各种经典电路设计

合集下载

经典的运算放大器基本电路大全

经典的运算放大器基本电路大全

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V 也或者会更低。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

—、MOS管驱动电踣综述在便用MOS管设计开关电源或者马达驱动电路的时候’大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

1、MOS管种类和结构MOSFET管是圧T的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS 管和増强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种増强型MOSg,比较常用的是NMOS。

原因是导通电阻小‘ 且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS o下面的介绍中,也多以NMOS 为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOSW中存在,在集成电路芯片内部通常是没有的。

2、MOS营导通特性导谨的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或T0V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是便用NM0S o3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

选择导通电阻小的MOS管会减小导通损耗。

电子工程师应具备的电路设计常识及几十个经典电路解析

电子工程师应具备的电路设计常识及几十个经典电路解析

电子工程师应具备的电路设计常识及几十个经典电路解析一、接地技术PCB设计—接地技术1、接地设计的基本原理好的接地系统是抑制电磁干扰的一种技术措施,其电路和设备地线任意两点之间的电压与线路中的任何功能部分相比较,都可以忽略不计;差的接地系统,可以通过地线产生寄生电压和电流偶合进电路,地线或接地平面总有一定的阻抗,该公共阻抗使两两接地点间形成一定的压降,引起接地干扰,使系统的功能受到影响。

从而影响产品的可靠性。

2、接地目的接地的目的主要有三个:◆接地使整个电路系统中所有单元电路都有一个公共的参考零电位,保证电路系统能稳定地工作。

◆防止外界电磁场的干扰。

机壳接地可以使得由于静电感应而积累在机壳上的大量电荷通过大地泄放,否则这些电荷形成的高压可能引起设备内部的火花放电而造成干扰。

另外,对于电路的屏蔽体,若选择合适的接地,也可获得良好的屏蔽效果。

◆保证安全作。

当发生直接雷电的电磁感应时,可避免电子设备的毁坏;当工频交流电源的输入电压因绝缘不良或其它原因直接与机壳相通时,可避免操作人员的触电事故发生。

3、接地分类◆ 防雷接地(LGND)防雷接地是将可能受到雷击的物体与大地相连。

当物体位置较高,距离雷云较近时,一定要将物体进行防雷接地。

由于雷电的放电电流是脉冲性的,放电电流也较大,所以防雷接地时的接地电阻要小。

为了避免由于雷击而造成机房里设备之间的高压差,特别是有电气连接或距离较近的设备之间要采用低电感和电阻搭接。

★接地电阻:接地电阻不是普通的电阻而是一个阻值,是指电流由接地装置流向大地再由大地流向无穷远处或是另一个接地装置所需克服的总电阻。

接地电阻包括接地线、接地装置本身电阻、接地装置与大地之间的接触电阻和两接地装置之间的大地电阻或接地装置与无线远处的大地电阻。

接地电阻越小,当有漏电流或是雷电电流时,可以将其导入大地,不至于伤害人或损坏设备。

如果接地电阻变大,会造成应该导入大地的电流导不下去,因此,接地电阻越小越安全。

PCB新手初学必备50个经典应用电路实例分析

PCB新手初学必备50个经典应用电路实例分析

PCB新手初学必备50个经典应用电路实例分析PCB(Printed Circuit Board,印制电路板)是现代电子产品中不可或缺的核心部件之一,用于支持和连接电子元器件。

