_1_单__调__递__增___或_□_0_2_单__调__递__减___,那么就说
函数 y=f(x)在这一区间具有(严格的)__□0_3__单__调_性_____,__□0_4__区__间__D____叫做 y
7.图象变换对单调性的影响 (1)上下平移不影响单调区间,即 y=f(x)和 y=f(x)+b 的单调区间相同. (2)左右平移影响单调区间.如 y=x2 的单调递减区间为(-∞,0];y=(x +1)2 的单调递减区间为(-∞,-1]. (3)y=k·f(x),当 k>0 时单调区间与 f(x)相同,当 k<0 时单调区间与 f(x)相 反.

3-2-1函数的单调性教学设计——云南省富源县第一中学高一上学期数学人教A版必修第一册

3-2-1函数的单调性教学设计——云南省富源县第一中学高一上学期数学人教A版必修第一册

《3.2.1函数的单调性》【设计者】富源县第一中学解青【内容出处】人教版A版第一册第三章第2节.【课标要求】1.借助函数图象,会用符号语言表达函数的单调性.2.理解单调性的作用和实际意义.【学情分析】学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“y随x的增大而增大(减小)”描述函数图象的上升(下降)的趋势.本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.【教学目标】1.理解函数单调性的定义,掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合和类比等思想方法.3.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.【教学重难点】教学重点:函数单调性的概念,判断和证明简单函数的单调性.教学难点:函数单调性概念的生成,证明单调性的代数推理论证.【教学策略与手段】(一)教学策略:1.指导思想.充分发挥多媒体形象、动态的优势,借助视频和函数图象直观演示,在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析高度随时间的变化趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.借助二次函数图象引导学生对“y随x的增大而增大”进行探究、辨析、尝试、归纳和总结,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4.在探究题环节,让学生小组讨论,使得学生不仅学会用定义法证明函数的单调性,同时提升了他们代数推理论证能力、并体会与同伴合作的价值.(二)教学手段多媒体辅助教学,powerpoint,几何画板(图象).【学习过程】一、课题导入让学生观看坐过山车的视频,再观察坐过山车得到的时间与高度的函数图象.由函数图象的增减变化引出本节课的课题.设计意图:由学生比较感兴趣的坐过山车为例,激发学生学习的兴趣,而时间与高度的函数图象能非常形象的刻画出函数的增减变化,也使学生感受到数学来源于生活.二、新课讲解观察函数y=x2的图象,引导学生总结归纳出函数单调性的定义,并带领学生用符号语言表达函数的单调性.问题1:函数y=x2的图象在(0,+ )有什么特征?问题2:如何用数学符号描述函数图象的“上升”特征,即“y随x的增大而增大”?设计意图:先借助图形让学生直观感受“y随x的增大而增大”,然后让学生思考、讨论得出函数单调递增的定义.函数单调性的定义:一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当____________时,都有____________,那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是________.如果∀x1,x2∈D,当___________时,都有____________那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是_________.如果函数y =f(x)在区间D 上单调递增或单调递减,那么就说函数y =f(x) 在这一区间具有(严格的)单调性,区间D 叫做y =f(x)的______________. 设计意图:让学生知道存在当x 1<x 2,有f(x 1)<f(x 2)不能确定函数的单调性,从而说明 x 1,x 2取值的任意性.注意:1.函数单调性是针对某个区间而言的,是函数的 性质. 2. x 1,x 2取值的 .学以致用:观察下面函数图象,找出它的单调递增、减区间?注 :1.当端点值在定义域中时,单调区间可 .2.一个函数出现两个或两个以上的单调区间时,不能用 连接两单调区间,而要用 或 连接.设计意图:让学生学会用图象判断函数的单调性,从中也明白单调区间的连接和端点值的开闭问题.三、例题分析【例1】已知函数f(x)=x 2-4|x|+3,x ∈R ,根据图象找出它的单调区间. 设计意图:让学生学会根据图象找出函数的单调区间,并能准确书写结果.【例2】证明函数f(x)=x1在区间 (0,+ )上单调递减. 笔记:定义法证明单调性的五个步骤:设计意图:让学生学会根据定义证明函数的单调性,教师板书示范,带领学生一起提炼基本步骤.四、合作探究(请学生板演实践)探究1:根据定义证明函数f(x)=x+x1在区间(1,+∞)上单调递增. 设计意图:检验学生是否学会了用定义法证明函数的单调性,同时让学生体会与同伴合作的价值.五、课堂小结同学们本节课你学到了什么?请谈谈你的收获.设计意图:让学生学会对所学知识进行总结,并能再次强化本节课的学习内容.五、课后思考1.函数f(x)在区间D 上满足[]0)()()(2121>--x f x f x x ,是想为我们提供什么信息?2.已知函数()()2213f x x a x =--++(1)若函数f(x)的单调递增区间是(]3,∞-,则实数a 的值为(2)若函数f(x)在区间(]3,∞-上单调递增,则实数a 的取值范围 找出问题(1)和问题(2)的已知条件有何区别,并尝试求出(1)中a 的值和(2)中a 的取值范围.【布置作业】 课本79页练习1.2.3.4题【板书设计】 课题:3.2.函数的单调性1.函数单调性的定义 : 3.例题讲解:2.定义法证明函数单调性的步骤:。

3.2.1 函数的单调性(原卷版)高一数学同步讲义(新教材人教A版必修第一册)

3.2.1 函数的单调性(原卷版)高一数学同步讲义(新教材人教A版必修第一册)