初学者在学习和掌握PCB设计时,了解一些经典的应用电路实例是很有帮助的。

下面将介绍50个经典的应用电路实例,并简单分析其工作原理。

1.电源滤波电路:用于去除电源输入中的噪声和干扰。

2.整流电路:将交流电信号转换为直流电信号,常见的电源电路。

3.电压调节电路:用于稳定输出电压,常见的稳压装置。

4.LED驱动电路:用于驱动LED显示器件的电路,常见于各种灯具。

5.小电力放大器电路:用于增加音频信号的功率,如小型扬声器。

6.音频滤波电路:用于调整音频信号的频率特性,如均衡器。

7.电源保护电路:用于保护电子设备免受过电压、过电流等情况的损害。

8.低通滤波器电路:用于通过低频信号,滤除高频信号。

9.高通滤波器电路:用于通过高频信号,滤除低频信号。

10.时钟电路:用于提供稳定的时钟信号,常见于数字系统。

11.振荡器电路:用于产生稳定的频率信号,如时钟振荡器。

12.多谐振荡电路:用于产生多频率的信号,常见于无线通信设备。

13.反相放大器电路:将输入信号进行反相放大。

14.非反相放大器电路:将输入信号进行非反相放大。

15.对数放大器电路:将输入信号进行对数放大,如用于音量控制。

16.线性电源电路:用于提供稳定的线性电源输出。

17.数字电源电路:用于提供稳定的数字电源输出。

18.温度控制电路:用于控制温度,如温度传感器和风扇控制电路。

19.温度补偿电路:用于对温度进行补偿,如精准控制设备。

20.模拟开关电路:用于模拟开关操作,如触摸传感器。

21.PWM控制电路:用于产生脉宽调制信号,如电机驱动器。

22.静电保护电路:用于保护电子器件不受静电干扰。

23.短路保护电路:用于保护电路免受短路损坏。

24.信号选择器电路:用于选择不同的输入信号,如多路音频选择器。

十种运放精密全波整流电路

十种运放精密全波整流电路

十种运放精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题。

DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电。

目前DC-DC转换器设计技术发展主要趋势有:(1)高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善。

小功率DC-DC转换器的开关频率将上升到兆赫级。

(2)低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求。

这些技术的发展对电源芯片电路的设计提出了更高的要求。

首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作。

其次,对于电池供电的便携式电子设备来说,电路的工作电压低(以锂电池为例,工作电压2.5~3.6V),因此,电源芯片的工作电压较低。

MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC 芯片中多采用MOS管作为功率开关。

但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法。

这对于设计高工作频率DC-DC 转换器开关管驱动电路的设计提出了更高的要求。

在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路。

这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹。

本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路。

电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压1.5V ,负载电容为60pF时,工作频率能够达到5MHz以上。

经典模拟电池电路设计

经典模拟电池电路设计

在电源类电子产品的生产检验过程中,需要用到许多检测设备对产品的电气性能进行测试,其中常用的一种检测设备就是电子负载,通过改变电子负载的参数,可以检测到电源产品的输出特性,但在充电器这种特殊的电子产品中,由于其负载是电池,若要完整地检测一个电池从放空到充满整个过程中充电器的输出特性,需要花很长时间对电池做一个完整的充电过程,而这么长的充电时间显然会使生产效率低下,而且经常的测试也会使被用来充电的电池寿命缩短,并使内阻增大,也影响测试结果的准确性.基于这种考虑,笔者设计了一种模拟电池电路,它可以完全地模拟真正的电池,可以被充电,也可以放电,而且其电压可随意设定,经在生产中实际使用,效果很好。

其电路原理分析如下: 220V市电经T1降压后,经VD3-VD6整流,经L1、C7滤波后,得到不稳定的12V直流电,N2、R1-R6、C2构成稳压电源电路,其输出为稳定的5V电源提供给MCP617运算放大器.N2的第一脚为恒定的2.5V,作为基准电压提供给MCP617作比较用. 电路的输出电压经R7与R13、R17分压后反馈给2个运放,从而控制V1和V3两个三极管的导通状态,使输出电压稳定在设定的值. 由于R5的存在,N1A与N1B运放的基准电压会相差120uV,因此当输出端对外供电时,V3是完全截止的,而当外部电源对输出端充电时,V1是截止的,其充电电流通过R12、R11、VD2、V3泄放掉,相当于充电.移去充电电源后,电路会恢复到对外供电状态.其特性与实际的电池完全一样. 由于真正的电池含有内阻,电路中R12用来充当电阻内阻的作用,其值为0.05Ω. R14电位器用来调整模拟电池的电压,其阻值减小时,输出端电压升高,其阻值升高时,输出端电压降低,R15用来微调输出电压,作精确调节电压用. 笔者也曾用该电路来仿真锂离子电芯,用来测试锂离子电池保护电路的保护点参数,所测得的保护值非常精确.。