3.2.1 函数的单调性一、知识点归纳一般地,设函数f(x)的定义域为I,区间D⊆I:(1)如果⊆x1,x2⊆D,当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数.(2)如果⊆x1,x2⊆D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数.(3)如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.二、题型分析题型一用定义法证明(判断)函数的单调性【例1】已知函数f(x)=1x2-1.(1)求f(x)的定义域;(2)判断函数f(x)在(1,+∞)上的单调性,并加以证明.【规律方法总结】利用定义证明函数单调性的步骤10 / 1010 / 10________________________________________________________________________________________________________________________________________________________________________________________【变式1】试用函数单调性的定义证明:f (x )=2xx -1在(1,+∞)上是减函数.题型二 求函数的单调区间【例2】已知f (x )=⎩⎪⎨⎪⎧x 2+4x +3,-3≤x <0,-3x +3,0≤x <1,-x 2+6x -5,1≤x ≤6.(1)画出这个函数的图象; (2)求函数的单调区间.【规律方法总结】图象法求函数单调区间的步骤________________________________________________________________________________________________________________________________________________________________________________________10 / 10【变式2】. 求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f (x )=-1x ;(2)f (x )=⎩⎪⎨⎪⎧2x +1,x ≥1,5-x ,x <1;(3)f (x )=-x 2+2|x |+3.题型三 函数单调性的应用【例3】 (1)已知函数f (x )=-x 2-2(a +1)x +3.⊆若函数f (x )在区间(-∞,3]上是增函数,则实数a 的取值范围是________; ⊆若函数f (x )的单调递增区间是(-∞,3],则实数a 的值为________.(2)若函数f (x )=x 2+ax +b 在区间[1,2]上不单调,则实数a 的取值范围为________. 【规律方法总结】________________________________________________________________________________________________________________________________________________________________________________________【变式3】已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.三、课堂达标检测10 / 101.如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]⊆[4,5]上单调递减D .函数在区间[-5,5]上没有单调性2.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上是增函数,则b 的取值范围为( ) A .b =3 B .b ≥3 C .b ≤3D .b ≠33.下列函数在区间(0,+∞)上不是增函数的是( ) A .y =2x +1 B .y =x 2+1 C .y =3-xD .y =x 2+2x +14.函数y =f (x )的图象如图所示,其增区间是( )A .[-4,4]B .[-4,-3]⊆[1,4]C .[-3,1]D .[-3,4]5.下列函数中,在区间(0,+∞)上是减函数的是( ) A .y =-1xB .y =x10 / 10C .y =x 2D .y =1-x6.函数y =(x +4)2的递减区间是( ) A .(-∞,-4) B .(-4,+∞) C .(4,+∞)D .(-∞,4)7.证明:函数y =xx +1在(-1,+∞)上是增函数.8.利用单调性的定义,证明函数y =x +2x +1在(-1,+∞)上是减函数.四、课后提升作业10 / 10一、选择题1.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x -1,x <0在R 上( )A .是减函数B .是增函数C .先减后增D .先增后减2.函数f (x )=|x |,g (x )=x (2-x )的递增区间依次是( ) A .(-∞,0],(-∞,1] B .(-∞,0],(1,+∞) C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)3.函数y =x 2-6x +10在区间(2,4)上( ) A .单调递增 B .单调递减 C .先减后增D .先增后减4.设(a ,b ),(c ,d )都是f (x )的单调递增区间,且x 1⊆(a ,b ),x 2⊆(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( ) A .f (x 1)<f (x 2) B .f (x 1)>f (x 2) C .f (x 1)=f (x 2)D .不能确定5.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点,则-1<f (x )<1的解集是( ) A .(-3,0)B .(0,3)C .(-∞,-1]⊆[3,+∞)D .(-∞,0]⊆[1,+∞)6.若f (x )=-x 2+2ax 与g (x )=ax 在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)⊆(0,1)B .(-1,0)∩(0,1)C .(0,1)D .(0,1]7.下列函数中,在(0,2)上是增函数的是( )10 / 10A .y =1xB .y =2x -1C .y =1-2xD .y =(2x -1)28.函数f (x )=|x |,g (x )=x (2-x )的递增区间依次是( ) A .(-∞,0],(-∞,1] B .(-∞,0],(1,+∞) C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)9.下列函数中,满足“对任意x 1,x 2⊆(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( )A .f (x )=2xB .f (x )=-3x +1C .f (x )=x 2+4x +3D .f (x )=x +1x10.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则函数y =ax 2+bx 在(0,+∞)上( )A .单调递增B .单调递减C .先增后减D .先减后增11.定义在R 上的函数f (x ),对任意x 1,x 2⊆R(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (2)<f (1)B .f (1)<f (2)<f (3)C .f (2)<f (1)<f (3)D .f (3)<f (1)<f (2) 12.f (x )为(-∞,+∞)上的减函数,a ⊆R ,则( ) A .f (a )<f (2a ) B .f (a 2)<f (a ) C .f (a 2+1)<f (a )D .f (a 2+a )<f (a )二、填空题13.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上是增函数,则实数a 的取值范围为________.10 / 1014.若函数f (x )=1x +1在(a ,+∞)上单调递减,则a 的取值范围是________.15.已知f (x )在定义域内是减函数,且f (x )>0,在其定义域内下列函数为单调增函数的是________. ⊆y =a +f (x )(a 为常数); ⊆y =a -f (x )(a 为常数); ⊆y =1f (x );⊆y =[f (x )]2.16.函数y =|x |(1-x )的单调递增区间为________.17.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围为________. 18.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是________. 19.若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________. 20.已知定义在R 上的函数y =f (x )满足以下三个条件: ⊆对于任意的x ⊆R ,都有f (x +1)=-f (x ); ⊆函数y =f (x )的图象关于直线x =1对称; ⊆对于任意的x 1,x 2⊆[0,1],且f (x 1)-f (x 2)x 2-x 1>0.则f (-1),f ⎝⎛⎭⎫32,f (2)的大小顺序是________.(用“<”连接)三、解答题21.用定义判断函数f (x )=ax +1x +2⎝⎛⎭⎫a ≠12在(-2,+∞)上的单调性.10 / 1022.已知一次函数f (x )是R 上的增函数,g (x )=f (x )(x +m ),且f (f (x ))=16x +5. (1)求f (x )的解析式;(2)若g (x )在(1,+∞)上单调递增,求实数m 的取值范围.23.已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.10 / 1024.已知函数f (x )对任意的a ,b ⊆R ,都有f (a +b )=f (a )+f (b )-1,且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数;(2)若f ⎝⎛⎭⎫x y =f (x )-f (y ),f (2)=1,解不等式f (x )-f ⎝⎛⎭⎫1x -3≤2.。

高中数学新教材人教A版必修第一册学案:3.2函数的基本性质Word版含答案

高中数学新教材人教A版必修第一册学案:3.2函数的基本性质Word版含答案

【新教材】3.2.1 单调性与最大(小)值(人教A版)1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.一、预习导入阅读课本76-80页,填写。

1.增函数、减函数的定义2、单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=1x在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减.3、函数的最大(小)值1.判断(正确的打“√”,错误的打“×”)(1)所有的函数在其定义域上都具有单调性.( )(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( )(3)任何函数都有最大值或最小值.( )(4)函数的最小值一定比最大值小.( )2.函数y=f(x)的图象如图所示,其增区间是( )A.[-4,4] B.[-4,-3],[1,4]C.[-3,1] D.[-3,4]3.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 4.下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( )A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +15.函数f (x )=2x,x ∈[2,4],则f (x )的最大值为______;最小值为________. 题型一 利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:(1)y=3x-2;(2)y=-1x . 跟踪训练一1. 已知x ∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单调区间.题型二 利用函数的图象求函数的最值例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.跟踪训练二1.已知函数f(x)={1x ,0<x<1,x,1≤x ≤2.(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.题型三 证明函数的单调性 例3 求证:函数f(x)=x+1x 在区间(0,1)内为减函数. 跟踪训练三1.求证:函数f(x)=21x在(0,+∞)上是减函数,在(-∞,0)上是增函数. 题型四 利用函数的单调性求最值例4 已知函数f(x)=x+ 4x .(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.跟踪训练四1.已知函数f(x)=6x−1(x∈[2,6],)求函数的最大值和最小值.题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f34⎛⎫⎪⎝⎭的大小.跟踪训练五1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.题型六单调性最值的实际应用例6“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?跟踪训练六1. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?1.f(x)对任意两个不相等的实数a,b,总有f(a)−f(b)a−b>0,则必有( )A.函数f(x)先增后减 B.函数f(x)先减后增C.函数f(x)是R上的增函数 D.函数f(x)是R上的减函数2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)的最小值为-2,则f(x)的最大值为( )A.-1 B.0C.1 D.23.已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是( ) A.[160,+∞) B.(-∞,40]C.(-∞,40]∪[160,+∞) D.(-∞,20]∪[80,+∞)4.若函数y=f(x)的定义域为R,且为增函数,f (1-a)<f(2a-1),则a的取值范围是。

高中必修第一册《3.2 函数的基本性质》优质课教案教学设计

高中必修第一册《3.2 函数的基本性质》优质课教案教学设计

3.2.1 单调性与最大(小)值《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。

在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。

A.理解增函数、减函数、单调区间、单调性概念;B.掌握增(减)函数的证明与判断;C.能利用单调性求函数的最大(小)值;D.学会运用函数图象理解和研究函数的性质;1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。

多媒体教学过程教学设计意图 核心素养目标 一、情景引入1. 观察这些函数图像,你能说说他们分别反映了相应函数的哪些特征吗?2、它们分别反映了相应函数有什么变化规律?二、探索新知 探究一 单调性1、思考:如何利用函数解析式2)(x x f =描述“随着x 的增大,相应的f(x)随着增大?”【答案】图象在区间 )+∞,0(上 逐渐上升, 在)+∞,0(内随着x 的增大,y 也增大。

对于区间)+∞,0(内任意21,x x ,当21x x <时,都有)()(21x f x f <。

这是,就说函数2)(x x f =在区间 )+∞,0(上是增函数.2、你能类似地描述2)(x x f =在区间)0,(-∞上是减函数吗? 【答案】在区间)0,(-∞内任取21,x x ,得到211)(x x f =,222)(x x f =,当21x x <时,都有)()(21x f x f >。