dcdc电路设计

dcdc电路设计

dcdc电路设计
dcdc电路设计,指的是直流/直流变换器的电路设计。

它是一种利用半导体器件来实现电压转换的电路,其中由放大器、滤波器、开关元件等组成的复杂电路结构,能够完成将输入输出之间的电压和电流,从而满足应用需要。

DC-DC变换器是一种经典的多用途电子设备,在工业、航空航天、医疗、安防等领域都有广泛的应用。

它们可以在不同的电压和功率范围内进行输入和输出转换,保证系统正常工作,满足设备的需求。

dcdc电路设计的主要目的是通过控制输入和输出电压来实现电压的转换,从而使系统能够正常运行,并达到理想的效果。

DC-DC变换器的电路设计主要包括以下几个方面:
1. 选择合适的电路元件,如开关元件、放大器、滤波器等;
2. 选择合适的变换器结构,如单端输入、双端输入、三端输入等;
3. 确定电路的额定电压、额定功率、频率等参数;
4. 分析和优化电路的纹波、噪声、谐振、负载特性等性能参数;
5. 选择合适的电路板材料,确定电路的布局及尺寸。

DC-DC变换器的电路设计是一个非常复杂的系统工程,需要综合考虑多个因素,才能实现理想的效果。

在设计电路时,必须根据应用场景选择合适的电路元件,同时明确额定参数,确保电路性能稳定可靠,满足系统应用需求。

电源电路设计分析实例(经典分析)

电源电路设计分析实例(经典分析)

电源电路设计分析实例(经典分析)众所皆知,电源电路设计,乃是在整体电路设计中最基础的必备功夫,因此,在接下来的文章中,将会针对实体电源电路设计的案例做基本的探讨。

电源device电路※输出电压可变的基准电源电路(特征:使用专用IC基准电源电路)图1是分流基准(shunt regulator)IC构成的基准电源电路,本电路可以利用外置电阻Vr1与R3的设定,使输出电压在+2.5V-5V范围内变化,输出电压Vout可利用下式求得:----------------------(1)Vref:内部的基准电压。

图中的TL431是TI的编号,NEC的编号是μPC1093,新日本无线电的编号是NJM2380,日立的编号是HA17431,东芝的编号是TA76431。

※输出电压可变的高精度基准电源电路(特征:高精度、电压可变)类似REF-02C属于高精度、输出电压不可变的基准电源IC,因此设计上必需追加图2的OP增幅IC,利用该IC的gain使输出电压变成可变,它的电压变化范围为+5-+10V。

※利用单电源制作正负电压同时站立的电源电路(特征:正负电压同时站立)虽然电池device的电源单元,通常是由电池构成单电源电路,不过某些情况要求电源电路具备负电源电压。

图3的电源电路可输出由单电源送出的稳定化正、负电源,一般这类型的电源电路是以正电压当作基准再产生负电压,因此负电压的站立较缓慢,不过图3的电源电路正、负电压却可以同时站立,图4中的TPS60403 IC可使输入的电压极性反转。

※40V最大输出电压的Serial Regulator(特征:可以输出三端子Regulator IC无法提供的高电压)虽然三端子Regulator IC的输出电压大约是24V,不过若超过该电压时电路设计上必需与IC以disk lead等组件整合。

图5的Serial Regulator最大可以输出+40V 的电压,图中D2 Zener二极管的输出电压被设定成一半左右,再用R7 VR1 R8 将输出电压分压,使该电压能与VZ2 的电压一致藉此才能决定定数。

几个常用经典差动放大器应用电路详解

几个常用经典差动放大器应用电路详解

几个常用经典差动放大器应用电路详解成德广营浏览数:1507发布日期:2016-10-10 10:48经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。

本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。

关键词:CMRR差动放大器差分放大器简介经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。

本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。

大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。

图1 所示的经典四电阻差动放大器非常有用,教科书和讲座40 多年来一直在介绍该器件。

图1. 经典差动放大器该放大器的传递函数为:若R1 = R3 且R2 = R4,则公式1 简化为:这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。