(新教材学案)第3章3.23.2.1第1课时函数的单调性含答案

(新教材学案)第3章3.23.2.1第1课时函数的单调性含答案

3.2函数的基本性质3.2.1单调性与最大(小)值第1课时函数的单调性学习任务核心素养1.理解函数的单调性及其几何意义,能运用函数图象理解和研究函数的单调性.(重点、难点)2.会用函数单调性的定义判断(或证明)一些函数的单调性.(难点)3.会求一些具体函数的单调区间.(重点)1.借助单调性的证明,培养逻辑推理素养.2.利用求单调区间及应用单调性解题,培养直观想象和数学运算素养.德国心理学家艾宾浩斯曾经对记忆保持量进行了系统的实验研究,并给出了类似下图所示的记忆规律.如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则不难看出,图中,y是x的函数,记这个函数为y=f(x).这个函数反映出记忆具有什么规律?我们用数学语言如何描述该规律?知识点1增函数与减函数的定义函数增函数减函数图示条件设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1<x2时,都有f(x1)<f(x2)都有f(x1)>f(x2) 结论f(x)在区间D上单调递增f(x)在区间D上单调递减在增函数和减函数定义中,能否把“任意x1,x2∈I”改为“存在x1,x2∈I”?举例说明.[提示]不能.如对于函数y=-x2,存在-4<2,且-(-4)2<-22,但y=-x2不是增函数.增减函数定义中x1,x2的三个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.1.思考辨析(正确的画“√”,错误的画“×”)(1)所有的函数在定义域上都具有单调性.()(2)若函数y=f(x)在定义域上有f(1)<f(2),则该函数是单调递增函数.()(3)若f(x)为R上的减函数,则f(0)>f(1).()[答案](1)×(2)×(3)√知识点2函数的单调性与单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.对函数单调性的理解(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D⊆定义域I.(3)遵循最优原则,单调区间应尽可能大.2.函数y=f(x)的图象如图所示,其单调递增区间是()A.[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4]C [由图可知,函数y =f (x )的单调递增区间为[-3,1],选C.]3.函数y =1x 的单调递减区间是________.(-∞,0)和(0,+∞) [结合y =1x 的图象可知,y =1x 的递减区间是(-∞,0)和(0,+∞).]类型1 函数单调性的判定与证明【例1】 (对接教材P 79例题)证明函数f (x )=x +1x 在区间(0,1)上是单调递减. [证明] 设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭⎪⎫x 2+1x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0, ∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x 在区间(0,1)上是单调递减.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f(x1)-f(x2)的符号.(4)结论:根据f(x1)-f(x2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.[跟进训练]1.试用函数单调性的定义证明:f(x)=2xx-1在区间(1,+∞)上单调递减.[证明]f(x)=2+2x-1,设x1>x2>1,则f(x1)-f(x2)=2x1-1-2x2-1=2(x2-x1)(x1-1)(x2-1),因为x1>x2>1,所以x2-x1<0,x1-1>0,x2-1>0,所以f(x1)<f(x2),所以f(x)在区间(1,+∞)上单调递减.类型2求函数的单调区间【例2】求下列函数的单调区间,并指出该函数的单调性.(1)f(x)=-1x;(2)f(x)=⎩⎨⎧2x+1,x≥1,5-x,x<1;(3)f(x)=-x2+2|x|+3.[解](1)函数f(x)=-1x的单调区间为(-∞,0),(0,+∞),其在(-∞,0),(0,+∞)上都是单调递增的.(2)当x≥1时,f(x)是增函数,当x<1时,f(x)是减函数,所以f(x)的单调区间为(-∞,1),[1,+∞),并且函数f(x)在区间(-∞,1)上是单调递减,在[1,+∞)上单调递增.(3)因为f (x )=-x 2+2|x |+3=⎩⎨⎧-x 2+2x +3,x ≥0,-x 2-2x +3,x <0.根据解析式可作出函数的图象如图所示,由图象可知, 函数f (x )的单调区间为(-∞,-1],(-1,0),[0,1),[1,+∞).f (x )在区间(-∞,-1],[0,1)上单调递增,在区间(-1,0),[1,+∞)上单调递减.求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解.(2)利用函数的图象,如本例(3).提醒:若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例(3).[跟进训练]2.(1)根据如图所示,写出函数在每一单调区间上函数的单调性;(2)写出y =|x 2-2x -3|的单调区间.[解] (1)函数在[-1,0],[2,4]上单调递减,在[0,2],[4,5]上单调递增. (2)先画出f (x )=⎩⎨⎧x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图象,如图.所以y=|x2-2x-3|的减区间为(-∞,-1],[1,3];增区间为[-1,1],[3,+∞).类型3函数单调性的应用【例3】(1)若函数f(x)=-x2-2(a+1)x+3在区间(-∞,3]上单调递增,则实数a的取值范围是________.(2)已知函数y=f(x)是(-∞,+∞)上的增函数,且f(2x-3)>f(5x-6),则实数x的取值范围为________.(1)决定二次函数单调性的因素有哪些?由此思考该因素与区间(-∞,3]存在怎样的数量关系?(2)若f(x)是定义域上的单调函数,且f(a)>f(b),由此我们能得出变量a,b 的大小关系吗,同样思考如何得出该例(2)中变量2x-3与5x-6的大小关系?(1)(-∞,-4](2)(-∞,1)[(1)∵f(x)=-x2-2(a+1)x+3的开口向下,要使f(x)在区间(-∞,3]上单调递增,只需-(a+1)≥3,即a≤-4.∴实数a的取值范围为(-∞,-4].(2)∵f(x)在(-∞,+∞)上是增函数,且f(2x-3)>f(5x-6),∴2x-3>5x-6,即x<1.∴实数x的取值范围为(-∞,1).]若本例(2)的函数f(x)在区间(0,+∞)上单调递减,求x的取值范围.[解]由题意可知,⎩⎨⎧2x -3>0,5x -6>0,2x -3<5x -6,解得x >32.∴x 的取值范围为⎝ ⎛⎭⎪⎫32,+∞.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.[跟进训练]3.(1)若f (x )在R 上是减函数,则f (-1)与f (a 2+1)之间有( ) A .f (-1)≥f (a 2+1) B .f (-1)>f (a 2+1) C .f (-1)≤f (a 2+1)D .f (-1)<f (a 2+1)(2)若f (x )是在区间[0,+∞)上单调递增,则不等式f (x )<f (-2x +8)的解集是________.(1)B (2)⎣⎢⎡⎭⎪⎫0,83 [(1)∵a 2+1>-1,且f (x )为R 上的减函数,∴f (a 2+1)<f (-1).故选B.(2)∵f (x )是定义在区间[0,+∞)上单调递增,且f (x )<f (-2x +8),∴⎩⎨⎧x ≥0,-2x +8≥0,x <-2x +8,解得⎩⎪⎨⎪⎧x ≥0,x ≤4,x <83,即0≤x <83,所以不等式的解集为⎣⎢⎡⎭⎪⎫0,83.]1.(多选)如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法正确的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性ABD [由题图可知,f (x )在区间[-3,1],[4,5]上单调递减,单调区间不可以用并集“∪”连接,故C 错误,其余选项均正确.]2.下列函数中,在区间(0,+∞)上单调递减的是( ) A .y =-1x B .y =x C .y =x 2D .y =1-xD [函数y =1-x 在区间(0,+∞)上单调递减,其余函数在(0,+∞)上单调递增,故选D.]3.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上单调递增,则b 的取值范围为( )A .b =3B .b ≥3C .b ≤3D .b ≠3C [函数f (x )=x 2-2bx +2的图象是开口向上,且以直线x =b 为对称轴的抛物线,若函数f (x )=x 2-2bx +2在区间[3,+∞)上单调递增,则b ≤3,故选C.] 4.若y =(2k -1)x +b 是R 上的减函数,则实数k 的取值范围为________. ⎝⎛⎭⎪⎫-∞,12 [由2k -1<0得k <12.] 5.已知f (x )是定义在R 上的增函数,且f (x 2-2)<f (-x ),则x 的取值范围是________.(-2,1) [∵f (x )是定义在R 上的增函数,且f (x 2-2)<f (-x ), ∴x 2-2<-x ,即x2+x-2<0,解得-2<x<1.∴x的取值范围是(-2,1).]回顾本节知识,自我完成以下问题:1.若x1,x2是区间D上任意实数,且(x1-x2)(f(x1)-f(x2))>0,能否判定f(x)在D上的单调性?[提示]能,增函数.2.到目前为止,判定函数单调性的方式有哪些?[提示]定义法、图象法和基本初等函数法.3.证明一个函数的单调性常有哪些步骤?[提示]一般遵循:设元、作差、变形、判号和下结论.4.在应用函数单调性解题时应注意什么?[提示]已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识,如f(x)在D上递增,则f(x1)<f(x2)⇔x1<x2.二是数形结合意识,如处理一(二)次函数及反比例函数中的含参数的范围问题.。

高一数学1.3.1《函数的单调性》教案(新人教A版必修1)

高一数学1.3.1《函数的单调性》教案(新人教A版必修1)

⾼⼀数学1.3.1《函数的单调性》教案(新⼈教A版必修1)§1.3.1函数的单调性⼀、三维⽬标1、知识与技能:(1)建⽴增(减)函数的概念通过观察⼀些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的⼤⼩⽐较,认识函数值随⾃变量的增⼤(减⼩)的规律,由此得出增(减)函数单调性的定义 . 掌握⽤定义证明函数单调性的步骤。

(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学⽣通过⾃主探究活动,体验数学概念的形成过程的真谛。

2、过程与⽅法(1)通过已学过的函数特别是⼆次函数,理解函数的单调性及其⼏何意义;(2)学会运⽤函数图象理解和研究函数的性质;(3)能够熟练应⽤定义判断与证明函数在某区间上的单调性.3、情态与价值,使学⽣感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感. ⼆、教学重点与难点重点:函数的单调性及其⼏何意义.难点:利⽤函数的单调性定义判断、证明函数的单调性.三、学法与教学⽤具1、从观察具体函数图象引⼊,直观认识增减函数,利⽤这定义证明函数单调性。

通过练习、交流反馈,巩固从⽽完成本节课的三维⽬标。

2、教学⽤具:投影仪、计算机. 四、教学思路:(⼀)创设情景,揭⽰课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增⼤,y 的值有什么变化?○2 能否看出函数的最⼤、最⼩值?○3 函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:(1)f(x) = x○1 从左⾄右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增⼤,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左⾄右图象上升还是下降 ______?⼤,f(x)的值随着________ .(3)f(x) = x2○1在区间____________ 上,f(x)的值随着x的增⼤⽽________ .○2在区间____________ 上,f(x)的值随着x的增⼤⽽________ .3、从上⾯的观察分析,能得出什么结论?学⽣回答后教师归纳:从上⾯的观察分析可以看出:不同的函数,其图象的变化趋势不同,同⼀函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的⼀个重要性质——函数的单调性(引出课题)。