此外,基本电路在其他方面的改变可产生意想不到的行为。

下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。

CMRR差动放大器的一项重要功能是抑制两路输入的共模信号。

如图1 所示,假设V2 为5 V,V1 为3 V,则4V为共模输入。

V2 比共模电压高1 V,而V1 低1 V。

二者之差为2 V,因此R2/R1的“理想”增益施加于2 V。

如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。

差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。

该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。

在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为:其中,Ad为差动放大器的增益,t 为电阻容差。

十种运放精密全波整流电路

十种运放精密全波整流电路

十种运放精密全波整流电路图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益图2优点是匹配电阻少,只要求R1=R2图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点.图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K图8的电阻匹配关系为R1=R2图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称.图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性.图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡.精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态.结论:虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种.图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波.图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.图3的优势在于高输入阻抗.其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高.两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随器或同相放大器隔离.各个电路都有其设计特色,希望我们能从其电路的巧妙设计中,吸取有用的.例如单电源全波电路的设计,复合反馈电路的设计,都是很有用的设计思想和方法,如果能把各个图的电路原理分析并且推导每个公式,会有受益的。

50个典型应用电路实例详解

50个典型应用电路实例详解

电路1 简单电感量测量装置电路2 三位数字显示电容测试表电路 3 市电电压双向越限报警保护器电路4 红外线探测防盗报警器电路5 禁烟警示器电路6 采用555时基电路的简易温度控制器电路7 采用555时基电路的自动温度控制器电路8 采用CD4011的超温监测自动控制电路电路9 数字温度计电路电路10 热带鱼缸水温自动控制器电路11 采用555时基电路的简易长延时电路电路12 双555时基电路长延时电路电路13 精确长延时电路电路14 数字式长延时电路电路15 循环工作定时控制器电路16 多级循环定时控制器电路17 抗干扰定时器电路18 采用555集成电路的简易光电控制器电路 19 采用功率开关集成电路TWH8751的路灯自动控制器电路20 采用双D触发器CD4013的路灯控制器电路21 使用氖灯的单键触摸开关电路22 双键触摸式照明灯电路23 触摸式延时照明灯电路24 家用简易闪烁壁灯控制器电路25 自动应急灯电路电路26 12V供电的电子节能灯电路27 高响度警音发生器电路28 电子仿声驱鼠器电路29 由HY560构成的语音录放电路电路30 闪烁灯光门铃电路电路3 1 由LM386构成的3W简易OCL功放电路电路32 由TDA2009构成的1W高保真BTL功率放大器电路33 具有音调控制功能的25W混合式Hi—Fi放大器电路34 超级广场效果的耳机放大器电路35 家用电器过压自动断电装置电路36 电话自动录音控制器电路37 电风扇自动温控调速器电路38 水开报知器电路39 新颖的鱼缸灯电路40 小型电子声光礼花器电路41 电源频率检测器电路42 采用555时基电路的过流检测器电路电路43 自制交流自动稳压器电路44 采用555时基电路的过电压、过电流保护电路电路 45 开关直流稳压电源电路 46 可调直流稳压电源电路47 采用与非门CD4011构成的湿度控制器电路48 三相交流电相序检测器电路49 三相交流电相序指示器电路50 电气设备调温、调速器电路1 简单电感量测量装置在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。

光耦及三极管来驱动继电器经典设计电路模块

光耦及三极管来驱动继电器经典设计电路模块

光耦及三极管来驱动继电器经典设计电路模块1.引言1.1 概述概述部分的内容:引言是文章的开篇,它需要向读者介绍本文所要探讨的主题,即光耦及三极管来驱动继电器经典设计电路模块。