3-2-1函数的单调性与最大(小)值(第一课时)(课件)——高中数学人教A版(2019)必修第一册

3-2-1函数的单调性与最大(小)值(第一课时)(课件)——高中数学人教A版(2019)必修第一册
(3)由图象可知单调递增区间为(-2,0),[2,+∞),单调递减区间为 (-∞,-2),[0,2].
例题巩固
探究点三 函数单调性的简单应用 角度 1 利用单调性比较大小 [例 3-1] 若函数 f(x)在(-∞,-1]上是增函数,则下列关系式中成立的 是( )
A.f -32 <f(-1)<f(-2)
例题巩固
探究点二 求函数的单调区间 [例 2] 已知函数 f(x)=x2-4|x|+3,x∈R. (1)将函数写成分段函数的形式; (2)画出函数的图象; (3)根据图象写出它的单调区间.
[解] (1)f(x)=x2-4|x|+3 x2-4x+3,x≥0,
= x2+4x+3,x<0. (2)如图.
如果函数y=f(x)在间D上单调递增或单调递减, 那么就说函数y=f(x)在这区间具有(严格的)单 调性,区 D叫做y=f(x)的单调区间.
函数的单调性
例题巩固
例1 根据定义,研究函数f(x)=kx+b(k≠0)的单调性. 分类讨论
例题巩固
例2 物理学中的玻意耳定律力= p k (k为正常数)告诉我们,对于一定量的
二次函数 f(x)=x2的单调性
图象在 y 轴右侧部分从左到右是上升的. 当x>0时,y随x的增大而增大 用符号语言描述,就是任意取x1,x2∈[0,+∞), 得到 f(x1)=x12,f(x2)=x22,那么当x1<x2时,有 f(x1)<f(x2). 这时我们就说函数f(x)=x2在区间(-∞,0]上是单 调递增的.
函数的单调性
一般地,设函数f(x)的定义域为I,区间D∈I: 如果∀x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D 上单调递减(图3.2-3(2)). 特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数 (decreasing function).

新教材高中数学 函数的概念与性质2函数的基本性质 单调性与最大小值第一课时课件新人教A版必修第一册

新教材高中数学 函数的概念与性质2函数的基本性质 单调性与最大小值第一课时课件新人教A版必修第一册

知识点二 单调性与单调区间 如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函 数y=f(x)在这一区间具有(严格的)___单__调__性___,区间D叫做 y=f(x)的___单__调__区__间_____.
【思辨】 判断正误(请在括号中打“√”或“×”). (1)函数的单调区间是函数定义域的子集.( √ ) (2)函数f(x)=- 的单调递增区间是(-∞,0)∪(0,+∞).
例3 已知函数f(x)在区间(-1,1)上单调递减,且f(a-1)>f(1-4a),
求a的取值范围.
-1<a-1<1,
1
解:由题意知-1<1-4a<1, 解得 0<a<2 . ①
又因为函数 f(x)在区间(-1,1)上单调递减,
且 f(a-1)>f(1-4a),
所以 a-1<1-4a,得 a<25 .②由①②得,0<a<25 ,
(×) (3)函数f(x)=x2-2x(x∈[-1,2])的单调递增区间是[1,2],单
调递减区间是[-1,1].( √) (4)函数y=2x+1在[0,3]上单调递增,则[0,3]是函数的单调
递增区间.( × )
2 【解析】 (2)函数 f(x)=-x 的单调递增区间是(-∞,0) 和(0,+∞).注意两个区间之间要用逗号或“和”连接. (4)函数在定义域内的某区间递增,这个区间不一定是函数 的单调递增区间,它可能是单调区间的子集.
因为 x1<x2,且 x1,x2∈(0,+∞),
所以 x2-x1>0,x1+3>0,x2+3>0.
所以函数 f(x2)-f(x1)>0,即 f(x2)>f(x1),

3.2.1+函数的单调性(第1课时2024-2025学年高一上学期数学人教A版(2019)必修第一册

3.2.1+函数的单调性(第1课时2024-2025学年高一上学期数学人教A版(2019)必修第一册
义 则称函数f(x)在区间I上单调递增,
区间I为f(x)的单调递增区间.
区间I为f(x)的单调递减区间.


注:①当函数在其定义域上单调递增(减)时,则称f(x)是增(减)函数.
②若f(x)在区间I上单调递增(减),则称f(x)在区间I具有(严格的)单调性.
概念辨析:单调性的定义
思考1:函数的单调性是对定义域内某个区间而言的,你能举出在整
设函数f(x)的定义域为I,区间D⊆I,∀x1, x2∈D,且x1<x2

如果都有f(x1)<f(x2),那么就说函数f(x)在区间D上单调递增;
如果都有f(x1)>f(x2),那么就说函数f(x)在区间D上单调递减.
函数f(x)在它的定义域上单调递增时,我们称它是增函数;
函数f(x)在它的定义域上单调递减时,我们称它是减函数.
于是 1 − 2 > 0, 1 > 2 ,
1

此时函数 = 在 (−∞, 0) 上单调递减;
2 −1
,
1 2
练习(第79页)

讨论函数 = 的单调性.

∀1 , 2 ∈ 0, +∞ , 且1 < 2 ,则 1 − 2 =
1
1


2
=
2 −1
单调递减
增函数
减函数
学习新知 【例1】根据定义,研究函数 f (x)=kx+b(k≠0) 的单调性.
解 : 函 数 f ( x ) kx b ( k 0)的 定 义 域 是 R , x 1 , x 2 R ,
且 x 1 x 2 , 则 f ( x 1 ) f ( x 2 ) ( kx 1 b ) ( kx 2 b ) k ( x 1 x 2 )

3.2.1单调性与最大(小)值教学设计-023-2024学年高一上学期数学人教A版(2019)必修一

3.2.1单调性与最大(小)值教学设计-023-2024学年高一上学期数学人教A版(2019)必修一

课堂教学设计学科:高一数学姓名:课题:3.2.1 单调性与最大(小)值(第二课时)课型:新授课教学背景分析(一)课题及教学内容分析本节课是新课标人教A版(2019)必修1中第三章函数的性质之函数的单调性和最大(小)值的第2课时,也是对函数性质的进一步研究。