在现代电子技术中,继电器是一种常见的电子组件,用于在不同电路之间进行电信号的传递和控制。

为了实现继电器的驱动,我们可采用多种方法,本文将重点介绍使用光耦和三极管来驱动继电器的经典设计电路模块。

在本文中,我们将首先详细介绍光耦驱动继电器的原理和工作方式。

光耦作为一种光电耦合器件,能够将输入端的电信号转换成光信号,并通过光电转换将其传递到输出端,从而实现继电器的驱动。

我们将深入探讨光耦驱动继电器的工作原理,并举例说明其在不同应用场景中的具体应用。

而后,我们将详细介绍三极管驱动继电器的原理和工作方式。

三极管作为一种常见的放大器件,能够对输入电信号进行放大和控制,从而实现对继电器的驱动。

我们将深入探讨三极管驱动继电器的工作原理,并举例说明其在不同应用场景中的具体应用。

最后,在结论部分,我们将对比分析光耦及三极管驱动继电器的优缺点,并给出总结。

通过本文的阅读,读者将能够了解到光耦及三极管在驱动继电器方面的经典设计电路模块,并能够在实际应用中灵活运用,提高电子电路的可靠性和稳定性。

总之,本文将深入介绍光耦及三极管驱动继电器的原理和应用场景,旨在帮助读者更好地了解和应用这些经典设计电路模块,进而提升电子技术领域的实践能力。

文章结构:本文主要包括引言、正文和结论三个部分,下面将对每个部分的内容做介绍。

1. 引言引言部分主要对本文要讨论的主题进行概述,并介绍文章的结构和目的。

1.1 概述在这部分,我们将简要介绍光耦和三极管的基本概念,并说明它们在电子电路中驱动继电器上的重要作用。

同时也提及到了这两种器件的经典设计电路模块。

1.2 文章结构本文将分为三个主要部分进行讲述。

首先,在正文部分我们将重点讨论光耦驱动继电器的原理介绍和其在实际应用中的场景。

电路图及电路设计(经典)保留

电路图及电路设计(经典)保留

一、按电路图连接实物1、根据图(a)的电路图,在图(b)中画出对应的实物连接图.2、根据图所示,要求Ll、L2并联,S1控制L1,S2控制L2,S3在干路,连线不要交叉,请将图中元件连成电路.二、改错1、实验课上苏家韬同学连接了如下图所示的电路,在检查时,老师说电路不合理,但只要稍加修改就可用.请你按下面两个要求:图所示的电路,在检查时,老师说电路不合理,但只要稍加修改就可用.请你按下面两个要求:(1)在图中只加一根导线,使实物电路成为并联电路.(2)在图中只改动一根导线的一端,使实物电路成为串联电路.(要求:在被改动的导线上画“×”,然后画出改动的导线).分别在左右两幅图中加以改正.2、小刚同学测量2.5 V 小灯泡的电阻时,连接的电路如图7- 11检查电路,发现有一根导线连接错误,请你在连接错误的导线上打“× ”,在图中补画出正确的连线三、电路设计1、有一仓库,后门进货、前门取货,现有红、绿两只灯泡和一个电铃、一个电池组、两个开关,还有若干条导线。

请你为仓库值班人员设计一个电路:电铃响同时红灯亮,表示取货人在前门按开关;电铃响同时绿灯亮,表示送货人在后门按开关。

要求在方框内画出设计的电路图,图中要标明红灯、绿灯及对应的前门、后门的开关。

根据以下要求,设计电路,用笔代线在图中画出相应的实物连接图。

(导线不能交叉)要求:(1)只闭合S1时,红灯发光,绿灯不发光;(2)S1、S2都闭合时,两灯都发光;(3)只闭合S2时,两灯均不发光。

2、两个电灯(红灯L1和绿灯L2)、两个开关、一个电池,要求开关S1闭合、S2断开时,红灯亮,绿灯不亮;如果S1断开、S2闭合,则两个灯均不亮。

请按照要求画出电路图。

3.一个医院某个病房有三张床,每个床头各一个开关。

护士值班事有红、绿、蓝三盏灯。

一个电铃、一个电源。

要求设计一个电路:病人按开关时,一盏灯亮时铃响。

4、一个工厂前后两个收发室,各有一个开关,一个电铃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种经典电路设计
超声波驱蚊器
这是一款极简单的超声波驱蚊、虫、蟑螂电路。

电路由CMOS 4047单稳态触发器构成张弛振荡电路,通过调整4K7,使它的中心频率约在22KHz左右,再由4个晶体管组成的桥式功率输出,去推动3.25 i nch Piezo发出超声波信号。