函数的最值问题对于学生来说并不陌生,初中已经学习了求二次函数的最大(小)值的问题。

本节在函数的单调性之后,目的在于引导学生用单调性探究函数的最值问题,同时对解决日常生活中的最值问题起着重要作用。

通过本节课的学习,可以让学生理解函数最值的定义和几何意义,进一步加深对函数性质的理解,同时,对于常见题型的研究,也将数学结合和分类讨论思想充分体现,对培养学生直观想象、数学建模等核心素养都具有重要意义。

(二)学生情况分析现阶段大部分学生学习的主动性较差,且随着高中数学难度的加大,学习信心不足。

通过对常见函数的单调性问题的学习,找到初中知识和高中知识的衔接点,从特殊到一般,再通过类比,使学生更容易掌握新知识。

因此,学生已经具备了探索、发现、研究函数单调性的基础,通过问题引导,使学生独立思考、大胆尝试和灵活应用,从中体会类比、归纳、转化等数学思想。

学习目标1.借助函数的单调性,结合函数图象,形成函数最大(小)值的概念及几何意义。

2.在最值概念的形成过程中,体会到以具体到抽象,从感性到理性的认知过程以及从特殊到一般的研究方法领会数形结合的数学思想。

教学重点和难点1.教学重点:抽象概括函数最大(小)值的定义,能利用单调性求一些函数最值2.教学难点:函数最大(小)值形式化定义的形成与理解教学资源和教学方法采用多媒体和黑板结合,创设情景,从具体函数图像引入新课。