此主题相关图片如下:
120db扫频式警声电路
此主题相关图片如下:
+5V输入+30V输出升压电路此主题相关图片如下:
此主题相关图片如下:
一款性能极佳的JFET-MOSFET耳机功放此主题相关图片如下:
此主题相关图片如下:
此主题相关图片如下:
此主题相关图片如下:
JFET-MOSFET耳机功放实物顶视图此主题相关图片如下:
另一款发烧耳机功放此主题相关图片如下:
电路图如下:
此主题相关图片如下:
此主题相关图片如下:
50Hz时基信号发生器电路
这是一款简单的50Hz时基信号发生电路。

此主题相关图片如下:
红外线遥控器检测仪
注意:这电路带电的噢,调试时小心触电!
此主题相关图片如下:
外观安装图
一体接收头外观图
此主题相关图片如下:
此主题相关图片如下:
耳塞式二管接收电话机
电路相当简单,可做在一小盒内,话筒装在耳塞机线的15CM左右,就可像使用手机免提耳塞机一样,一边煲电话,一边。

此主题相关图片如下:
超声波移动报警器
此主题相关图片如下:
高精度6~60秒定时器
此主题相关图片如下:
本电路定时时间范围为6—60秒。

当接通开关AN时,继电器J1吸合,电容C1通过R1和电位器KP充电,当C1
两端电压达到电源电压的2/3时,IC的输出状态翻转,完成定时过程。

稳压二极管VW2作用是当电源电压发生变比时,可保证闻值电压稳定;VW1用于稳定电容充电电压,以进一步提高精度。

电路的定时时间T=1.1(R1+KP)C1,调节KP,可获得6—60秒内的任一定时时间。

稳压二极管VW1选用8V、1/2W,VW2 6V、1/2W.
用555制作的多波形信号发生器
此主题相关图片如下:
醉酒深度计
这是一款利用光电显示的醉酒深度计,可以应用在交通安全防止酗酒开车等等。

该电路采用QM-J1酒敏传感器做检测(被检测者向传感器吹气),QM-J1酒敏传感器对
酒精乙醇具有较好的选择性。

QM-J1的A、B端在清洁的空气中,内阻较大,当酒精乙醇含量超过一定数量时A、B端的内阻开始变低,随着酒精乙醇含量的增加,A、B端的内阻也随线性的变低,B端的电压也线性的变高,B端的输出电平信号由LM3914进行线性标度显示。

该线性标度显示分为十级显示(D2~D11),设D7为超安全警界,当IC1的14脚转为低电平时(D7亮)T1导通,蜂鸣器得电工作,提醒被检测者已超安全警
界。

1,IC2的引脚以各封装为准。

2,传感器的f、f 为加热灯丝端,电压为5V/-+0。

5V。

[转帖]简单实用的3键互锁电子开关
这是由XU1021大侠贴在“21IC社区”的3键互锁电子开关,电路虽然简单,但富有创意。

原文如下:
电路结构简单,按下任何一键,相应一路开通,其他二路关闭。

触点抖动不影响电路正常工作,抗干扰好。

如果去掉后面的驱动三极管,电路的静态功耗几乎为零。

去掉按键,亦可变通为脉冲控制。

火灾烟雾探测器
这是一款用气敏元件做检测器的火灾烟雾检测器。

气敏元件MQK-2对刚发生火灾时的烟雾有极强的选择性,当传感器在清洁的空气中A、B端为高阻状态,一旦传感器检测到刚发生火灾时的烟雾时A、B端的内阻下降,T1导通,S3输出低电平给总控制电路,如无需总控制电路控制,只做单独报警作用的则将R3、C5换成蜂鸣器(见虚线图)。

该电路供电电压为9~12V,气敏元件的f、f为加热等丝,电压为5V/+-0.2V。

此主题相关图片如下:
简单的电脑红外线传输连接器
这是一款简单的电脑红外线传输连接器。

只用了一块六反相器、一只红外发射二极管、一体接收头、一只电阻和电解电容。

当然,这款电路还不能算是最简单的,应该可以只用一只三极管、一对红外收、发对管和一只电阻来构成,不过,性能就。

此主题相关图片如下:。

相关文档
最新文档