以学生为主体,通过问题衔接,引导学生思考探究学习。

教学过程(第二课时)教学环节教师活动学生活动设计意图教师个人二次备课环节一复习回顾引出课题问题1:上节课我们研究了函数的单调性,请叙述单调性的定义,并回答单调性证明的一般步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2函数的基本性质3.2.1单调性与最大(小)值【素养目标】1.根据一次函数,二次函数了解并理解函数单调性的概念.(数学抽象)2.会利用函数图象判断一次函数,二次函数的单调性.(直观想象)3.理解一次函数、二次函数等常见函数的最大(小)值问题.(数据分析)4.能利用定义判断一些简单函数在给定区间上的单调性,掌握利用单调性定义判断、证明函数单调性的方法.(逻辑推理)5.掌握利用函数的图象和函数的单调性求一些简单函数的最大(小)值的方法.(数据分析)【学法解读】1.函数单调性的学习,学生要正确使用符号语言清晰地刻画函数的性质.2.单调性的有关概念比较抽象,要注意结合具体的函数(如一次函数、二次函数、比例函数等)加深理解其含义及应用.3.应少做偏题、怪题,避免繁琐的技巧训练.第1课时函数的单调性必备知识·探新知基础知识知识点1函数的单调性前提条件设函数f(x)的定义域为I,区间D⊆I__∀x1,x2∈D__,x1<x2条件都有f(x1)<f(x2)都有f(x1)>f(x2) 图示结论f(x)在区间D上单调__递增__f(x)在区间D上单调__递减__ 特殊情况当函数f(x)在它的定义域上单调递当函数f(x)在它的定义域上单调递增时,我们就称它是__增函数__ 减时,我们就称它是__减函数__思考1:在函数单调性的定义中,能否去掉“任意”? 提示:不能,不能用特殊代替一般.知识点2 函数的单调性与单调区间函数y =f (x )在__区间D __上是单调递增或单调递减,则函数在区间D 上具有(严格的)单调性,区间D 叫做函数的单调区间.思考2:区间D 一定是函数的定义域吗?提示:不一定,可能是定义域的一个子区间,单调性是局部概念,不是整体概念.基础自测1.函数y =f (x )在区间(a ,b )上是减函数,x 1,x 2∈(a ,b ),且x 1<x 2,则有( B ) A .f (x 1)<f (x 2) B .f (x 1)>f (x 2) C .f (x 1)=f (x 2)D .以上都有可能[解析] 因为函数y =f (x )在(a ,b )上是减函数,且x 1<x 2,所以f (x 1)>f (x 2),故选B . 2.下列函数中,在区间(0,2)上为增函数的是( B ) A .y =3-x B .y =x 2+1 C .y =1xD .y =-x 2[解析] 分别画出各个函数的图象,在区间(0,2)上上升的图象只有B . 3.若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有 f (a )-f (b )a -b>0成立,则必有( A )A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )是先增后减D .函数f (x )是先减后增[解析] 由单调性的定义可知,对任意两个不相等的实数a 、b ,总有f (a )-f (b )a -b >0成立,则f (x )在R 上是增函数,故选A .4.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为__f (a 2-a +1)≤f (34)__.[解析] ∵a 2-a +1=(a -12)2+34≥34,又∵f (x )在区间(0,+∞)上为减函数, ∴f (a 2-a +1)≤f (34).关键能力·攻重难题型探究题型一 求函数的单调区间例1 如图为函数y =f (x ),x ∈[-4,7]的图象,指出它的单调区间.[分析] (1)函数f (x )在D 上单调递增(或单调递减)表现在其图象上有怎样的特征? (2)单调增、减区间与函数在该区间上为增、减函数一样吗?[解析] 函数的单调增区间为[-1.5,3),[5,6),单调减区间为[-4,-1.5),[3,5),[6,7]. [归纳提升] 函数单调区间的求法及表示方法(1)由函数图象确定函数的单调区间是一种直观简单的方法,对于较复杂的函数的单调区间,可利用一些基本函数的单调性或根据函数单调性的定义来求.(2)单调区间必须是一个区间,不能是两个区间的并,如不能写成函数y =1x 在(-∞,0)∪(0,+∞)上是减函数,而只能写成在(-∞,0)和(0,+∞)上是减函数.(3)区间端点的写法:对于单独的一点,由于它的函数值是唯一确定的常数,没有增减变化,所以不存在单调问题,因此写单调区间时,可以包括端点,也可以不包括端点,但对于某些点无意义时,单调区间就不包括这些点.【对点练习】❶ 据下列函数图象,指出函数的单调增区间和单调减区间.[解析]由图象(1)知此函数的增区间为(-∞,2],[4,+∞),减区间为[2,4].由图象(2)知,此函数的增区间为(-∞,-1],[1,+∞),减区间为[-1,0),(0,1].题型二用定义法证明函数的单调性例2 利用单调性定义证明:函数f(x)=x-1在其定义域内是增函数.[分析]由于函数的定义域没有给出,证明前要先求出定义域,然后证明.[证明]函数f(x)=x-1的定义域是x∈[1,+∞),设∀x1,x2∈[1,+∞)且x1<x2,则f(x2)-f(x1)=x2-1-x1-1=(x2-1-x1-1)(x2-1+x1-1)x2-1+x1-1=x2-x1x2-1+x1-1.因为x1,x2∈[1,+∞),且x1<x2,所以x2-1+x1-1>0,x2-x1>0.所以f(x1)<f(x2).即函数f(x)=x-1在定义域上是增函数.[归纳提升]函数的单调性是在某指定区间上而言的,自变量x的取值必须是连续的,用定义证明函数的单调性的基本步骤是“取值——作差(或作商)——变形——定号——判断”.当函数在给定区间上恒正或恒负时,也常用“作商判1”的方法来解决,特别是函数中含有指数式时常用此法.解决带根号的问题,常用的方法就是分子、分母有理化.从形式上看是由“-”变成“+”.【对点练习】❷(1)用函数单调性定义证明:函数f(x)=2x2+4x在(-∞,-1]上是单调减函数;(2)用函数单调性定义证明:函数y =2xx +1在(-1,+∞)上为增函数.[证明] (1)设x 1<x 2≤-1,则f (x 1)-f (x 2)=(2x 21+4x 1)-(2x 22+4x 2) =2(x 21-x 22)+4(x 1-x 2)=2(x 1-x 2)(x 1+x 2+2). ∵x 1<x 2≤-1,∴x 1-x 2<0,x 1+x 2+2<0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(-∞,-1]上是减函数. (2)设x 1>x 2>-1,则x 1-x 2>0,x 1+1>0,x 2+1>0, y 1-y 2=2x 1x 1+1-2x 2x 2+1=2(x 1-x 2)(x 1+1)(x 2+1)>0,∴y 1>y 2,∴函数y =2xx +1在(-1,+∞)上为增函数.题型三 单调性的应用例3 已知函数f (x )是定义在R 上的增函数,且f (3a -7)>f (11+8a ),求实数a 的取值范围.[分析] 根据函数的单调性定义可知,由两个自变量的大小可以得到相应的函数值的大小,反之,由两个函数值的大小也可以得到相应自变量的大小.[解析] ∵函数f (x )是定义在R 上的增函数,且f (3a -7)>f (11+8a ), ∴3a -7>11+8a , ∴a <-185,∴实数a 的取值范围是(-∞,-185).[归纳提升] 利用函数的单调性解函数值的不等式就是利用函数在某个区间内的单调性,去掉对应关系“f ”,转化为自变量的不等式,此时一定要注意自变量的限制条件,以防出错.【对点练习】❸ 已知函数g (x )是定义在R 上为增函数,且g (t )>g (1-2t ),求实数t 的取值范围.[解析] ∵g (x )在R 上为增函数,且g (t )>g (1-2t ), ∴t >1-2t ,∴t >13,即所求t 的取值范围为(13,+∞).课堂检测·固双基1.函数y =f (x )的图象如图所示,其增区间是( C )A .[0,1]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 结合图象分析可知,函数图象在区间[-3,1]是上升的,故其增区间是[-3,1]. 2.下列函数中,在区间(0,1)上单调递增的是( A ) A .y =|x | B .y =3-x C .y =1xD .y =-x 2+4[解析] 因为-1<0,所以一次函数y =-x +3在R 上单调递减,反比例函数y =1x 在(0,+∞)上单调递减,二次函数y =-x 2+4在(0,+∞)上递减.3.(2020·山东潍坊市高一期中测试)已知函数f (x )在(-∞,+∞)上是减函数,若a ∈R ,则( D )A .f (a )>f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )[解析] ∵a 2+1-a =(a -12)2+34>0,∴a 2+1>a ,又∵f (x )在(-∞,+∞)上是减函数, ∴f (a 2+1)<f (a ).4.判断并证明:函数f (x )=-1x +1在(0,+∞)上的单调性.[解析] 函数f (x )=-1x+1在(0,+∞)上是增函数.证明:设x1,x2是(0,+∞)上的任意两个实数,且x1<x2,则f(x1)-f(x2)=(-1x1+1)-(-1x2+1)=-1x1+1x2=x1-x2x1x2.由x1,x2∈(0,+∞),得x1x2>0.又由x1<x2,得x1-x2<0.于是f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)=-1x+1在(0,+∞)上是增函数.。

相关文档
最新文档